
SIMD vectorization for simultaneous solution of
locally varying linear systems with multiple right
hand sides
Martin J. Kühn (martin.kuehn@dlr.de)

German Aerospace Center (DLR), Institute for Software Technology, Department for High-Performance
Computing, Cologne, Germany https://orcid.org/0000-0002-0906-6984
Johannes Holke

German Aerospace Center (DLR), Institute for Software Technology, Department for High-Performance
Computing, Cologne, Germany
Annette Lutz

Technische Universität Darmstadt, Department of Mathematics, Germany
Jonas Thies

Delft University of Technology, Institute of Applied Mathematics, the Netherlands
Melven Röhrig-Zöllner

German Aerospace Center (DLR), Institute for Software Technology, Department for High-Performance
Computing, Cologne, Germany
Alexander Bleh

German Aerospace Center (DLR), Institute of Propulsion Technology, Department of Numerical Methods,
Cologne, Germany
Jan Backhaus

German Aerospace Center (DLR), Institute of Propulsion Technology, Department of Numerical Methods,
Cologne, Germany
Achim Basermann

German Aerospace Center (DLR), Institute for Software Technology, Department for High-Performance
Computing, Cologne, Germany

Research Article

Keywords: sparse iterative solvers, high performance computing, performance engineering, SIMD
optimization, computational �uid dynamics, frequency domain methods

Posted Date: July 14th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1855623/v1

https://doi.org/10.21203/rs.3.rs-1855623/v1
mailto:martin.kuehn@dlr.de
https://orcid.org/0000-0002-0906-6984
https://doi.org/10.21203/rs.3.rs-1855623/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://creativecommons.org/licenses/by/4.0/

Noname manuscript No.
(will be inserted by the editor)

SIMD vectorization for simultaneous solution of

locally varying linear systems with multiple right

hand sides

Martin J. Kühn · Johannes Holke ·

Annette Lutz · Jonas Thies · Melven
Röhrig-Zöllner · Alexander Bleh · Jan
Backhaus · Achim Basermann

Received: date / Accepted: date

Abstract Developments in numerical simulation of flows and high perfor-
mance computing influence one another. More detailed simulation methods
create a permanent need for more computational power, while new hardware
developments often require changes to the software to exploit new hardware
features.

This dependency is very pronounced in the case of vector-units which are
featured by all modern processors to increase their numerical throughput but
require vectorization of the software to be used efficiently. We study the vec-

M. J. Kühn
German Aerospace Center (DLR), Institute for Software Technology, Department for High-
Performance Computing, Cologne, Germany. ORC-ID: 0000-0002-0906-6984
E-mail: Martin.Kuehn@DLR.de

Johannes Holke
German Aerospace Center (DLR), Institute for Software Technology, Department for High-
Performance Computing, Cologne, Germany.

Annette Lutz
Technische Universität Darmstadt, Department of Mathematics, Germany.

Jonas Thies
Delft University of Technology, Institute of Applied Mathematics, the Netherlands.

Melven Röhrig-Zöllner
German Aerospace Center (DLR), Institute for Software Technology, Department for High-
Performance Computing, Cologne, Germany.

Alexander Bleh
German Aerospace Center (DLR), Institute of Propulsion Technology, Department of Nu-
merical Methods, Cologne, Germany.

Jan Backhaus
German Aerospace Center (DLR), Institute of Propulsion Technology, Department of Nu-
merical Methods, Cologne, Germany.

Achim Basermann
German Aerospace Center (DLR), Institute for Software Technology, Department for High-
Performance Computing, Cologne, Germany.

2 1 INTRODUCTION

torization of a simulation method that exhibits an inherent level of vector-
parallelism. This is of particular interest as SIMD operations will hopefully be
available with std::simd in a future C++ standard.

The simulation method considered here results in the simultaneous solu-
tion of multiple sparse linear systems of equations which only differ by their
main diagonal and right hand sides. Such structure arises in the simulation of
unsteady flow in turbomachinery by means of a frequency domain approach
called harmonic balance.

Keywords sparse iterative solvers · high performance computing · perfor-
mance engineering · SIMD optimization · computational fluid dynamics ·
frequency domain methods

Mathematics Subject Classification (2020) 65Y10 · 65Y20 · 76M22 ·
76U99

1 Introduction

For many applications, the simulation of turbomachinery requires the reso-
lution of instationary flow phenomena to adequately predict, e.g., aeroelastic
or aeroacustic behavior of a component. A good overview of modeling ap-
proaches for turbomachinery can be found in [13]. Assuming that the phe-
nomena of interest are periodic in time, the equations can be expressed in
the frequency domain using a Fourier series. One approach, called harmonic

balance [5] is increasingly adopted in industrial turbomachinery design, as it
leads to a reduction in computing times compared to the established Unstead
Reynolds Averaged Navier-Stokes (URANS) method by up to two orders of
magnitude [3].

In this paper we study the vectorization of this simulation method that
exhibits an inherent level of vector-parallelism which results in the simultane-
ous solution of multiple sparse linear systems of equations which only differ
by their main diagonal and right hand sides.

We implement and benchmark these techniques into the Sparse linear sys-
tem solver library Spliss, a modern HPC library for solving block sparse linear
algebra problems that is developed at the German Aerospace Center (DLR);
see, e.g., [8]. Spliss is especially well-suited to solve the problem at hand, since
its modular and templatized structure allows us to build onto its existing per-
formant solvers.

