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Abstract
Purpose: The soil elementome has been recently proposed as a promising novel approach for describing
the response of soil bioelemental composition to tree species. Using bioelement stoichiometry, we
explored the effects of soil biogeochemical processes and tree species coexistence on soil elementome.

Methods: Soil bioelements were analyzed at three soil layers (A, B and C horizons) in four forests (Picea
asperata (PA), Larix principis-rupprechtii (LP), Betula Platyphylla (BP), and Betula Platyphylla - Larix
principis-rupprechtii (L-B) mixed forest) in Chongli District, Zhangjiakou City, Hebei Province, China., The
soil elementomes of 11 bioelements (C, N, P, O, S, K, Ca, Na, Mg, Mn and Cr) were analyzed by principal
component analysis (PCA) based on soil C:N:P stoichiometry. We calculated elementome distance (ED)
to examine differences between soil horizons and forests.

Results: We found that soil elementomes in the soil layers decreased with depth and that ED between the
B and C horizons was larger than that between A and B horizons. Moreover, differences in soil
elementomes were smaller for tree species that often coexist compared to those that rarely live together.

Conclusions: Our results suggest that tree species coexistence promotes similarity in soil elementomes
probably due to creation of similar soil conditions. The findings of this research provide a new
understanding about the relationship between tree species coexistence and soil bioelemental
composition or stoichiometry.

Introduction
All living beings are made of various bioelements in constant ratios (Zhang et al. 2012). Carbon (C),
hydrogen (H), and oxygen (O) are the three bioelements that constitute the skeleton of organic molecules.
Nitrogen (N), phosphorus (P), and sulfur (S) are the main bioelements involved in biochemical reactions.
The stable concentrations and ratios of bioelements in organisms are important indicators for
understanding the balance of multiple chemical elements in ecological interactions (Elser et al. 2000a;
Elser et al. 2000b; Sardans et al. 2014). In 1958, Redfield (1960) reported that planktonic biomass
contains C, N, and P in a comparatively steady atomic ratio of 106:16:1, similar to the proportions of C, N,
and P in marine water. The well-known “Redfield ratio” provides promising insight into the nutrient
limitation of ocean C storage and contributes to the knowledge of the biogeochemical cycling of N and P
in the world’s oceans (Cooper et al. 1996). Afterwards, the study of ecological stoichiometry, which
focuses on the balance of multiple chemical elements in ecological interactions, has become a
fundamental feature of understanding biogeochemical cycles (Sterner and Elser 2002).

The elegant simplicity of the Redfield ratio prompted the research on searching for similar patterns and
relationships in terrestrial ecosystems (Elser and Hassett 1994). McGroddy et al. (2004) reported that
C:N:P in plant rootlets at a global scale was 1157:24:1, and the ratios of tree leaves and litters were highly
variable. Conversely, Han et al. (2005) studied 753 terrestrial plant species in China and found that the
N:P of grass leaves was stable at approximately 14.4. Parallel interactions existed between the terrestrial
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environment and vegetation, resulting in similar ratios of C:N:P in soils and plants (McGroddy et al. 2004;
Reich and Oleksyn 2004). Cleveland and Liptzin (2007) found that C:N:P ratios in soils and biomass were
186:13:1 and 60:7:1 at the global scale and concluded that a relationship existed between C, N and P in
soils, which was similar to the concept of the Redfield ratio.

Concentrations and ratios of soil C, N, and P in terrestrial ecosystems were used to indicate plant
physiology, nutrient cycles, and nutrient limitations in ecosystem productivity (Deng et al. 2015; Kirkby et
al. 2011; Xu et al. 2015); for instance, C:N in soil or litter was a quality indicator of organic matter
(Ostrowska and Porębska 2015), and N:P was related to nutrient constraints in ecosystems (Bui and
Henderson 2013). In recent decades, the soil ecological stoichiometry of forest ecosystems has also
attracted much attention. Aponte et al. (2010) investigated the stoichiometry of C, N, and P in the soil of
Mediterranean forests and found that vegetation and soil depth simultaneously regulated C:N:P
stoichiometry. Tian et al. (2010) reported that the soil C:N, C:P, and N:P ratios in China were 11.9, 61, and
5.2, respectively, and that the ratios of C:N:P and especially the C:N ratios were relatively consistent in the
topsoil (0–10 cm). Fan et al. (2015) found that soil C and P decreased with the age of trees, and the plant
N:P ratio was strongly related to the soil N:P ratios in subtropical plantations in Fujian Province, China.

