1 Casali, P. G. et al. Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 29, iv79-iv95, doi:10.1093/annonc/mdy310 (2018).
2 Isakoff, M. S., Bielack, S. S., Meltzer, P. & Gorlick, R. Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. J Clin Oncol 33, 3029-3035, doi:10.1200/JCO.2014.59.4895 (2015).
3 Gorlick, R. & Khanna, C. Osteosarcoma. J Bone Miner Res 25, 683-691, doi:10.1002/jbmr.77 (2010).
4 Smeland, S. et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer 109, 36-50, doi:10.1016/j.ejca.2018.11.027 (2019).
5 Perry, J. A. et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci U S A 111, E5564-5573, doi:10.1073/pnas.1419260111 (2014).
6 Kovac, M. et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun 6, 8940, doi:10.1038/ncomms9940 (2015).
7 Behjati, S. et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun 8, 15936, doi:10.1038/ncomms15936 (2017).
8 Negri, G. L. et al. Integrative genomic analysis of matched primary and metastatic pediatric osteosarcoma. J Pathol 249, 319-331, doi:10.1002/path.5319 (2019).
9 Brady, S. W. et al. The Clonal Evolution of Metastatic Osteosarcoma as Shaped by Cisplatin Treatment. Mol Cancer Res 17, 895-906, doi:10.1158/1541-7786.MCR-18-0620 (2019).
10 Picci, P. Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis 2, 6, doi:10.1186/1750-1172-2-6 (2007).
11 Ren, W. & Gu, G. Prognostic implications of RB1 tumour suppressor gene alterations in the clinical outcome of human osteosarcoma: a meta-analysis. Eur J Cancer Care (Engl) 26, doi:10.1111/ecc.12401 (2017).
12 Backlund, L. M., Nilsson, B. R., Liu, L., Ichimura, K. & Collins, V. P. Mutations in Rb1 pathway-related genes are associated with poor prognosis in anaplastic astrocytomas. Br J Cancer 93, 124-130, doi:10.1038/sj.bjc.6602661 (2005).
13 Bhateja, P. et al. Retinoblastoma mutation predicts poor outcomes in advanced non small cell lung cancer. Cancer Med 8, 1459-1466, doi:10.1002/cam4.2023 (2019).
14 Tian, Z., Niu, X. & Yao, W. Receptor Tyrosine Kinases in Osteosarcoma Treatment: Which Is the Key Target? Front Oncol 10, 1642, doi:10.3389/fonc.2020.01642 (2020).
15 Holme, H. et al. Chemosensitivity profiling of osteosarcoma tumour cell lines identifies a model of BRCAness. Sci Rep 8, 10614, doi:10.1038/s41598-018-29043-z (2018).
16 Dick, F. A., Goodrich, D. W., Sage, J. & Dyson, N. J. Non-canonical functions of the RB protein in cancer. Nat Rev Cancer 18, 442-451, doi:10.1038/s41568-018-0008-5 (2018).
17 Cook, R. et al. Direct involvement of retinoblastoma family proteins in DNA repair by non-homologous end-joining. Cell Rep 10, 2006-2018, doi:10.1016/j.celrep.2015.02.059 (2015).
18 Velez-Cruz, R. et al. RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev 30, 2500-2512, doi:10.1101/gad.288282.116 (2016).
19 Jiang, Y., Yam, J. C., Tham, C. C., Pang, C. P. & Chu, W. K. RB Regulates DNA Double Strand Break Repair Pathway Choice by Mediating CtIP Dependent End Resection. Int J Mol Sci 21, doi:10.3390/ijms21239176 (2020).
20 Manning, A. L., Longworth, M. S. & Dyson, N. J. Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev 24, 1364-1376, doi:10.1101/gad.1917310 (2010).
21 Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18, 610-621, doi:10.1038/nrm.2017.53 (2017).
22 Lord, C. J. & Ashworth, A. PARP inhibitors: Synthetic lethality in the clinic. Science 355, 1152-1158, doi:10.1126/science.aam7344 (2017).