We introduce a new data-type in Spliss, the MultiScalar, which contains
a compile-time constant number of aligned scalars. Using this MultiScalar as
the scalar type for the diagonal of a matrix and the right-hand side vector of
a linear system we can apply Spliss’ native linear system solvers to simultane-
ously solve the multiple equations in a single step. Since iterative solvers like
GMRES or SoR repeatedly apply the system matrix to a vector many load
operations from different memory levels may be necessary. With our approach,

3

we only need to load the off-diagonal values of the matrix once instead of mul-
tiple times. In combination with suited SIMD vectorization of the required
operations our method achieves a significant speed-up.

We compare two approaches to implement MultiScalars, one that relies
on the compiler to insert the vector instructions and one which leverages the
Vc [6] library. This is of particular interest as SIMD operations will hopefully
be available with std::simd in a future C++ standard. We carry out thorough
benchmark scenarios comparing the different approaches for various block-sizes
and provide a recommendation on when to use which of the two approaches.

The paper is structured as follows. In Section 2, we first introduce the
considered model problem. In Section 3, we give a brief introduction into cur-
rent HPC architectures and present our particular implementations. In Sec-
tion 4, we present numerical results considering vectorization ratio, timings,
and Flops. Eventually, we draw a conclusion in Section 5.

2 Model problem

Computational fluid dynamics is an essential tool in the design of all types of
fluid machinery. Of particular interest are the flows through turbomachinery,
which convert fluid energy into rotation of a shaft and vice versa. This class
of machines contains pumps, compressors, turbines, wind turbines, jet engines
and gas turbines. The flow through these machines with all unsteady phenom-
ena is fully described by the Navier-Stokes equations. However, numerically
resolving all turbulent scales for the flows under consideration, direct numerical
simulation (DNS), requires far too much computational effort to be affordable
inside a design loop.

A common remedy is the temporal averaging of the equations and modeling
the effect of all unsteady phenomena on the time-averaged flow. This approach
is called Reynolds-averaged Navier-Stokes (RANS) and allows to exploit rota-
tional symmetry and to reduce mesh resolutions to manageable magnitudes.
The RANS equations have been the workhorse behind the design of most of
today’s turbomachinery. However their inherent negligence of the unsteady
interaction of rotating and stationary turbomachinery components renders it
infeasible for many types of aeroelasticity considerations.

This can be overcome by including larger unsteady flow phenomena into
the computation by means of the unsteady RANS (URANS) method. While
URANS captures unsteady interactions between components, it comes at the
cost of no longer allowing to assume rotational symmetry of the flow field. Fur-
thermore URANS computations exhibit a transient phase, where the initially
assumed flow develops into a flow that satisfies the URANS equations. Having
to simulate the full annulus until the flow converges to the final unsteady flow
makes the URANS method about two orders of magnitude more expensive
than RANS computations.

The fact that the interactions between rotating and stationary parts are
periodic in time gives rise to methods that only model the time-periodic be-

4 2 MODEL PROBLEM

havior. Consequently, an approach in between RANS and URANS is to solve
the equations in the frequency domain and to restrict the unsteadiness to a
selected number of base frequencies and harmonics thereof.

One approach for frequency-domain simulation in turbomachinery which
allows for the nonlinear interaction between the mean flow and the harmonics
is the harmonic balance approach [5].

After spatial discretization, e.g. through a finite-volume discretization, the
semi-discrete Navier-Stokes equations take the form

∂q

∂t
+R(q) = 0, (2.1)

where R denotes the balance of fluxes and sources for the conservative flow
state q = (ρ, ρu, ρv, ρw, ρE) comprising density ρ, u, v, w, the momentum in
the three spatial directions, and internal energy density E. The periodic be-
havior of this flow state can be approximated by taking the real part of a finite
Fourier series of a base frequency ω and multiple non-negative harmonics q̂k

q(x, t) = Re

[

K
∑

k=0

q̂k(x)e
ikω

]

. (2.2)

The residual R(q) can be transformed analogously. The time derivative trans-
forms to a multiplication with ikω in the frequency domain which yields a
system of equations in the frequency domain

ikωq̂k + R̂(q)k = 0. (2.3)

This system can be solved by pseudo-time stepping, similar to the steady
RANS problem, albeit in the frequency domain [10] with a pseudo-time τ , i.e.,

∂q̂

∂τ
+ ikωq̂k + R̂(q)k = 0. (2.4)

This set of equations is solved by an Euler backward approach for stability
reasons. For the determination of the solution update∆q̂ = q̂m+1−q̂m, implicit
pseudo-time stepping requires the solution of a linear system of equations

A∆q̂ = −R̂(q). (2.5)

Note, that due to the nonlinearity of R, the pseudo-time operator would cou-
ple all harmonics and therefore would contain K2 coupled linear systems of
equations. Each system is of size (Nc ·Nd)× (Nc ·Nd), where Nc denotes the
number of grid cells and Nd the degrees of freedom per grid cell. In the case
of finite-volume discretizations and when turbulence models are solved in a
loosely coupled manner Nd = 5, where Nd is the number of physical variables
describing the flow state. Larger values of Nd would arise in a Discontinuous
Galerkin (DG) discretization. For details on DG, we refer to, e.g., [2,12].

5

To avoid the quadratic growth of the linear system withK, the linearization
may be based on the zeroth harmonic, yielding

(

(

1

∆τ
+ ikω

)

I +
∂R

∂q

∣

∣

∣

∣

q̂0

)

∆q̂mk = −R̂k(q), (2.6)

where I is the identity matrix.
This is a sequence of one real-valued and K complex-valued linear systems

of size (Nc · Nd) × (Nc · Nd). In practical implementations the systems are
represented as a sparse Nc ×Nc matrix of dense blocks each being Nd ×Nd in
size. Note that only the entries on the main diagonal itself are complex-valued.
However the whole denseNd×Nd blocks on the diagonal are stored as complex.
This is done for the ease of implementing block diagonal preconditioners such
as occuring in Jacobi iterations or successive overrelaxation (SSOR).

