[1] G. Ottaviani and N. Jaffe, The epidemiology of osteosarcoma, in: Pediatric and adolescent osteosarcoma, Springer, 2009, pp. 3-13.
[2] G. Chen, C. Wang, J. Wang, S. Yin, H. Gao, L.U. Xiang, H. Liu, Y. Xiong, P. Wang, X. Zhu, L.I. Yang and R. Zhang, Antiosteoporotic effect of icariin in ovariectomized rats is mediated via the Wnt/beta-catenin pathway, Exp Ther Med 12 (2016), 279-287.
[3] H. Liu, Y. Xiong, H. Wang, L. Yang, C. Wang, X. Liu, Z. Wu, X. Li, L. Ou, R. Zhang and X. Zhu, Effects of water extract from epimedium on neuropeptide signaling in an ovariectomized osteoporosis rat model, J Ethnopharmacol 221 (2018), 126-136.
[4] H. Liu, Y. Xiong, X. Zhu, H. Gao, S. Yin, J. Wang, G. Chen, C. Wang, L. Xiang, P. Wang, J. Fang, R. Zhang and L. Yang, Icariin improves osteoporosis, inhibits the expression of PPARgamma, C/EBPalpha, FABP4 mRNA, N1ICD and jagged1 proteins, and increases Notch2 mRNA in ovariectomized rats, Exp Ther Med 13 (2017), 1360-1368.
[5] X. Liu, H. Liu, Y. Xiong, L. Yang, C. Wang, R. Zhang and X. Zhu, Postmenopausal osteoporosis is associated with the regulation of SP, CGRP, VIP, and NPY, Biomed Pharmacother 104 (2018), 742-750.
[6] Z. Wu, L. Ou, C. Wang, L. Yang, P. Wang, H. Liu, Y. Xiong, K. Sun, R. Zhang and X. Zhu, Icaritin induces MC3T3-E1 subclone14 cell differentiation through estrogen receptor-mediated ERK1/2 and p38 signaling activation, Biomed Pharmacother 94 (2017), 1-9.
[7] W. Haixia, M. Shu, Y. Li, W. Panpan, S. Kehuan, X. Yingquan, L. Hengrui, L. Xiaoguang, W. Zhidi and O. Ling, Effectiveness associated with different therapies for senile osteopo-rosis: a network Meta-analysis, J Tradit Chin Med 40 (2020), 17-27.
[8] C. Wang, G. Chen, J. Wang, H. Liu, Y. Xiong, P. Wang, L. Yang, X. Zhu and R. Zhang, Effect of Herba Epimedium Extract on Bone Mineral Density and Microstructure in Ovariectomised Rat, Journal of Pharmaceutical and Biomedical Sciences 6 (2016).
[9] H. Liu, Effect of Traditional Medicine on Clinical Cancer, Biomedical Journal of Scientific & Technical Research 30 (2020), 23548-23551.
[10] H. Liu, A clinical mini-review: Clinical use of Local anesthetics in cancer surgeries, The Gazette of Medical Sciences 1 (2020), 030-034.
[11] R. Li, H. Liu, J.P. Dilger and J. Lin, Effect of Propofol on breast Cancer cell, the immune system, and patient outcome, BMC Anesthesiol 18 (2018), 77.
[12] R. Li, Y. Huang, H. Liu, J.P. Dilger and J. Lin, Comparing volatile and intravenous anesthetics in a mouse model of breast cancer metastasis, American Association for Cancer Research, 2018, pp. 2162.
[13] S. Prater and B. McKeon, Cancer, Osteosarcoma, in: StatPearls, StatPearls Publishing
Copyright © 2020, StatPearls Publishing LLC., Treasure Island (FL), 2020.
[14] D. Meseure, K. Drak Alsibai, A. Nicolas, I. Bieche and A. Morillon, Long Noncoding RNAs as New Architects in Cancer Epigenetics, Prognostic Biomarkers, and Potential Therapeutic Targets, Biomed Res Int 2015 (2015), 320214.
[15] L. Ma, J. Cao, L. Liu, Q. Du, Z. Li, D. Zou, V.B. Bajic and Z. Zhang, LncBook: a curated knowledgebase of human long non-coding RNAs, Nucleic Acids Research 47 (2019), D128.