However, an elementome based on C, N, and P only may miss key information that could be offered by
additional elements (Kaspari 2021). Beyond C, N, and P, bioelements such as potassium (K), sodium (Na),
magnesium (Mg), calcium (Ca), manganese (Mn), and chromium (Cr) have specific functions even
though they are normally present at low concentrations in the environment. For instance, the
compositions and ratios of K are related to drought resistance, Mg to the light environment, and K, Ca,
Mg, and S to the levels of N and S deposition (Rivas-Ubach et al. 2012; Sardans et al. 2016; Sardans et al.
2011). Introducing additional elements in the analysis of the elementome can effectively improve the
prediction of ecosystem functioning (Hofmann et al. 2021; Huang et al. 2019) and should be considered
as an entirety in ecological stoichiometric studies. One efficient way to deal with the entirety of
bioelements was to perform a dimensionality reduction analysis such as principal components analysis
(PCA) (Peñuelas et al. 2019; Sardans et al. 2021).

The “biogeochemical niche” (BN) concept, which is an elementome defined as the content of all (or most)
bioelements has been recently proposed (Peñuelas et al. 2019). It is effective in measuring ecological
stoichiometry and can be regarded as an extension of the ecological niche concept. Peñuelas et al.
(2019) investigated tree species in a holm-oak evergreen Mediterranean forest distribution and found that
species with more overlapping ecological niches had greater differences in their BNs. Plants growing in
diverse communities tended to change their elemental compositions to either reduce or enhance N and P
concentrations depending on the species compared to monocultures (Dehuang et al. 2020; Guiz et al.
2018). Fernández-Martínez et al. (2021) further revealed that pairwise differences in elementomes
between species were large as the possibility of coexistence increased. Based on these empirical
approaches, it was hypothesized that “at equilibrium, coexisting species tend to have distinct
elementomes to minimize competitive pressure” (Sardans et al. 2021). This BN hypothesis suggested
that each species would have a specific need for certain bioelement to avoid nutritional competition with
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other species. In a forest, the fierce competition between species under similar soil properties would
resulting in remarkable differences in the plant elementome with their likelihood of coexistence (Bai et al.
2018; Fernández-Martínez et al. 2021). Considering that coexisting species are able to adjust ecological
strategies by competing for soil resources, it can be further hypothesized that the similarity of the soil
elementome leads to elementome segregation for coexisting species in competition.

In this study, we assessed the soil stoichiometry of different soil horizons in four different forests, i.e.
Picea asperata, Larix principis-rupprechtii, Betula platyphylla and a mixture of Betula platyphylla-Larix
principis-rupprechtii in Hebei Province, China. The objectives of this study were (1) determining the
distribution of C:N:P ratio and concentrations of bioelements C, N, O, S, P, K, Ca, Na, Mg, Mn and Cr, and
(2) investigating the soil profiles of different horizons and forests types and their relationships with soil
elementomes. We suppose that: (1) the extent soil elementome was affected by biological and chemical
processes decreased with the soil depth, and (2) coexisting of tree species reduced the differences in the
soil elementome of the forests.

Materials And Methods
Study area

The study area is located in Chongli District, Zhangjiakou City, Hebei Province, P.R. China. The latitudes
and longitudes of Chongli are 40°47' N to 41°17' N and 114°17'E to 115°34' E. The altitude extends from
814 to 2174 meters. The climate is classified as continental monsoon with average annual temperatures
of 3.7 - 19°C and annual precipitation of 483.3 mm. Eighty percent of the territory in Chongli is
mountainous, and the forest coverage rate reaches 67% in 2021 The main tree species are Picea
asperata, Larix principis-rupprechtii, and Betula platyphylla, among which Picea asperata and Larix
principis-rupprechtii are artificially planted.