These systems share their off-diagonal entries and differ only in the main
diagonal and right hand sides

(D + J)∆q̂mk = −R̂k(q), (2.7)

where D designates the complex-valued diagonal matrix and J the lineariza-
tion of the residual. This structure lends itself to a vectorized solution method,
since the main diagonal, forming the majority of data, would only have to be
transported once over the memory bus instead of K+1 times in the sequential
approach.

In many CFD-related applications, we find typical block or stencil sizes of,
e.g., 5 or 7 which do not lend themselves to SIMD operations naturally; see
also the general introduction into computer architecture in the next section.
The vectorization over multiple linear systems is thus an attractive alternative.

3 Computer architecture and SIMD vectorization

3.1 General introduction

Today’s supercomputers feature multiple levels of parallelism; see, e.g., [4]
for more details. On the highest level, multiple compute nodes communicate
through a network. Each node consists of one or multiple CPU sockets, each
with multiple cores. A node may also contain further accelerators such as GPUs
or vector processors. Typically, the hardware in one node shares a memory ad-
dress space even though there are multiple physical memories with different
access speeds when accessed from different parts of the node (NUMA). A hier-
archy of caches helps to bridge the gap between relatively slow main memory
compared to the high performance of current processing units. On the lowest
level, each CPU core (similar also for accelerators) consists of a pipeline of units
that execute the desired instructions. One unit usually completes one instruc-
tion every cycle but needs multiple cycles to process it (latency). Similar to

6 3 COMPUTER ARCHITECTURE AND SIMD VECTORIZATION

GPUs and vector processors, the CPU units allow to perform the same opera-
tion with multiple elements of data (Single Instruction Multiple Data: SIMD).
Most Current CPU architectures have floating-point units with a SIMD width
of 256 or 512 bit and allow to calculate one fused-multiply-add (FMA) in-
struction with vectors of 4 or 8 double-precision numbers respectively 8 or
16 single-precision numbers. CPUs for servers / HPC systems usually have 2
FMA units per core (superscalarity). To fully leverage the performance of one
CPU core, one thus needs about hundred to several hundreds of independent
floating-point operations to fill the pipeline.

There are some additional constraints for using SIMD instructions: ideally,
the data should be stored in a contiguous array that starts at an aligned mem-
ory address (an address that is a multiple of the SIMD width). In addition,
the code should access independent, consecutive chunks of data of size of the
SIMD width. If the array length is not a multiple of the SIMD width, a re-
mainder loop (without SIMD operations) is needed or a special masked SIMD
operation must be added for the last few elements. Therefore, it is common
practice to insert some zeros to obtain a data layout that allows better SIMD
processing (padding) as the compiler can usually not adjust the data layout
(which is used across multiple files and in external interfaces). It is then the
task of the compiler optimization to rearrange the floating-point operations in
such a way that they can be transformed into independent SIMD instructions.
However, due to the inherent complexity of the required code transformations
and due to possible pointer aliasing, compilers may not generate optimal SIMD
instructions for a given algorithm. Therefore, SIMD-libraries like Vc [6] pro-
vide a suitable abstraction level to use SIMD features in a portable way across
different CPU instruction sets.

This work focuses on the node-level performance. To ease the performance
analysis, we consider the Roofline performance model [16] which states that
the performance is either limited by the maximal in-core performance Pmax

or by data transfers. The maximal in-core performance depends on the mix
of operations (and possible dependencies between them) and assumes that all
required data is readily available in the nearest cache level. The data transfers
are characterized through the main memory bandwidth bm, respectively the
bandwidth of the slowest data path used. Depending on the algorithm, the
computational intensity Ic may change. The computational intensity specifies
the number of (floating-point) operations per transferred byte. Combining
these definitions, we obtain the Roofline performance:

P = min(Pmax, Ic · bm).

If the data transfers are the limiting factor, the algorithm is called memory-
bound. If, in contrast, the (floating-point) operations are the limiting factor,
the algorithm is called compute-bound (or core-bound). Characteristic val-
ues for the peak memory bandwidth and the peak performance are shown in
Table 3.1.

3.2 Realization in Sparse Linear System Solver library 7

benchmark measurement

double precision performance (AVX2 FMA) 645 GFlop/s
memory bandwidth (AVX2 AXPY) 80 GByte/s

Table 3.1 Hardware characteristics of a 14-core Intel Xeon Scalable Processor Skylake
Gold 6123 that is used for the numerical experiments measured using likwid-bench [15]. We
use an axpy memory benchmark with an array size of 1GB instead of the usual STREAM
[16] benchmark as it better reflects the memory access pattern of our implementation. The
hardware also supports AVX512 instructions (512 bit SIMD width instead of 256 bit with
AVX2) but we do not use them in this paper.

3.2 Realization in Sparse Linear System Solver library

The Sparse Linear System Solver library Spliss is a novel block sparse lin-
ear library that is developed for large scale CFD simulations; see [8]. Spliss
is currently used in modern HPC CFD solver frameworks in aerospace and
engineering, such as CODA [7] and TRACE [3]. Spliss is designed as a modern
C++ library and relies heavily on templatization. This allows for a decoupling
of abstract linear solvers and matrix format implementations on the one hand
and concrete data types on the other hand.

Spliss employs distributed and shared memory parallelization. The former
is realized via an internal abstraction layer which allows the usage of either
two-sided MPI [11] or one-sided GASPI [1] communication as backend.