[16] F. Ou, K. Su, J. Sun, W. Liao, Y. Yao, Y. Zheng and Z. Zhang, The LncRNA ZBED3-AS1 induces chondrogenesis of human synovial fluid mesenchymal stem cells, Biochemical & Biophysical Research Communications 487 (2017), 457-463.
[17] W. Zhuang, X. Ge, S. Yang, M. Huang, W. Zhuang, P. Chen, X. Zhang, J. Fu, J. Qu and B. Li, Upregulation of lncRNA MEG3 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells from Multiple Myeloma Patients by Targeting BMP4 Transcription, Stem Cells 33 (2015), 1985-1997.
[18] M. Mulati, Y. Kobayashi, A. Takahashi, H. Numata, M. Saito, Y. Hiraoka, H. Ochi, S. Sato, Y. Ezura, M. Yuasa, T. Hirai, T. Yoshii, A. Okawa and H. Inose, The long noncoding RNA Crnde regulates osteoblast proliferation through the Wnt/β-catenin signaling pathway in mice, Bone 130 (2020), 115076.
[19] X. Li, B. Peng, X. Zhu, P. Wang, Y. Xiong, H. Liu, K. Sun, H. Wang, L. Ou, Z. Wu, X. Liu, H. He, S. Mo, X. Peng, Y. Tian, R. Zhang and L. Yang, Changes in related circular RNAs following ERbeta knockdown and the relationship to rBMSC osteogenesis, Biochem Biophys Res Commun 493 (2017), 100-107.
[20] W.J. Lukiw, P. Handley, L. Wong and D.R. Crapper McLachlan, BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD), Neurochemical Research 17 (1992), 591-597.
[21] X. Fu, L. Ravindranath, N. Tran, G. Petrovics and S. Srivastava, Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1, Dna & Cell Biology 25 (2006), 135-41.
[22] J.B. Watson and J.G. Sutcliffe, Primate brain-specific cytoplasmic transcript of the Alu repeat family, Molecular & Cellular Biology 7 (1987), 3324-3327.
[23] J. Wang, S. Liu, J. Shi, H. Liu, J. Li, S. Zhao and Z. Yi, The Role of lncRNAs in Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells, Curr Stem Cell Res Ther 15 (2020), 243-249.
[24] Y. Huang, Y. Zheng, L. Jia and W. Li, Long Noncoding RNA H19 Promotes Osteoblast Differentiation Via TGF-β1/Smad3/HDAC Signaling Pathway by Deriving miR-675, Stem Cells 33 (2015), 3481-92.
[25] Q. He, S. Yang, X. Gu, M. Li, C. Wang and F. Wei, Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A, Cell Death Dis 9 (2018), 455.
[26] Y. Gao, F. Xiao, C. Wang, C. Wang, P. Cui, X. Zhang and X. Chen, Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells, J Cell Biochem 119 (2018), 6986-6996.
[27] S. Ghafouri-Fard, Z. Shirvani-Farsani, B.M. Hussen and M. Taheri, The critical roles of lncRNAs in the development of osteosarcoma, Biomed Pharmacother 135 (2021), 111217.
[28] Y. Li, H. Liu and Y. Han, Potential Roles of Cornichon Family AMPA Receptor Auxiliary Protein 4 (CNIH4) in Head and Neck Squamous Cell Carcinoma, (2021).
[29] F. Chen, Z. Li, C. Deng and H. Yan, Integration analysis for novel lncRNA markers predicting tumor recurrence in human colon adenocarcinoma, Journal of translational medicine 17 (2019), 299.
[30] F. Qiao, N. Li and W. Li, Integrative bioinformatics analysis reveals potential long non-coding RNA biomarkers and analysis of function in non-smoking females with lung cancer, Medical science monitor: international medical journal of experimental and clinical research 24 (2018), 5771.
[31] R.M. Zhang, T. Tang, H.M. Yu and X.D. Yao, LncRNA DLX6-AS1/miR-129-5p/DLK1 axis aggravates stemness of osteosarcoma through Wnt signaling, Biochem Biophys Res Commun 507 (2018), 260-266.
[32] D. Zhao, S. Wang, X. Chu and D. Han, LncRNA HIF2PUT inhibited osteosarcoma stem cells proliferation, migration and invasion by regulating HIF2 expression, Artif Cells Nanomed Biotechnol 47 (2019), 1342-1348.