23 Curtin, N. J. & Szabo, C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 19, 711-736, doi:10.1038/s41573-020-0076-6 (2020).
24 Gourley, C., Miller, R. E., Hollis, R. L. & Ledermann, J. A. Role of Poly (ADP-Ribose) Polymerase inhibitors beyond BReast CAncer Gene-mutated ovarian tumours: definition of homologous recombination deficiency? Curr Opin Oncol 32, 442-450, doi:10.1097/CCO.0000000000000660 (2020).
25 McCabe, N. et al. BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of Poly (ADP-Ribose) polymerase: an issue of potency. Cancer Biol Ther 4, 934-936, doi:10.4161/cbt.4.9.2141 (2005).
26 Murai, J. et al. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res 72, 5588-5599, doi:10.1158/0008-5472.CAN-12-2753 (2012).
27 Hopkins, T. A. et al. Mechanistic Dissection of PARP1 Trapping and the Impact on In Vivo Tolerability and Efficacy of PARP Inhibitors. Mol Cancer Res 13, 1465-1477, doi:10.1158/1541-7786.MCR-15-0191-T (2015).
28 Antolin, A. A. et al. The kinase polypharmacology landscape of clinical PARP inhibitors. Sci Rep 10, 2585, doi:10.1038/s41598-020-59074-4 (2020).
29 Lord, C. J. & Ashworth, A. BRCAness revisited. Nat Rev Cancer 16, 110-120, doi:10.1038/nrc.2015.21 (2016).
30 Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917-921, doi:10.1038/nature03445 (2005).
31 Dedes, K. J. et al. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med 2, 53ra75, doi:10.1126/scitranslmed.3001538 (2010).
32 Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94-101, doi:10.1038/s41586-020-1943-3 (2020).
33 Behjati, S. et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nature Communications 8, 15936, doi:10.1038/ncomms15936 (2017).
34 Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116-1120, doi:10.1038/nature06633 (2008).
35 Pommier, Y., O'Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med 8, 362ps317, doi:10.1126/scitranslmed.aaf9246 (2016).
36 Michelena, J. et al. Analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy reveals mechanisms of sensitivity and resistance. Nat Commun 9, 2678, doi:10.1038/s41467-018-05031-9 (2018).
37 Smith, J., Tho, L. M., Xu, N. & Gillespie, D. A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108, 73-112, doi:10.1016/B978-0-12-380888-2.00003-0 (2010).
38 Pilie, P. G., Gay, C. M., Byers, L. A., O'Connor, M. J. & Yap, T. A. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clin Cancer Res 25, 3759-3771, doi:10.1158/1078-0432.CCR-18-0968 (2019).
39 Ledermann, J. A. Extending the scope of PARP inhibitors in ovarian cancer. Lancet Oncol 20, 470-472, doi:10.1016/S1470-2045(19)30019-1 (2019).
40 Miller, R. E. et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol 31, 1606-1622, doi:10.1016/j.annonc.2020.08.2102 (2020).
41 Bajrami, I. et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res 74, 287-297, doi:10.1158/0008-5472.CAN-13-2541 (2014).
42 Bailey, M. L. et al. Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition. Mol Cancer Ther 13, 724-732, doi:10.1158/1535-7163.MCT-13-0749 (2014).
43 Manning, A. L. et al. Suppression of genome instability in pRB-deficient cells by enhancement of chromosome cohesion. Mol Cell 53, 993-1004, doi:10.1016/j.molcel.2014.01.032 (2014).
44 Zhang, C. et al. Signalling involving MET and FAK supports cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases. Oncogene 38, 5905-5920, doi:10.1038/s41388-019-0850-2 (2019).
45 Goncalves, T. et al. Selective Elimination of Osteosarcoma Cell Lines with Short Telomeres by Ataxia Telangiectasia and Rad3-Related Inhibitors. ACS Pharmacology & Translational Science 3, 1253-1264, doi:10.1021/acsptsci.0c00125 (2020).
46 Workman, P. et al. UKCCCR guidelines for the welfare of animals in experimental neoplasia. Lab Anim 22, 195-201, doi:10.1258/002367788780746467 (1988).