For shared memory parallelization Spliss uses the Alpaka (abstraction li-
brary for parallel kernels) framework [9], a performance portable, platform
independent abstraction layer that allows using multiple (possibly different)
accelerators concurrently. This enables Spliss to use, for example, OpenMP
threads or CUDA for NVidia GPUs with the same high-level implementation.

Spliss implements a collection of common sparse linear system solvers such
as CG and GMRES and allows for the application of preconditioners such
as (Block)-Gauss-Seidel or SOR. It supports several sparse (block) matrix
formats with either fixed or varying block size. Due to templatization these
matrix formats and algorithms can operate on any arithmetic data type, such
as double, float, complex or a user defined data type.

Realization of SIMD operations on multiple scalars

To efficiently execute SIMD operations on multiple scalars, we introduce the
MultiScalar object as a custom data type which contains a compile-time con-
stant number of aligned scalars. We have implemented two different realiza-
tions of MultiScalars, our naive implementation uses a member which is an ar-
ray of scalars while the Vc-based implementation derives from Vc::SimdArray.

Together with the MultiScalar object itself, we need a mask object which
is of the size of the MultiScalar and allows the comparison of MultiScalars.

The concept of the naive MultiScalar implementation is given in Fig. 3.1
(left). The Vc-based MultiScalar is only slightly more complex. In particular,
it needs some additional lines of code for the definition of a corresponding

8 3 COMPUTER ARCHITECTURE AND SIMD VECTORIZATION

// Naive MultiScalar
template<typename T, size t N>

class MultiScalar{
public :
// Mask for MultiScalar
using MaskType =

MultiScalar<bool, N>;

// constructors , operators, ...

protected:
// Array of values in MultiScalar
T values [N];

};

// Vc❂based MultiScalar
template<typename T, size t N>

class MultiScalar: public
Vc::SimdArray<T, N> {

public :
using BaseClass =

Vc::SimdArray<ScalarType,
Size>;

using VcMaskType = typename
BaseClass::mask type;

// MaskType inheriting from
VcMaskType

struct MaskType: public
VcMaskType {

using VcMaskType::VcMaskType;
MaskType(const VcMaskType&

other) : VcMaskType(other){}

// Performs the logical and for
two MaskTypes.

MaskType operator&&(const
MaskType &other) const {

MaskType tmp(✯this);
for (size t i = 0; i <

tmp.size(); i++)
tmp[i] = tmp[i] && other[i];

return tmp;
}

// operator || similar to
operator&&

};

// constructors , operators, ...
};

Fig. 3.1 Naive (left) and Vc-based (right) MultiScalar implementations.

MaskType. In Fig. 3.1 (right), we present our VcAuto implementation which
lets Vc decide on the used vector length and which does not automatically
introduce padding. For general padding, we would need to introduce another
constant value validEntries. This number can then differ from Size which would
be the size of the MultiScalar with padding. We present the realizations of
simple MultiScalar comparison or addition operators in the appendix.

For the case of complex diagonals, we extend the concept of MultiScalar to
ComplexMultiScalar. Since many operations on complex numbers (e.g., com-
parisons or additions) are based on a separate handling of real and imaginary
parts, we use a Complex object which then holds two MultiScalars; one for the
real and one for the imaginary part, each purple box representing one scalar
value; see Fig. 3.2.

3.2 Realization in Sparse Linear System Solver library 9

ComplexMultiScalar

MultiScalar MultiScalar

+ i

Fig. 3.2 ComplexMultiScalar composed out of two MultiScalars, one for the real- and one
for the complex-valued entries.

Fig. 3.3 Matrix-vector-multiplication of a CompositeMatrix with a single diagonal (left)
and a MultiScalar with four entries on the diagonal (right).

Mixed scalar type matrices

Owing to the application of harmonic balance problems, where, e.g., the di-
agonal blocks of a matrix can be complex-valued while the off-diagonal blocks
only contain real-valued entries, Spliss offers the so called CompositeMatrix.
For such a matrix A, we define AC as the set of (diagonal) matrix blocks that
are complex-valued and AR as the set of (off-diagonal) blocks that are real-
valued. Then Ax = ACx+ARx and the matrix is split up into multiple separate
parts, each comprising a homogeneous datatype. This allows for a very flexible
and memory efficient assembly of mixed data type matrices, or even matrices
featuring additional matrix-free operators. For the sake of simplicity, we as-
sume in our description that AC and AR are stored in a meaningful way such
that the above matrix-vector-products can be executed.

A very simple CompositeMatrix with only one diagonal (in purple) that
can have a different data type than the green off-diagonal blocks is shown
in Fig. 3.3 (left). The more relevant use case with multiple diagonals (i.e.,
MultiScalars on the diagonal) that have a different data type than the off-
diagonal blocks can be found in Fig. 3.3 (right).

The downside of the current implementation is that the vectors have to
be loaded from memory once for the diagonal and once for the off-diagonal

10 4 NUMERICAL RESULTS

part. Nevertheless, due to the focus on block matrices, this effect becomes
smaller with larger block sizes, since the matrix (which is loaded once) requires
O(NcN

2
d) data transfers whereas the vector only requires O(NcNd) transfers.

In this work we use the CompositeMatrix to define (Complex)MultiScalar
entries on the diagonal and real-valued entries on the off-diagonal but other
choices are also possible. The application of real-valued off-diagonal blocks on
either complex- or real-valued right hand sides then saves memory transfers
and operations since it avoids storing (and calculating with) zeros for the
imaginary part of the matrix entries.

