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Exceptional points are a unique feature in non-Hermitian systems, where eigenvalues and 

their corresponding eigenstates of a Hamiltonian coalesce1-12. A lot of intriguing physical 

phenomena arise from the topology of exceptional points, such as “bulk Fermi-arcs”2,3 

and braiding of eigenvalues10. Here we report that a more exotic and structurally richer 

degeneracy morphology, known as the swallowtail catastrophe in singularity theory13, 

can naturally exist in non-Hermitian systems with both parity-time and pseudo-

Hermitian symmetries. The swallowtail exhibits the coexistence and intriguing 

interactions of degeneracy lines of three different types, including an isolated nodal line, 

a pair of exceptional lines of order three and a non-defective intersection line, with the 



latter two types lying entirely on the exceptional surface. Surprisingly, these a priori 

independent types of singularities are stably connected at a single point, i.e. the vertex of 

the swallowtail, revealing mutual transitions among them. Moreover, we realized such 

systems in a non-reciprocal circuit and experimentally observed the degeneracy features 

of the swallowtail. Based on the frame rotation and deformation of eigenstates, we further 

demonstrated in theory and experiments that the various transitions are topologically 

protected. Our findings constitute the first demonstration of a swallowtail structure in 

band dispersions, en route establishing a whole new family of non-Hermitian topological 

phases of matter. The transitions across diverse singularities pave new avenues for the 

development of sensing and absorbing devices14,15. 

Main: In recent years, non-Hermitian systems have attracted a great deal of interest. A main 

goal is to address the ubiquitous open quantum systems that carry energy exchanges with the 

surrounding environment via the imaginary part of their eigen-energies1-12. Degenerate 

singularities in band structures are similar to topological defects in real space. Well-known 

singularities in Hermitian systems are Weyl/Dirac points and nodal lines16-21, and their 

associated phenomena, such as topological edge modes16,21 and chiral Landau levels19 have 

been fully explored. In non-Hermitian systems, the complex nature of eigenvalues results in 

more exotic singularities such as exceptional points, at which two or more eigenstates coalesce. 

Exceptional points can carry fractional topological invariants, which not only enriches the 

topology classes in band theories2,3,5,6, but also induces more intriguing physical consequences, 

such as “bulk-Fermi arcs”2,3 and braiding of eigenvalues10. In addition, the skin effect, which 

is associated with the point gaps in non-Hermitian bands, is also a unique feature of non-

Hermitian systems22-24. 

 In non-Hermitian systems with parity-time (PT) symmetry or chiral symmetry, 

exceptional surfaces (ES) can stably exist as singular hypersurfaces in three-dimensional (3D) 



parameter space, acting as boundaries between exact and broken phases14,25,26. Remarkably, as 

subspaces of parameter space, these exceptional surfaces afford numerous new singularities, 

such as high-order exceptional points (or lines) appearing as cusps6,9, and non-defective 

degeneracies that are intersections of exceptional surfaces8,11,12. The co-existence of diverse 

singularities brings the possibility that they can be associated with each other. However, 

previous works commonly focused on a single type. The mutual transitions across different 

types, as well as the underlying topological structure, remain largely unexplored.  

It was previously reported that in Hermitian systems with PT symmetry, the eigenstates 

form the basis of a Euclidean space and rotate in a non-Abelian way, giving rise to isolated 

nodal lines described by quaternion topological charges20, which has been experimentally 

observed in a recent work21.  Here, we transform the Euclidean geometry to a Riemannian 

geometry with non-Hermitian settings, where emerges a more exotic and structurally much 

richer degeneracy morphology, known as the swallowtail catastrophe in singularity theory13. 

The swallowtail is one of the elementary catastrophes in Arnold’s ADE classification13,27,28 and 

has been widely applied in many branches of physics and engineering, ranging from 

mechanics29 to caustics of light30. However, it was never studied in eigenvalue dispersions 

before. Here we discover for the first time that the swallowtail catastrophe, which naturally 

exists in non-Hermitian systems with PT symmetry together with a pseudo-Hermitian 

symmetry, encompasses degeneracy lines of three different types. In addition to an isolated 

nodal line (NL) similar to the Hermitian case, it also includes a pair of exceptional lines of 

order three (EL3) and a non-defective intersection line (NIL) which lie entirely on the 

exceptional surface. Surprisingly, these a priori independent types of singular lines are stably 

connected at a single point of the swallowtail, revealing interesting mutual transitions among 

them. By realizing such systems in a non-reciprocal circuit, we experimentally observed the 

degeneracy features of the swallowtail. Furthermore, the mutual transitions across different 



types of singularities complying with the topological constraints associated with them are 

demonstrated both theoretically and experimentally. 