Soil sample collection and chemical analyses

In July 2019, four different sampling plots in the forests of Picea asperata (PA), Larix principis-
rupprechtii (LP), Betula platyphylla (BP) and the mixed forest of Betula platyphylla and Larix principis-
rupprechtii (B-L) were selected in the study area. The four plots were all on mountainous slopes, and the
size of each plot was set as 100 m × 100 m. In each plot, three quadrate subplots (20 m × 20 m) were
uniformly arranged from the bottom to the top of the slope. One sampling point was set in the center of
each subplot.

The steps of sample collection were as follows: first, the surface coverages of litter and other sundry were
removed from the sampling points; second, a vertical soil profile of approximately 1 m depth was dug
using shovels, and the soil profile was found to be three soil formation layers (A, B and C horizons)
according to the soil textures; finally, in each soil layer, two samples (each approximately 100 cm3) were
collected with a ring knife to analyze the soil physicochemical properties and bioelements. Samples were
put into sealed bags and brought to the laboratory for analysis.
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Soil pH was measured using a pH meter (type:PHS-3Cby China) with the soil and water ratio as 2.5:1. Soil
bulk density (BD) was measured using the ring knife method. Soil organic matter (SOM) was determined
by the external heating method of potassium dichromate and concentrated sulfuric acid (Liu et al. 1996).
Purging and trapping techniques were used to determine O, N, and S concentration by an elemental
analyzer (type: Elementar Vario Macro cube by Germany). The total concentrations of several nutrients (P,
K, Ca, Na, Mg, Mn, and Cr) in soils were determined by inductively coupled plasma‒optical emission
spectrometry (Bremner. 1996). (type: Agilent 5110 ICP‒OES by the USA). Table 1 summarizes the results
of the soil chemical and physical properties.

Table 1. Soil chemical and physical properties

Forest Horizon Bulk

density

  Specific

gravity

pH(H2O) SOM TN

  g/cm3   %   g/kg

PA A 0.85 2.14 6.74 70.7 3.60

  B 1.02 2.08 6.65 67.0 3.34

  C 1.28 2.22 6.72 49.0 2.46

LP A 1.09 2.05 6.83 53.7 2.85

  B 1.12 2.09 7.00 47.3 2.53

  C 1.32 2.26 7.01 40.0 2.07

BP A 1.05 2.18 6.84 45.9 2.61

  B 1.19 2.26 6.91 31.4 1.78

  C 1.65 2.42 7.00 13.0 0.71

B-L A 0.79 2.05 6.40 85.9 4.35

  B 0.87 2.04 6.63 68.2 3.41

  C 1.13 2.16 6.34 43.2 2.35

SOM: soil organic matter; TN: total nitrogen; PA: Picea asperata; LP: Larix principis-rupprechtii; BP: Betula
Platyphylla; L-B: Betula Platyphylla - Larix principis-rupprechtii mixed forest

Statistical analysis

All data in this study were described by the mean and standard deviation. SOM and elemental
concentrations were described by mass content, the values of C:N, C:P, and N:P were molar ratios. A
significance level of p<0.05 was specified in this study. Analysis of variance (ANOVA) and Least
significant difference (LSD) at a 5% level of significance were used to compare the difference among
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horizon and forest.PCA was performed on elemental concentrations to estimate
elementomes. Elementome Euclidean distance (ED) was used to quantitatively indicate the difference
between elementomes. 

All statistical analyses mentioned above were implemented using SPSS 25.0 (IBM, Armonk, New York, NY,
USA). Related graphs were drawn by Origin 2021b (Hampton, MA, USA). Biological and chemical
processes within the soil profile (Figure 3) were generated in BioRender with authorization.