[33] G. Kong, X.J. Qi and J.F. Wang, Effect of lncRNA LET on proliferation and invasion of osteosarcoma cells, Eur Rev Med Pharmacol Sci 22 (2018), 1609-1614.
[34] D. Fu, C. Lu, X. Qu, P. Li, K. Chen, L. Shan and X. Zhu, LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis, Aging (Albany NY) 11 (2019), 8374-8385.
[35] L. Zhong, G. Lou, X. Zhou, Y. Qin, L. Liu and W. Jiang, A six-long non-coding RNAs signature as a potential prognostic marker for survival prediction of ER-positive breast cancer patients, Oncotarget 8 (2017), 67861.
[36] Finishing the euchromatic sequence of the human genome, Nature 431 (2004), 931-45.
[37] W. Li, J. Xiao, X. Zhou, M. Xu, C. Hu, X. Xu, Y. Lu, C. Liu, S. Xue, L. Nie, H. Zhang, Z. Li, Y. Zhang, F. Ji, L. Hui, W. Tao, B. Wei and H. Wang, STK4 regulates TLR pathways and protects against chronic inflammation-related hepatocellular carcinoma, J Clin Invest 125 (2015), 4239-54.
[38] D. Ready, K. Yagiz, P. Amin, Y. Yildiz, V. Funari, S. Bozdag and B. Cinar, Mapping the STK4/Hippo signaling network in prostate cancer cell, PLoS One 12 (2017), e0184590.
[39] L.X. Yang, J. Wu, M.L. Guo, Y. Zhang and S.G. Ma, Suppression of long non-coding RNA TNRC6C-AS1 protects against thyroid carcinoma through DNA demethylation of STK4 via the Hippo signalling pathway, Cell Prolif 52 (2019), e12564.
[40] Q. Sun, V. Tripathi, J.H. Yoon, D.K. Singh, Q. Hao, K.W. Min, S. Davila, R.W. Zealy, X.L. Li, M. Polycarpou-Schwarz, E. Lehrmann, Y. Zhang, K.G. Becker, S.M. Freier, Y. Zhu, S. Diederichs, S.G. Prasanth, A. Lal, M. Gorospe and K.V. Prasanth, MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs, Nucleic Acids Res 46 (2018), 10405-10416.
[41] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J Immunol Methods 65 (1983), 55-63.
[42] G. Fotakis and J.A. Timbrell, In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride, Toxicol Lett 160 (2006), 171-7.
[43] H. Liu, J.P. Dilger and J. Lin, Effects of local anesthetics on cancer cells, Pharmacology & Therapeutics 212 (2020), 107558.
[44] B. Thornton and C. Basu, Rapid and simple method of qPCR primer design, Methods Mol Biol 1275 (2015), 173-9.
[45] L. Cervera, S. Gutiérrez-Granados, M. Martínez, J. Blanco, F. Gòdia and M.M. Segura, Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium, J Biotechnol 166 (2013), 152-65.
[46] P. Pozarowski and Z. Darzynkiewicz, Analysis of cell cycle by flow cytometry, Methods Mol Biol 281 (2004), 301-11.
[47] M. Shen, Y. Feng, C. Gao, D. Tao, J. Hu, E. Reed, Q.Q. Li and J. Gong, Detection of cyclin b1 expression in g(1)-phase cancer cell lines and cancer tissues by postsorting Western blot analysis, Cancer Res 64 (2004), 1607-10.
[48] T. Fukunaga, J. Iwakiri, Y. Ono and M. Hamada, LncRRIsearch: A Web Server for lncRNA-RNA Interaction Prediction Integrated With Tissue-Specific Expression and Subcellular Localization Data, Front Genet 10 (2019), 462.
[49] L. Ottaviano, K.L. Schaefer, M. Gajewski, W. Huckenbeck, S. Baldus, U. Rogel, C. Mackintosh, E. de Alava, O. Myklebost, S.H. Kresse, L.A. Meza-Zepeda, M. Serra, A.M. Cleton-Jansen, P.C. Hogendoorn, H. Buerger, T. Aigner, H.E. Gabbert and C. Poremba, Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort, Genes Chromosomes Cancer 49 (2010), 40-51.