 The three-state non-Hermitian Hamiltonian we considered takes the following form 

1 2 1 2
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2 3 2 3

1f f f f

H f f f f

f f f f

− − + − − 
 = + − 
 − + 

                                             (1) 

where f1f2f3 are three real numbers specifying three degrees of freedom and defining a 3D 

parameter space. With the form in Eq. (1), the Hamiltonian preserves two symmetries1 

1 † , [ , ] 0H H H PTη η − = =                                                        (2) 

Here the first relation shows that H is η -pseudo-Hermitian with diag( 1,1,1)η = − . The 

Hamiltonian is required to be real, which is equivalent to the PT symmetry if we set the 

parameter space as the momentum space. We note that two off-diagonal elements are anti-

symmetric (H12=– H21, H13=– H31), representing non-reciprocal hoppings between nodes. On 

the contrary, the other off-diagonal element is symmetric (H23=H32), and represents a reciprocal 

hopping. The degenerate surfaces and lines in the eigenvalue structure form a swallowtail as 

shown in Fig. 1a (see ADE description in Section 2 of supplementary information). The ES 

(red surfaces) and EL3s (black lines) results from the PT symmetry9 of the system. The pair of 

EL3s merge at the meeting point (MP, red star), which simultaneously emits the non-defective 

degenerate NL and NIL (blue lines) in different directions. The NL is isolated from ESs, but 

the NIL is a complete intersection of ESs8,11,12. Owing to the two symmetries of the system in 

Eq. (2), the NL and NIL cannot be extended into a tube or cone in parameter space. Thus their 

stability is symmetry-protected (see Section 3-5 in supplementary information for 

demonstration). Therefore, the swallowtail is an assembly of diverse singularities (ES, EL3, 

NIL, NL and MP), and the two symmetries protect its stability.  



 The EL3 are lines at which two ESs meet, forming cusps. In catastrophe theory, a cusp 

is formed due to the projection of a folded curve (or surface) onto a lower dimensional space. 

Such a folding process can also be observed in non-Hermitian eigenvalue structures. On the 

cut plane f3=0.3 (Fig. 1b), the red line (ES) is folded in the Reω-f1-f2 space. Thus, swapping of 

eigenvalues will occur if an observation point moving on the exceptional surface (as system 

parameter changes) passes through an EL3 (Section 6 of supplementary information). The NIL 

is also a coalescence of two ESs, and the nearby dispersion forms a double cone (inset of Fig. 

1b), distinct from the EL3s. The pair of EL3s and the NIL are connected by ESs, forming a 

closed loop. Tuning the parameters (e.g. f3=0.1214) makes the loop shrinkable, which provides 

a geometrical understanding that EL3s and NIL can merge at the MP (Fig. 1c). The MP can 

also be understood as a collision of a ray (NL) onto a surface (ES). Before the collision, the NL 

is totally isolated from the ES (see Fig. 1d for f3=0.01), and the collision makes the ES non-

differentiable at MP. Since both the NL and ES share the 2nd band (blue surface in Fig. 1d), the 

tuning of system parameters can make them collide. 

 To observe the exotic swallowtail and investigate the topological origin of the evolution 

of degeneracy features in parameter space, a non-reciprocal electric circuit system emulating 

the interaction of three nodes (labeled by A, B and C) was employed to realize the three-state 

non-Hermitian Hamiltonian (Fig. 2). Benefiting from a wide range of active circuit elements 

such as operational amplifiers, a circuit system is more flexible than other platforms if we need 

to accurately control gain, loss, as well as implementing non-reciprocal hopping. The behavior 

of a circuit system can be described by the Laplacian I = JV (J: Admittance matrix, I: vector 

of input currents, and V: vector of node voltages)23. The admittance matrix J plays the role of 

the Hamiltonian matrix and its eigenvalues (admittance bands j) represent the energy bands. 