Results
Soil C, N, P stoichiometry of different forests

The soil chemical and physical properties, which varied greatly with soil depth across all sampling plots.
BD was significantly influenced by soil horizons, whereas pH was not significantly affected. SOM and N
concentrations were the highest in the A horizon (P < 0.05) and declined with soil depth. Comparing the
data in different forests, it was found that have SOMB-L＞SOMBP＞SOMLP＞SOMPA and the same trend for
the N concentration.

Table 2. Soil C:N, N:P, and C:P in different forest types of this study

Forest Horizon C:N C:P N:P C:N:P

PA A 12.15±1.04Ba 134.77±17.98Ba 11.26±2.36ABa 137:11:1

  B 12.12±1.47Ba 97.85±22.29Bb 8.14±1.80Bb 99:08:1

  C 12.55±1.24Aa 54.66±18.20Cc 4.32±1.24Cc 54:04:1

LP A 12.74±0.42ABa 127.64±25.50Ba 9.99±1.71Ba 127:10:1

  B 12.67±0.44ABa 103.53±7.33Bb 8.18±0.55Bb 104:08:1

  C 13.39±1.42Aa 96.65±15.26Bb 7.32±1.50Bb 98:07:1

BP A 13.32±0.38Aa 166.86±13.18Aa 12.55±1.8Aa 167:13:1

  B 13.50±0.23Aa 146.47±17.01Ab 10.85±1.24Ab 146:11:1

  C 13.50±0.39Aa 148.73±8.99Ab 11.03±0.91Ab 149:11:1

B-L A 13.08±0.53Aab 123.51±18.59Ba 9.43±1.17Ba 123:9:1

  B 12.73±0.67ABb 103.48±16.42Ba 8.10±1.00Ba 103:8:1

  C 13.64±0.59Aa 115.97±39.24Ba 8.46±2.75Ba 115:8:1

Note: Different uppercases mean the significant differences between forests (p <0.05); different
lowercases mean the significant difference between soil horizons p <0.05.
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The C:N ratios did not differ significantly between the PA, LP, and BP forests during the three horizons
(Table 2) and were significantly lower in the soil A and B horizons than in the C horizon of the B-L mixed
forest. All forests showed no significant differences in the C:N of the C horizon. A lower C:N ratio was
observed in PA surface soil than that in BP and B-L mixed forests. As the soil depth increased, the C:P and
N:P ratios decreased. BP forest obtained highest C:P and N:P ratios. There was no significant differences
in the C:P and N:P ratios between the A and B horizons of other three forests. PA forests had the lowest
ratios of C:P and N:P at the C horizon. Overall, the SOM in broad-leafed forests (BP) was higher than that
in coniferous forests (PA and LP). In addition, the soil C:N, C:P and N:P ratios were higher in the B-L mixed
forest than in the Larix principis-rupprechtii monoculture, indicating that mixed forest can effectively
enhance soil organic matter quality in Larix forest.

Compared to the average N:P and C:N ratios in China (13.83 and 8.43), all four forests had lower soil N:P
ratios (4.32 - 12.55) and higher C:N ratios (12.12 - 13.50) (Tian et al. 2010). In general, when N:P was less
than 14:1, plant growth was more restricted by N; when N:P was higher than 16:1, plant productivity was
more restricted by P; and when N:P was in the middle, plant growth was restricted by both nitrogen and
phosphorus (Olde Venterink et al. 2003). Our study found that soil N in BP, LP, PA, and B-L mixed forests
was all N-limited for plant growth.

Soil elementome distribution from PCA

The distribution of elementomes analyzed by PCA method are shown in Figure 2. Three principal
components was able to explain a total of 86.05% of the variance. According to the results, loading
values and explained variance were mapped to each component after PCA.

PC1 accounted for 52.46% of the total variance and was significantly correlated to C, N, O, S, and P
contents. Thus, PC1 remarkable described the biological elements, i.e. C, N, O, S, and P, which are
indispensable nutrients for the growth and development of all plants in forest ecosystems. 