4 Numerical results

We consider a variety of different systems to test the performance of our imple-
mentations. All test cases are based on CompositeMatrices with a maximum
of seven nonzero blocks per row, i.e., up to six off-diagonal blocks (three left
and three right of the diagonal with a distance of 1, 10, and 100 blocks). All
these blocks (diagonal and off-diagonal) are fully dense and the whole system
matrix is (block) sparse. Off-diagonal blocks are always real-valued. For the
diagonal blocks, we consider either real or complex entries. We consider exam-
ples with single diagonals as well as with MultiScalar or ComplexMultiScalar
diagonals of different size.

We consider two edge cases with either small 5×5 or large 240×240 blocks.
In case of small blocks, we consider a matrix with 5 ∗ 1.5 million rows. This
leads to 37.5 million nonzeros for the diagonal blocks and 225 million nonzeros
in the off-diagonal blocks of the matrix. For the larger block size, we consider
a matrix with 240 ∗ 700 rows leading to 40.3 million nonzeros for the diagonal
blocks and 229 million nonzeros in the off-diagonal blocks.

The size of the matrices in the memory of the different tests differs by the
data type of the diagonal as well as the precision used. We consider test cases
with single precision (denoted FP32) or double precision (denoted FP64).

Let us provide an example on the data size for the case of 5 × 5 blocks,
four complex diagonals and double precision. Using a ComplexMultiScalar of
size 4, the required storage for the diagonal blocks is then given by

SD = NNZ ∗Nbd ∗NMS ∗NRC = 37.5 ∗ 106 ∗ 8 ∗ 4 ∗ 2 = 2.4 [GB],

where NNZ denotes the number of nonzero entries stored in the diagonal,
Nbd is the size in bytes of one double, NMS specifies the number of entries
in the Multiscalar and NRC is a multiplier to distinguish between real- and
complex-valued entries. Accordingly the off-diagonal needs

SOD = 225 ∗ 106 ∗ 8 ∗ 1 ∗ 1 = 1.8 [GB]

bytes. Four complex double-precision vectors result in

SV = 5 ∗ 1.5 ∗ 106 ∗ 8 ∗ 4 ∗ 2 = 0.48 [GB]

4.1 Bandwidth saturation 11

We use gcc 10.2 and Vc 1.4.1. We perform numerical tests on a single
socket with the hardware characteristics shown in Table 3.1. We do not use
AVX512 SIMD instructions as AVX-512 will only be available with Vc 21. In
addition, the CPU reduces the frequency when AVX512 instructions are exe-
cuted. This makes AVX512 instructions not always beneficial and complicates
the performance analysis.
We divide the numerical results section into four different sections:

Bandwidth saturation: In Section 4.1, we briefly discuss the compute in-
tensity of our application and show that we obtain saturating behavior.

Vectorization behavior: In Section 4.2, we show the vectorization behavior
of the different implementations.

Timings and Flops/s: In Section 4.3, we consider timings and Flops per
second for different numbers of diagonals and benchmarks for the different
implementations.

Realistic Example: In Section 4.4, we validate the findings using a linear
matrix obtained from the CFD solver TRACE within a harmonic balance
context.

4.1 Bandwidth saturation

For the matrix with 5×5 blocks and 1.5 ·5 million rows in complex arithmetic,
we need

37.5 ∗ 106 ∗ 4 ∗ 2 ∗ 4 = 1.2 [GFlop]

for the multiplication of 4 complex block diagonals with 5 × 5 blocks with
4 complex vectors. For the off-diagonal part, we have one matrix with 225
million real entries, resulting in

225 ∗ 106 ∗ 2 ∗ 2 ∗ 4 = 3.6 [GFlop]

Therefore, we obtain the compute intensities

IC,diag =
1.2

2.4 + 3 ∗ 0.48
≈ 0.3 [Flop/Byte]

IC,off-diag =
3.6

1.8 + 3 ∗ 0.48
≈ 1.1 [Flop/Byte]

for the block-diagonal part and the off-diagonal parts of the computation. For
bigger blocks and more vectors, the compute intensity increases (e.g. to ∼ 5.7
[Flop/Byte] for the off-diagonal part of the matrix with 240× 240 blocks and
8 vectors). From Table 3.1, the machine intensity is

IM =
645

80
≈ 8 [Flop/Byte].

1 https://github.com/VcDevel/Vc

12 4 NUMERICAL RESULTS

Fig. 4.1 Memory bandwidth of the MatVec-benchmark measured with LIKWID for 1,
4, and 8 diagonals with dense 5x5 or 240x240 blocks of complex entries in double

precision. VcAuto uses the Vc-based MultiScalar where Vc decides on the used vector
lengths. noVc also solves all systems simultaneously but only uses a naive array-based
MultiScalar implementation.

Thus, for the Roofline performance model all variants arememory-bound. How-
ever, for the cases with multiple diagonals the compute intensity is close enough
to the machine balance that the SIMD vectorization affects the performance.
This is the regime (compute intensity close to the machine intensity) where
the Roofline model is too optimistic in the sense that it assumes a perfect
overlap of data transfers and computations; more sophisticated performance
models like the Execution-Cache-Memory (ECM) model[14] could predict the
performance more accurately but we will focus on the generic implementation
and SIMD vectorization here.

In the following, we show that our model problems still feature bandwidth-
saturating behavior. We compute the MatVec benchmark for the model prob-
lems with 5x5 and 240x240 blocks on the diagonal. The MatVec benchmark
conducts one matrix-vector-product with both the block-diagonal and the off-
diagonal parts. We run this with MultiScalars of either 1, 4, or 8 scalars on
these diagonals on 1 to 14 cores; cf. Fig. 4.1. All benchmarks are executed
on the machine depicted in Table 3.1. We compare the bandwidth to the
bandwidth obtained with the AXPY benchmark in LIKWID[15]. We chose
the AXPY benchmark as reference as it has a similar load-to-store ratio. All
computations update the vector (no nontemporal stores).