Thus, the synthetic dimensions of the parameter space, f1, f2 and f3, can be mapped to the tight-

binding hopping parameters between each pair of the circuit nodes (Fig. 2a). The circuit 



element structure is shown in Fig. 2b. The non-reciprocal hoppings ±f1 (or ±f2) between the 

nodes A and B (or A and C) are implemented and controlled precisely by an impedance 

converter through current inversion (INIC) tandem with elements of capacitance C1 (or C2) 

supplementary information (Fig. 2c). Pure elements of capacitance C3 realize the reciprocal 

hopping f3 between B and C. One can properly select the values of C1, C2 and C3 in the 

experiments to implement the required parameters of f1, f2 and f3, respectively. A photo of the 

printed circuit board (PCB) for the experiments is presented in Fig. 2d. By measuring the 

voltage response of each node to a local a.c. current input, the admittance eigenvalues and 

eigenstates can be acquired. More details on experiments are shown in Section 1 of 

supplementary information. 

 Figure 3a1 shows the ESs, EL3s and NIL obtained from the experimental measurements 

(point marks), falling on the intersecting curve of the swallowtail on the plane f3=0.3. These 

singularities are extracted from the measured admittance eigenvalues (circle marks, Fig. 3a2) 

as a function of f1 along different lines (f2=f1+s) on the plane f3=0.3. ESs can be clearly 

recognized from the quadratic coalescence of two eigenvalues in the experimental results, and 

two ESs (one formed by the 1nd and 2rd bands, and the other by 2nd and 3rd bands) form cusps 

at EL3s, which is observed experimentally as the merging of all the three eigenvalues. The NIL 

can be viewed as the complete intersection of two nonparallel ESs as indicated by Fig. 3a1 

(both formed by the 2nd and 3rd bands), and is a linear degeneracy in the eigenvalue dispersion 

(Fig. 3a2). As f3 descends to 0.1214, the exact phase domain enclosed by the ESs will shrink 

to the MP (Fig. 3b1), being the coincident point of a linear degeneracy and a quadratic 

coalescence of eigenvalues (Fig. 3b2). Continuing lowering f3 to 0.01, the ESs and the MP are 

decoupled into an isolated singularity (NL) and a smooth ES (Fig. 3c). Likewise, the measured 

admittance eigenvalues in Fig. 3c2 indicates that the NL is a linear degeneracy of the 1nd and 

2rd bands, and the ES is formed by the 2nd  and 3rd bands. Apparently, the MP plays a pivotal 



role in linking up all these degeneracy lines. To directly observe how the degeneracy lines and 

surfaces are connected at the MP, we further measured the eigenvalues on the plane f1=f2 

(yellow plane, Fig. 1a) that contains all of them. Figure 3d1 illustrates that the NIL and NL are 

smoothly connected by the MP, which also serves as a tangent point to an ES and thus separates 

the ES into the upper and lower parts that are formed by the degeneracies of different bands 

(Fig. 3d2). 

 We now consider the topological aspects of the transition among different singular lines. 

The swallowtail implicitly exhibits several transition processes among symmetry-protected 

degeneracies supplementary information, and here we focus on the most interesting transition, 

i.e. from the pair of EL3s to the NIL and NL. Our target is to demonstrate that the pair of EL3s 

is topologically equivalent to the NIL and NL. We therefore consider the green loop lα (on 

plane f3=0.3, Fig. 4a1) encircling the pair of EL3s, and the yellow loop lβ (on plane f1+f2=0.3, 

Fig. 4b1) that encloses the NIL and NL together. Both loops inevitably cut through the ESs, as 

the EL3s and NIL are hypersurface singularities. Such an approach employs notions of 

intersection homotopy31, which is different from the conventional homotopy description with 

encircling loops on which all the Hamiltonians are gapped (see details in Section 4 of 

supplementary information). The two loops have the same staring point (SP, purple dots) so 

that direct comparison can be performed. The equivalence between lα and lβ is manifested by 

observing the eigen-frame rotation and deformation processes. The frame rotation concept has 

been used to label different NLs in multiband Hermitian systems with PT symmetry20,21, in 

which the eigenstates form the orthogonal bases of a Euclidean space. Here in our system, the 