PC2 explained 22.17% of the variance in the original data, with K, Ca, Na, and Mg having the
major loadings. These elements are nutrient cations that are subjected to biological activity and chemical
activity to maintain their normal growth.

Accounting for 11.42% of the variance, PC3 substantially described the contents of Mn and Cr in the
study area. This component can be described as soil bedrock which is the main influencer of these
elements. 

Soil elementome differences between horizons and forests

The elementome distances (ED) between horizons in four forests (Picea asperata, Larix principis-
rupprechtii, Betula platyphylla and Betula platyphylla - Larix principis-rupprechtii mixed forest) in this
study were calculated and shown in Figure 3.
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As with the genome, the soil elementomes can represent the state of soil development. The soil
elementomes were defined as the element concentrations in soil (Fernández-Martínez et al. 2019). In all
four forests, elementomes decreased along with the depth of the soil. The elementome distances (ED)
between the B and C horizons were larger than the ED between A and B horizons (Figure 3), among which
EDBC accounted for 61%~91% of the entire soil profile. In comparison with EDBC, the proportion of EDAB

was as low as 9%~39%, which showed a larger difference in the bottom two horizons.

Soil is formed by the interaction of geological and biological cycles (Chen et al. 2014). Biological and
chemical processes take place throughout the soil profile, interacting at a wide range of temporal scales
and together driving the elemental cycle of the soil profile (Kirkby 2018). Our results show that the
biological cycle was more vigorous than the chemical cycle, and soil elementomes were more affected by
the biological activity rather than the bedrock. Organisms played an important role in soil ecosystem
balance and stability as the most active factors in soil formation.

We found that soils of different forest had different elementomes. In mixed forests of Betula platyphylla
and Larix principis-rupprechtii, the soil elementomes were higher than those in pure forests (Figure 4A).
Among all forests, Picea asperata had the lowest soil elementomes. Successive plantation planting can
degrade forest soil fertility, and nutrient accumulation can be effectively increased by mixed needle and
broad-leaved planting.

Based on the forest survey, we can obtain the distribution and coexistence situation of tree species. We
found that species rarely living together show larger differences in soil elementomes than those that
frequently coexist (Figure 4B).The highest elementome distance (ED) value, 1.69, appeared between
Picea asperata and Betula Platyphyllaplatyphylla, and the lowest ED value, 0.53, appeared between Picea
asperata and Larix principis-rupprechtii.

Discussion

Effects Of Forests On Soil C, N, P Stoichiometry
The proportional relationship between C, N, and P is an important indicator of soil nutrient status (Wang
et al. 2021). The C:N and C:P ratios of soil determined the decomposition of SOM, whereas the N:P ratio
reflected the element restriction of ecosystem (Hui et al. 2021). In this study, we found that the SOM in the
broad-leaved forest was better than that in the coniferous forest. According to previous studies, dissolved
organic matter in forest soil was mainly formed by litter decomposition and plant root exudates (Goller et
al. 2006; Huang and Schoenau 1998). Therefore, a high level of SOM was associated with broad-leaved
trees which suggested a high litter decomposition rate. Some research found that keratin prevented
microorganisms from adhering and invading leaves with high keratin content, thus causing the slow
decomposition of leaves with high keratin content (Garnier and Laurent 1994). As a consequence, in the
present study, the litter decomposition rate of Betula platyphylla was significantly higher than that of pure
Larix principis-rupprechtii.
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Soil C:N:P stoichiometry in the B-L mixed forest was higher than in the LP monoculture. More studies
found that a mixed forest composed of multiple tree species was stronger in soil nutrient protection,
which was mainly based on three theories, namely, the natural enemy hypothesis (R. 1973), resource-
concentration hypothesis (Freney 1986) and associational resistance hypothesis (Hambäck et al. 2000).
In mixed forests, chemical differences in litter, the transfer of nutrients and secondary metabolites
between litter, and variations in the microhabitat of decomposers led to the accelerated decomposition of
mixed litters (Gartner and Cardon 2004; Song et al. 2010). Our study provided evidence that stand
conversion from BP to B-L mixed culture substantially improved soil quality.