We can see from Figure 4.1 that all cases with VcAuto achieve a high frac-
tion (> 75%) of the peak bandwidth and that they feature saturating behavior.
Nevertheless, most cases are not completely saturated (more cores could fur-
ther increase the performance), especially the case with 240× 240 blocks and
1 diagonal scales almost linearly with the number of cores. As the cases with
240× 240 blocks and more diagonals achieve a higher bandwidth even though
they have a higher compute intensity, this indicates sub-optimal compiler op-
timization. The less degressive scaling of the implementation without Vc in
comparison already indicates a better utilization of the compute performance
when using Vc. This observation will be further investigated in the following
sections.

4.2 Vectorization behavior 13

Fig. 4.2 Vectorization ratios for -O2 (left column) and -O3 optimization (right column)
for 5x5 (top row) and 240x240 (bottom row) blocks of complex entries on the diagonal.
Seq. systems corresponds to a sequential solve of the systems. VcPad uses a padded Vc-
based MultiScalar on the diagonals to solve all systems simultaneously. Similarly, VcAuto

uses a Vc-based MultiScalar where Vc decides on the used vector lengths. noVc also solves
all systems simultaneously but only uses a naive array-based MultiScalar implementation.
Dotted lines correspond to scalar execution, dashed lines represent the share of FP 128
vectorization and solid lines FP 256 vectorization. FP 512 is not used.

4.2 Vectorization behavior

In this section, we compare the naive Multiscalar implementation, denoted
noVc, with the padded implementation, denoted VcPad, as well as with the
implementation, where potential padding is decided by Vc, denoted VcAuto.
Finally, we also provide compiler-obtained vectorization for a sequential so-
lution of the systems with different diagonals. Note that padding of, e.g., a
MultiScalar of size 3 to size 4 can help to make the code more suitable for
SIMD vectorization. However, it comes at the cost of storing and transferring
additional zeros (4/3 of the original date transfers required for the vectors).

As expected, we see from Fig. 4.2 that vectorization of VcPad is always
at 256 bit since MultiScalars are padded to this size. For VcAuto, we observe
that practically no padding is used. For instance, in all cases, we see that
vectorization for VcAuto MultiScalar of size 7 is done with one third to lengths
64, 128, and 256 bits. For Vc-based implementations, we see that vectorization
does not depend on optimization flags (see left column for O2 and right column
for O3 in Fig. 4.2). We explicitly consider both O2 and O3 optimization,
as it is common for scientific and engineering codes, to enable only the O2

optimization level.

For sequential solutions as well as the naive noVc implementation, we
do not see any vectorization by the compiler with O2 flag; see left column
in Fig. 4.2. We see modest vectorization with O3 flag but this is far below
the vectorization as achieved by Vc-based implementations; see right column
in Fig. 4.2.

14 4 NUMERICAL RESULTS

4.3 Timings and Flops

The results on timings and Flops can be divided into two different categories.
In Fig. 4.3 and Fig. 4.4, we consider the MatVec benchmark for one up to
16 diagonals and 5x5 or 240x240 sized blocks, respectively. Results are pre-
sented for O2 and O3 optimization, single and double precision as well as real-
and complex-valued diagonals. In Fig. 4.5-Fig. 4.8, we consider five different
benchmarks for different block sizes and different precision. We consider O3

optimization and real- as well as complex-valued diagonals.

In Fig. 4.3 and Fig. 4.4, we see that different optimization flags make a huge
difference for the naive MultiScalar implementation while for single systems
as well as Vc-based implementations the optimization gain is smaller. For Vc,
O2 optimization already yields best performance in some cases.

For Vc-based implementations, we see that the best performance is ob-
tained for the number of diagonals that fits a multiple 256-byte width, i.e.,
eight or 16 for single precision and four or eight (in some cases also 12 or 16)
for double precision.

We generally see that the padded Vc-MultiScalar behaves suboptimally for
systems with a small number of diagonals. This is due to the relatively large
padding to four (double precision) or eight (single precision) diagonals. Here,
the Vc-MultiScalar, where vector widths are derived automatically (VcAuto),
yields much better results. However, for a badly chosen number of diagonals
(i.e., seven for double precision), VcAuto conducts three SIMD operation of
length 256, 128, and 64 bytes instead of two 256-bytes operations for VcPad;
see also Fig. 4.2).

For a small number of diagonals, VcAuto and the naive noVc approach
perform similarly well. In case of small block sizes (5x5), the noVc performs
best for double precision and more than four diagonals (except eight). On the
other hand, for eight double precision diagonals VcAuto still performs best
on small block sizes (5x5). For single precision, independent of the block size,
or double precision and large block sizes (240x240) the picture is clear. Here,
VcAuto performs best for all multiples of 256-bytes widths.

In Fig. 4.5-Fig. 4.8, we consider five different benchmarks. Besides the pre-
vious MatVec benchmark, we test a colored matrix vector product ColMatVec

with three different colors. Furthermore, we test a block Jacobi BlockJac and
block Gauss-Seidel BlockGS iteration scheme, where the preconditioner is com-
puted as the LU decomposition of the block diagonal matrix. In the resulting
timings and Flops, we only consider the iteration scheme, not the set up of
the preconditioner. Finally, we also test a GMRES iteration scheme. For all
three iterative schemes, a modest number of iterations smaller 10 is conducted.
As we do not want to compare the different benchmarks (e.g., BlockJac vs.
GMRES), the number of iterations is not important.