Euclidean geometry is no longer applicable. Conversely the symmetries (Eq. 2) reveals that the 

right eigenstates satisfy the following orthogonal relation 

0

0

T

m n

m n

m n
ϕ ηϕ

= ≠
≠ =

                                                      (3) 



where the superscript T denotes transpose. Since η  has the same form as the Minkowski metric, 

and the Hamiltonian is PT-symmetric (Eq. 1), the right eigenstates mϕ  are analogous to the 

frame fields in general relativity (i.e. Riemannian geometry)32. Hence, eigenstates will 

experience Lorentz-like transformations as parameters vary (see details in Section 4 of 

supplementary information), which induces both frame rotation and frame deformations.  

The trajectories of eigenvalues along loops lα and lβ are shown in Fig. 4a2 and 4b2 

respectively, and the corresponding evolution of eigenstates are provided by the trajectories of 

the ball markers in Figs. 4a3-4b3, where the three axes denote the three components of the 

eigenstates. The experimental and theoretical results are shown in the upper and lower panels, 

respectively. The three eigenstates 1ϕ , 2ϕ  and 3ϕ  are marked with red, blue and black balls, 

respectively, and the increase of the markers’ size denotes the evolution process as the 

parameters vary along the loop. The eigenstates (according to normalization of Eq. S26 in 

supplementary information) need a rescaling in order to place the tip of the vector on a unit 

sphere. As indicated, the initial and final imaginary parts of eigenstates are all zero, suggesting 

that the evolution of the imaginary parts is simply an intermediate process. Thus the topology 

is dominantly characterized by the evolution of the real parts of eigenstates, which determines 

the rotation direction and rotation angle of the eigen-frame. It is revealed that along both loops, 

the accumulated rotation angle of 2ϕ  (blue) is zero, and both 1ϕ  and 3ϕ  experience π  

rotations, i.e. they evolve from the initial states to their antipodal points (as indicated by the 

green radial axis), resulting from the PT symmetry of the system. The results show that both 

loops can be viewed as topologically non-trivial as the rotation angles of the eigen-frame are 

quantized. From the starting point, we observe that 2ϕ  and 3ϕ  are rotating in opposite 

directions, which is a typical frame deformation process. In contrast, the rotating eigenstates 

must rotate in the same sense in a pure eigenframe rotation, which is typical for PT-symmetric 



Hermitian systems20,21. The intermediate processes along lα  and lβ  are slightly different from 

each other simply because they are along different trajectories. Therefore, the rotations of 1ϕ  

and 3ϕ  along both loops are the same, which demonstrates that lα  is equivalent to lβ , and 

explains why the pair of EL3s can transit to the NIL and NL via the MP (Fig. 4c). Note that the 

SP of lα and lβ do not need to be the same point so that the yellow and green loops in Fig. 4c 

do not need to touch in order for them to the have the same frame rotation/deformation (see the 

criteria discussed in Section 7 of supplementary information). The continuous deformation 

from lα to lβ is shown in the movie. The analysis indicates that the transition is topologically 

protected. Our method based on Lorentz-like transformation of eigenstates also shows that the 

emergence of the swallowtail is allowed by the symmetries (Eq. 2). 

 To summarize, we showed that the swallowtail, which plays an important role in 

catastrophe theory, appears naturally in non-Hermitian systems when we consider the evolution 

of eigenvalues in parameter space.  In a three-state PT-symmetric non-Hermitian system with 

an additional pseudo-Hermitian symmetry, we found degeneracies of eigenvalues in the form 

of EL3s, NIL and NL, and these seemingly unrelated types of singularities are stably connected 

at an MP, forming a swallowtail and can convert to each other as system parameter changes. 

From the experimental observations and theoretical analysis, we understand that the transition 

occurs because these singular lines are topologically associated with each other. Since the 

symmetries of the considered Hamiltonian play an important role in the emergence of the 

swallowtail, it is worthwhile to explore the generic topological classification of these 

symmetry-protected catastrophe singularities in the future. In addition, realizing such 

Hamiltonians in lattice systems could be valuable platforms for investigating the bulk-edge 

correspondence in non-Hermitian systems. The transitions across diverse singularities also 

pave new avenues for the development of sensing and absorbing devices14,15. 