In our results, the stoichiometric ratios of soil C, N, and P varied dramatically from forest to forest. As
reported by Xu (2012), soil C:N:P ratios ranged from 64:5:1 to 1347:72:1, with an average of 287:17:1.
According to Tian (2010), the average C:N:P ratio of China’s soils was 60:5:1. The results we obtained
were within these reported ranges. We found that the C:N:P ratios decreased with soil depth, consistent
with some previous reports such as Bing et al. (2015) reported that C:N:P ratios decreased from 343:16:1
in the A horizon to 63:3:1 in the C horizon.

Elementomes Between Horizons And Mechanisms Of Soil
Formation
The adsorption, analysis, decomposition, and aggregation of various elements in soil constitute the
biogeochemical cycle of the soil environment (Chen et al. 2014). The biological process is mainly
composed of two parts: biological residue is decomposed into inorganic compounds via humification
and mineralization by soil microorganisms, and living organisms absorb soil elements. In geological
processes, leaching and diagenesis fix soil elements into bedrock while weathering releases them
(Banfield et al. 1999; Waroszewski et al. 2019).

The study of soil formation and classification has made significant advances since the mid-1800s,
evolving from conceptual frameworks to descriptive studies and finally to more quantitative approaches
(Hartemink and Bockheim 2013). Schaetzl et al. (2013) proposed that soil formation was directly
affected by the nature and direction of parent materials. By analyzing the elemental composition and
weathering rate of Zr and Ti particles, Anda et al. (2009) concluded that soil profiles can be specifically
characterized by different parent materials due to their varying weathering processes and rates. Jackson
and Sheldon (1949) addressed the role of tree roots in limestone disintegration. Almeida (1994)
examined the ability of higher plants to promote weathering. Plants also changed the weathering process
and impacted the nutrient characteristics of the profile (Hasenmueller et al. 2017).

Soil geochemical properties are important parameters of soil development. Soil C, N, O, S, and P are major
structural components in living organisms and also participate in many biochemical organisms (Melvlle
et al. 1971). Moreover, K, Ca, Na and Mg, are essential elements for plant growth. Therefore, the changes
in the main mineral elements in the ecosystem and the mechanism of their recycling are important
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contents of the primary succession theory since they represent the main functional process of an
ecosystem and determine its pattern. Healthy ecosystems depend heavily on the normal circulation of
mineral elements that related to their stability and sustainability (Diaz et al. 2016; Reich and Oleksyn
2004). In addition, manganese (Mn) and chromium (Cr) are also required for normal plant growth and
development which cannot be decomposed by soil microorganisms, so they are easy to accumulate.
Nevertheless, excessive concentrations of Mn and Cr would be detrimental to plant growth. (Guo et al.
2020; Zemunik et al. 2020).

The elements in this study were significantly different between soil layers and were decreased with soil
depth, in particular, a more significant difference in the bottom two horizons. Soils in different forests
showed quite different environments. Based on our results, soil elementomes under different forest types
were mainly affected by biological processes.

Soil Elementomes Controlled By The Coexistence Of Tree
Species
Plant species controlled the composition of soil elements (Zederer et al. 2017). Tree species created soil
environments that improved their competitive abilities, thus increasing their fitness (Cools et al. 2014).
The nutrient content of tree species determined leaf-fall decomposition, nutrient return, and nutrient
release into the soil in forests, affecting soil fertility. In many studies, differences in litter lignin and
nutrient content were found to influence microbial decomposition, i.e, litters with higher lignin forms
decomposed slower, which subsequently affected the soil elements of the forest floor (Hansson et al.
2011; Hobbie et al. 2006; Lovett et al. 2002; Vesterdal et al. 2012). Each species generated soil conditions
that reflected the environmental conditions where it dominated, at a local level, with its life history and
nutritional strategies (Pérez-Ramos and Marañón 2011; Vivanco and Austin 2008). According to Aponte
et al. (2013), tree species-induced variations in soil conditions created positive feedback through niche
partitioning that enabled the coexistence of tree species. Species were unique genetic pools and products
of long-term evolutionary processes. The genotypic elements shaped coexistence and accounted for a
large part of foliar element composition (Sardans et al. 2021).