The Flop count that we present only includes intended Flops that we need
for the corresponding result. That means, that an addition of two MultiScalars
with one value each padded up to four values will only result in one Flop, not

4.3 Timings and Flops 15

Fig. 4.3 MatVec Benchmark timings for diagonals with dense 5x5 blocks of real (top row)
and complex (bottom row) entries and single (left) and double (right) precision. Dashed
lines represent execution with -O2 optimization, solid lines represent execution with -O3

optimization. Other notation as in Fig. 4.2.

Fig. 4.4 MatVec Benchmark timings for diagonals with dense 240x240 blocks of real (top
row) and complex (bottom row) entries and single (left) and double (right) precision. Dashed
lines represent execution with -O2 optimization, solid lines represent execution with -O3

optimization. Other notation as in Fig. 4.2.

in four. Consequently, the GFlops/s obtained with VcPad are low for small
numbers of diagonals.

Except for the case of 12 complex diagonals in double precision and small
5x5 blocks, the VcAuto MultiScalar implementation always achieve the most
Flops per second (or are within a range of some percent of the best perfor-
mance).

16 4 NUMERICAL RESULTS

Fig. 4.5 Obtained performance with different benchmarks for 4, 8, 12, and 16 diagonals
with dense 5x5 blocks of real entries in single precision. Other notation as in Fig. 4.2.

Fig. 4.6 Obtained performance with different benchmarks for 1, 4, 8, and 12 diagonals with
dense 5x5 blocks of complex entries in double precision. Other notation as in Fig. 4.2.

4.4 Realistic example from the CFD solver TRACE

To validate the benchmark results, we tested the MultiScalar implementation
in a realistic use case. Fig. 4.9 shows the sparse matrix structure extracted
from the CFD solver TRACE [3] for the simulation of a transsonic compressor
fan. The discretization results from a structured mesh consisting of about
one million finite volume cells. Each entry of the sparse matrix consists of a
dense 5x5 matrix block. A harmonic balance solution which features N higher
harmonics will require N additional equally structured linear matrices with a
complex diagonal to be solved. As before, we solve these systems using different
approaches. First, we use the classical approach without MultiScalars and solve

4.4 Realistic example from the CFD solver TRACE 17

Fig. 4.7 Obtained performance with different benchmarks for 4, 8, 12, and 16 diagonals
with dense 240x240 blocks of real entries in single precision. Other notation as in Fig. 4.2.

Fig. 4.8 Obtained performance with different benchmarks for 1, 4, 8, and 12 diagonals
with dense 240x240 blocks of complex entries in double precision. Other notation as
in Fig. 4.2.

the systems sequentially. Second and third, we compare the performance of our
own naive MultiScalar implementation against one implementation using the
Vc library. In TRACE, typically, a colored block Gauss-Seidel approach is used
with a fixed number of iterations. The library Spliss inverts the 5x5 blocks on
the diagonal using an LU decomposition. To exclude effects of distributed
MPI parallelization, the system is solved on a single node comprising 32 cores
(System specification: Sky Lake Xeon(R) Silver 4216). The results are shown
in Fig. 4.9 for single precision, double precision and different numbers of higher
harmonics considered, i.e., N ∈ {4, 5, 7, 8}. To allow for comparison, we used
a fixed number of 200 iterations.

18 5 CONCLUSION

Fig. 4.9 Left: The structure of the linear system Matrix. Right: Results for four different
numbers of higher harmonics and double/single precision.

Let us note that all systems represented by one MultiScalar are always
computed together. The iteration process can then be stopped if either one or
all approximations have reached the convergence criterion. This means that,
under certain conditions, some systems are solved unnecessarily precise. Such
kind of algorithmic losses are not considered here.

For the case of sequentially solved systems a proportional increase in com-
puting time can be observed as expected. For double precision the computing
time is about twice the amount as for single precision. For either four or eight
entries of a MultiScalar, the Vc-based implementation yields an improvement
of about a factor of two. For odd numbers which do not fully fill a SIMD
register, the own (naive) implementation relying on the compiler is faster in
some cases. For numbers filling a SIMD register or being a multiple of it, the
naive implementation is slower. Compared to sequential solution of the sys-
tems, the use of Vc-based implementation of the MultiScalar always reduces
the computational time significantly.

5 Conclusion

In this paper we presented three implementations of MultiScalars. The first
implementation is a naive C++ implementation while the second and third
one make use of the Vc library [6]. Hereby, we conduct the parallel solution of
linear systems, which only differ for a limited number of matrix entries. These
systems may naturally arise from computational fluid dynamics problems as
described in Section 2. The parallel solution of these systems is conducted
using SIMD operations allowing the concurrent processing of, e.g., four double
precision numbers.

Since our model problems are memory-bound, we see that we benefit from
lower memory transfer using our CompositeMatrices. However, we also bene-
fit from SIMD parallelism realized on the diagonal blocks of the matrices. We

19

observe limits on default compiler vectorization for naive MultiScalar imple-
mentations (denoted noVc); on the other hand, we see that Vc-based imple-
mentations (denoted VcPad and VcAuto) vectorize well; see Fig. 4.2. Insights
into the different implementations is given in Fig. 3.1. However, our Vc-based
implementations (VcPad and VcAuto) do not perform best for all use cases.
As vectorization is well achieved with these implementations, the number of
systems to be solved in parallel should be chosen carefully. For instance, for
256 bit sized SIMD registers and double precision systems, our padded Vc-
implementation always solves multiples of four systems. This means that for
just two systems to be solved, two systems are solved in padding. The VcAuto
implementation would then only vectorize with length 128 bit and solve both
systems without overhead. However, this implementation is disadvantageous if
seven double precision systems need to be solved. Then vectorization is done
in 256, 128, and 64 bit size; see, e.g., Fig. 4.2.