References: 

1. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-

Hermitian physics. Phys. Rev. X 9, 041015 (2019). 

2. Zhou, H., et al. Observation of bulk Fermi arc and polarization half charge from paired 

exceptional points. Science 359, 1009-1012 (2018). 

3. Kawabata, K., Bessho, T. & Sato, M. Classification of exceptional points and non-

Hermitian topological semimetals. Phys. Rev. Lett. 123, 066405 (2019). 

4. Miri, M. A., Alu, A., Exceptional points in optics and photonics. Science 363, eaar7709 

(2019). 

5. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian 

systems. Rev. Mod. Phys. 93, 015005 (2021). 

6. Tang, W., et al. Exceptional nexus with a hybrid topological invariant. Science 370, 1077-

1080 (2020). 

7. Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. 

Rev. Lett. 120, 146402 (2018). 

8. Cui, X., et al. Symmetry-protected topological exceptional chains in non-Hermitian crystals. 

arXiv preprint arXiv:2204.08052, 2022. 

9. Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-protected multifold exceptional points 

and their topological characterization. Phys. Rev. Lett. 127, 186602 (2021). 

10. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-

Hermitian bands. Nature 598, 59-64 (2021). 

11. Xiao, Y. X., et al. Exceptional points make an astroid in non-Hermitian Lieb lattice: 

Evolution and topological protection. Phys. Rev. B 102, 245144 (2020). 

12. Sayyad, S., Stalhammar, M., Rodland, L. & Kunst, F. K. Symmetry-protected exceptional 

and nodal points in non-Hermitian systems. arXiv preprint arXiv:2204.13945, 2022. 

13. Arnol'd, V. I. Catastrophe theory (Springer Science & Business Media, 2003). 

14. Zhong, Q., et al. Sensing with exceptional surfaces in order to combine sensitivity with 

robustness. Phys. Rev. Lett. 122, 153902 (2019). 

15. Soleymani, S., et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. 

Commun. 13, 1-8 (2022). 

16. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov S. Y. Topological semimetal and 

Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 

205101 (2011). 

17. Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115, 

126803 (2015). 

18. Chiu, C. K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum 

matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016). 



19. Jia, H., et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl 

metamaterials. Science 363, 148-151 (2019). 

20. Wu, Q. S., Soluyanov, A. A. & Bzdušek, T. Non-Abelian band topology in noninteracting 

metals. Science 365, 1273-1277 (2019). 

21. Guo, Q., et al. Experimental observation of non-Abelian topological charges and edge 

states. Nature 594, 195-200 (2021). 

22. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian 

skin effects. Phys. Rev. Lett. 124, 086801 (2020). 

23. Helbig, T., et al. Generalized bulk–boundary correspondence in non-Hermitian 

topolectrical circuits. Nat. Phys. 16, 747-750 (2020). 

24. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. 

Rev. Lett. 121, 086803 (2018). 

25. Zhang, X., et al. Experimental observation of an exceptional surface in synthetic 

dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019). 

26. Okugawa, R. & Yokoyama, T. Topological exceptional surfaces in non-Hermitian systems 

with parity-time and parity-particle-hole symmetries. Phys. Rev. B 99, 041202 (2019). 

27. Chandrasekaran, A., Shtyk, A., Betouras, J. J. & Chamon, C. Catastrophe theory 

classification of fermi surface topological transitions in two dimensions. Phys. Rev. Res. 2, 

013355 (2020). 

28. Yuan, N. F. Q. & Fu, L. Classification of critical points in energy bands based on topology, 

scaling, and symmetry. Phys. Rev. B 101, 125120 (2020). 

29. Kirillov, O. N., Overton, M., Robust stability at the swallowtail singularity. Fron. Phys. 1, 

24 (2013). 

30. Raz, O., Pedatzur, O., Bruner, B. D. & Dudovich, N. Spectral caustics in attosecond science. 

Nat. Photonics, 6, 170-173 (2012). 

31. Gajer, P., The intersection Dold-Thom theorem. Topology 35, 939-967 (1996). 

32. Freedman, D. Z. & Van Proeyen, A. Supergravity (Cambridge Univ. Press, Cambridge, 

2012).  