Tree species-induced varaitions in soil nutrient contents influenced elementomes, enabled the separation
of biogeochemical niches and maintained their coexistence. According to our results, elementome
distances (ED) between PA and BP/LP were more significant than those between BP and LP. Differences
in soil elementomes were minor for tree species that often coexist. Numerous studies have demonstrated
that elementomes differed more for coexisting species and individuals than for noncoexisting ones
(Fernández-Martínez et al. 2021). Additionally, there was evidence that species would compete for
resources under similar soil elementomes, causing niche partitioning (Loreau and de Mazancourt 2013)
with the likelihood of coexistence. A limited amount of research has focused on applying soil
elementomes, and we attempted to analyze soil biogeochemistry through soil elementomes.
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The evolution and bioelemental composition of ecosystems were bidirectional because nutrient supply
could affect evolutionary processes and the effects of evolution on nutrient supply (Durston and El-
Sabaawi 2017). We can understand the processes underlying species shifts in bioelemental composition
by studying their responses to environmental changes (Leal et al. 2017; Yamamichi et al. 2015) and,
therefore, the effects of organisms on ecosystem functioning and services (Leal et al. 2017). In this way,
elementomes constitute a quantifiable tool for detecting, quantifying, and understanding the
mechanisms and processes underlying community evolution and species turnover (Peñuelas et al. 2019).
Under global change, the study of ecosystem functioning should be based on an elementomes approach.

Conclusion
In this study, we investigated the soil elementomes in four forests to reveal the effects of species
coexistence on soil biogeochemistry. The following results were obtained:

(1) The SOM in the broad-leaved forest was better than the coniferous forest. 

(2) Soil C, N, and P stoichiometry was higher in the B-L mixed forest than in the Larix principis-rupprechtii
monoculture. In mixed forests, chemical differences, transfer of nutrients, and secondary metabolites in
litters led to accelerated decomposition of mixed litters.

(3) Elementome distances (ED) between the B and C horizons were larger than ED between A and B,
which indicated that soil elementomes were more affected by biological activity.

(4) Differences in soil elementomes were smaller for tree species that often coexist compared to those
that rarely live together. Tree species-induced changes in soil nutrient content affected the elementomes
and created a soil condition that allowed for biogeochemical niche separation and sustained their
coexistence.

The results provide implications for understanding of the processes underlying species shifts in soil
bioelemental composition and the responses of organisms to environmental changes and, in turn, the
effects of organisms on ecosystem functioning and services. Elementomes constitute a quantifiable tool
to detect, quantify and thus better comprehend the mechanisms and processes underlying community
evolution and species turnover. Further studies are warranted to discern the ecological and evolutionary
processes based on an elementomes approach involved in all types of species, habitats, and ecosystems.
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Figures

Figure 1

Study area and soil sampling plots
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Figure 2

Distribution of elementomes analyzed by PCA method. Biplots showing loadings and mean ± SE scores.
Red arrows indicate factor loadings, and blue dots indicate the mean ± SE scores per sample.
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Figure 3

Elementome distances between horizons

Figure 4
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Soil elementome segregation and distances among forest species. (A) Soil elementome segregation
among forest species. We plotted the soil scores for the first two principal components of the principal
component analysis (PCA) conducted with C, N, O, P, S, K, Ca, Na, Mg, Mn, and Cr concentrations as
variables. (B) Score distances s for PC1 and PC2 of the PCA of the soil stoichiometry in 3 species,
dominant species as a function of the frequency of species coexistence. Numbers represent 1, no
coexistence; 2, occasional coexistence; 3, frequent coexistence. Based on Wen et al. (2017), Liu et al.
(2011) and Kang (2013).

Figure 5

Biological and chemical processes within the soil profile