[50] M. Roepke, A. Diestel, K. Bajbouj, D. Walluscheck, P. Schonfeld, A. Roessner, R. Schneider-Stock and H. Gali-Muhtasib, Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells, Cancer Biol Ther 6 (2007), 160-9.
[51] N. Bendris, B. Lemmers, J.M. Blanchard and N. Arsic, Cyclin A2 mutagenesis analysis: a new insight into CDK activation and cellular localization requirements, PLoS One 6 (2011), e22879.
[52] M. Pagano, R. Pepperkok, F. Verde, W. Ansorge and G. Draetta, Cyclin A is required at two points in the human cell cycle, Embo j 11 (1992), 961-71.
[53] Y. Ma, Y. Chen, C. Lin and G. Hu, Biological functions and clinical significance of the newly identified long non‑coding RNA RP1‑85F18.6 in colorectal cancer, Oncology Reports.
[54] S.M. Keenan, N.H. Lents and J.J. Baldassare, Expression of cyclin E renders cyclin D-CDK4 dispensable for inactivation of the retinoblastoma tumor suppressor protein, activation of E2F, and G1-S phase progression, J Biol Chem 279 (2004), 5387-96.
[55] L. Diller, J. Kassel, C.E. Nelson, M.A. Gryka, G. Litwak, M. Gebhardt, B. Bressac, M. Ozturk, S.J. Baker and B. Vogelstein, p53 functions as a cell cycle control protein in osteosarcomas, Molecular and cellular biology 10 (1990), 5772-5781.
[56] S.A. Innocente, J.L. Abrahamson, J.P. Cogswell and J.M. Lee, p53 regulates a G2 checkpoint through cyclin B1, Proc Natl Acad Sci U S A 96 (1999), 2147-52.
[57] M. Fischer, M. Quaas, L. Steiner and K. Engeland, The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes, Nucleic Acids Res 44 (2016), 164-74.
[58] H. Liu, A Prospective for the Potential Effect of Local Anesthetics on Stem-Like Cells in Colon Cancer, Biomedical Journal of Scientific & Technical Research 25 (2020), 18927-18930.
[59] R. Li, C. Xiao, H. Liu, Y. Huang, J.P. Dilger and J. Lin, Effects of local anesthetics on breast cancer cell viability and migration, BMC cancer 18 (2018), 666.
[60] H. Liu, J.P. Dilger and J. Lin, Lidocaine Suppresses Viability and Migration of Human Breast Cancer Cells: TRPM7 as A Target for Some Breast Cancer Cell Lines, Cancers (Basel) 13 (2021), 234.
[61] H. Wang, Y. Chen, N. Zhai, X. Chen, F. Gan, H. Li and K. Huang, Ochratoxin A-Induced Apoptosis of IPEC-J2 Cells through ROS-Mediated Mitochondrial Permeability Transition Pore Opening Pathway, J Agric Food Chem 65 (2017), acs.jafc.7b04434.
[62] H. Liu, J.P. Dilger and J. Lin, The Role of Transient Receptor Potential Melastatin 7 (TRPM7) in Cell Viability: A Potential Target to Suppress Breast Cancer Cell Cycle, Cancers (Basel) 12 (2020).
[63] H. Ying and Z.-X.J. Xiao, Targeting Retinoblastoma Protein for Degradation by Proteasomes, Cell Cycle 5 (2006), 506-508.
[64] J.C. Marine and G. Lozano, Mdm2-mediated ubiquitylation: p53 and beyond, Cell Death & Differentiation 17 (2010), 93-102.
[65] T. Soucek, O. Pusch, E. Hengstschläger-Ottnad, P.D. Adams and M. Hengstschläger, Deregulated expression of E2F-1 induces cyclin A- and E-associated kinase activities independently from cell cycle position, Oncogene 14 (1997), 2251-7.
[66] A.J. Levine, p53, the cellular gatekeeper for growth and division, Cell 88 (1997), 323-31.
[67] H. Liu, Nav channels in cancers: Nonclassical roles, Global Journal of Cancer Therapy 6 (2020), 5.
[68] H. Liu, A prospective for the role of two-pore channels in breast cancer cells, Global Journal of Cancer Therapy 6 (2020), 001--003.