 

Acknowledgements: This work was supported by Research Grants Council of Hong Kong 

through grants AoE/P-502/20, 16307621 and 16307821, and KAUST20SC01. Y. Zhu 

acknowledges the financial support from National Natural Science Foundation of China (NSFC) 

grant 11701263. We acknowledge Prof. Zhen Lei for helpful comments in constructing the 

theoretical framework. 



Author contributions: H.J. and C.T.C. planed the project. J.H., Y.W., H.J. and C.T.C. designed 

the sample. J.H. carried out the measurements. J.H. and H.J. analyzed the data. R.Y.Z., Y.Z. 

and H.J. constructed the theoretical framework. J.H., R.Y.Z., Y.Z., H.J. and C.T.C. wrote the 

manuscript. J.H., R.Y.Z., X.O., Y.Z., H.J. and C.T.C. contributed to the discussion. 

Competing interests: Authors declare no competing interests.  

Additional Information:  

Supplementary Information is available for this paper.  

Correspondence and requests for materials should be addressed to: zhuyf@sustech.edu.cn; 

jiahongwei7133@gmail.com; phchan@ust.hk. 

Reprints and permissions information is available at www.nature.com/reprints 

Data and code availability: All data and code are available in the main text and the 

supplementary information. 

 

mailto:zhuyf@sustech.edu.cn
mailto:jiahongwei7133@gmail.com
mailto:phchan@ust.hk
http://www.nature.com/reprints


 

Fig. 1| Degeneracy features of eigenvalues on different cut planes in the parameter space, 

showing a swallowtail structure. a, Plot of swallowtail structure in 3D parameter space, 

obtained by solving zeros of the discriminant of characteristic polynomial of Eq. (1). Red 

surfaces are ESs; blue and black lines denote non-defective (NIL and NL) and defective (EL3) 

degeneracy lines, respectively. The meeting point (MP) is denoted by the red star. b-d, 

Eigenvalues (real part) on cut planes f3=0.3 (blue), f3=0.1214 (green) and f3=0.01 (pink) of (a), 

respectively. 

 



 

Fig. 2| Experimental realization of the swallowtail catastrophe with a non-reciprocal 

circuit system. a, Tight-binding hoppings between each pair of nodes A, B and C. b, 

Schematic diagram for realizing the Hamiltonian in Eq. (1). Non-reciprocal hoppings between 

nodes A and B, and nodes A and C in the circuit system are implemented using INIC tandem 

with capacitors (c); reciprocal hopping between B and C is realized with pure capacitors. d, 

Photo of the main part of the PCB sample for the experiments. 

 



 

Fig. 3| Experimental observation of swallowtail catastrophe with the circuit system. a-d, 

Experimental measurements of the swallowtail on planes f3=0.3 (a), f3=0.1214 (b), f3=0.01 (c) 

and f1=f2 (d). a1-d1, Degeneracies on these cut planes: orange-colored lines denote ESs and 

NL formed by the 1nd and 2rd bands; ESs and NIL formed by the 2nd and 3rd  bands are olive-

colored. The solid markers are degeneracies identified experimentally. a2-d2, Real eigenvalue 

dispersions as a function of f1 along different lines (f2=f1+s or f3=s) on the corresponding cut 

plane. The eigenvalues are ordered from small to large in exact phases. The measured 

admittance eigenvalues are marked in circle. 



 

Fig. 4| Understanding the transition of double EL3s to NIL and NL from an eigen-frame 

rotation and deformation perspective. a1-b1, Loop lα  (green) encloses the pair of EL3s, and 

loop lβ  (yellow) encloses the NIL and NL together. a2-b2, Trajectories of eigenvalues along 

loops lα  and lβ , respectively. SP (purple dots) stands for the starting point. a3-b3, Eigen-frame 

deformation and rotation process along loops lα  and lβ , respectively. Upper and lower panels 

correspond to experimental and theoretical results, respectively. 1ϕ , 2ϕ  and 3ϕ  are colored as 

red, blue and black, respectively. The increase of ball size denotes the variation of parameters 

along the loops. Re and Im denote real and imaginary parts of eigenstates, respectively. c, 

Illustration of the transition from double EL3s to NIL and NL in the swallowtail structure. Note 

that in the transition process, the loop does not cut through any degeneracy lines. 
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