Chosing the number of systems to be solved in parallel in accordance with
the SIMD width can lead to a substantial reduction of computation time. As
expected, the solution of systems in parallel is substantially faster than se-
quentially solving these systems. Additionally, the Vc-based implementations
also outperform the naive MultiScalar implementation considerably; see Fig-
ures 4.3-Fig. 4.8. This effect grows with the block sizes.

For a realistic, memory-bound example with small-sized 5x5 diagonal blocks,
we finally achieve a speedup of factor two compared to a sequential solution
of four or eight systems. We also obtain a significant reduction in compu-
tation time by using the Vc-based MultiScalar implementations against the
presented naive implementation. Further advantages of SIMD execution could
result from lower total energy consumption. However, this was not measured
and is subject to future research.

6 Acknowledgements

The authors gratefully acknowledge the funding of the DLR project TOSCANA,
which is part of the German government’s aviation research program un-
der grant agreement number FKZ20X1704A. The authors also thank Jens
Jägersküpper, Olaf Krzikalla, Jasmin Mohnke, Arne Rempke, Daniel Vollmer
and others who contributed to Spliss.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

No particular data sets were used to conduct this study. The nonzero patterns
of the test cases can be constructed easily, the values of the matrices are

20 7 APPENDIX

arbitrary as time to convergence of the iterative solvers was not the focus of
the study.

7 Appendix

Simple comparison or addition operators for the naive MultiScalar.

/// Computes the component-wise sum of this MultiScalar and another

MultiScalar.

template<typename InputScalarType>

MultiScalar operator+(const MultiScalar<InputScalarType, Size>& other) const

{

return MultiScalar(*this) += other;

}

/// Computes the component-wise sum of this MultiScalar and a scalar.

template<typename InputScalarType,

std::enable_if_t<std::is_arithmetic<InputScalarType>::value, bool> =

true>

MultiScalar operator+(const InputScalarType other) const

{

return MultiScalar(*this) += other;

}

/// Tests this MultiScalars component-wise for equality against another

MultiScalar.

template<typename InputScalarType>

MaskType operator==(const MultiScalar<InputScalarType, Size>& other) const

{

MaskType result;

for (size_t i = 0; i < Size; i++)

{

result[i] = (*this)[i] == other[i];

}

return result;

}

/// Tests this MultiScalar component-wise for equality against a scalar.

template<typename InputScalarType,

std::enable_if_t<std::is_arithmetic<InputScalarType>::value, bool> =

true>

MaskType operator==(const InputScalarType& other) const

{

MaskType result;

for (size_t i = 0; i < Size; i++)

{

result[i] = (*this)[i] == other;

}

return result;

}

Simple comparison or addition operators for the Vc-based Multi-
Scalar.

21

// Computes the component-wise sum of this MultiScalar and another

MultiScalar.

template<typename InputScalarType>

MultiScalar operator+(const MultiScalar<InputScalarType, Size>& other) const

{

MultiScalar<ScalarType, Size> res;

res = *static_cast<ConstBaseClass*>(this) +

static_cast<ConstBaseClass&>(other);

return res;

}

// Computes the component-wise sum of this MultiScalar and a scalar.

template<typename InputScalarType,

std::enable_if_t<std::is_arithmetic<InputScalarType>::value, bool> =

true>

MultiScalar operator+(const InputScalarType& other) const

{

return *static_cast<ConstBaseClass*>(this) + ConstBaseClass(other);

}

// Tests this MultiScalars component-wise for equality against another

MultiScalar.

template<typename InputScalarType>

MaskType operator==(const MultiScalar<InputScalarType, Size>& other) const

{

return MaskType(*static_cast<ConstBaseClass*>(this) ==

static_cast<ConstBaseClass&>(other));

}

// Tests this MultiScalar component-wise for equality against a scalar.

template<typename InputScalarType,

std::enable_if_t<std::is_arithmetic<InputScalarType>::value, bool> =

true>

MaskType operator==(const InputScalarType& other) const

{

return MaskType(*static_cast<ConstBaseClass*>(this) ==

ConstBaseClass(other));

}

References

1. Alrutz, T., Backhaus, J., Brandes, T., End, V., Gerhold, T., Geiger, A., Grünewald, D.,
Heuveline, V., Jägersküpper, J., Knüpfer, A., Krzikalla, O., Kuegeler, E., Lojewski, C.,
Lonsdale, G., Müller-Pfefferkorn, R., Nagel, W., Oden, L., Pfreundt, F.J., Rahn, M.,
Weiss, J.P.: GASPI - A Partitioned Global Address Space Programming Interface, pp.
135–136 (2013). doi:10.1007/978-3-642-35893-7 18

2. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods,
Mathématiques et Applications, vol. 69. Springer, Heidelberg Dordrecht London New
York (2011)

3. Frey, C., Ashcroft, G., Kersken, H.P., Voigt, C.: A harmonic balance technique for
multistage turbomachinery applications (2014). doi:10.1115/GT2014-25230

4. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and
Engineers. CRC Press (2010). doi:10.1201/ebk1439811924

https://doi.org/10.1007/978-3-642-35893-7_18
https://doi.org/10.1115/GT2014-25230
https://doi.org/10.1201/ebk1439811924

22 7 APPENDIX

5. Hall, K.C., Thomas, J.P., Clark, W.S.: Computation of unsteady nonlinear flows in
cascades using a harmonic balance technique. AIAA Journal 40(5), 879–886 (2002).
doi:10.2514/2.1754

6. Kretz, M.: Extending c++ for explicit data-parallel programming via simd vector types.
Ph.D. thesis (2015)

7. Kroll, N., Abu-Zurayk, M., Dimitrov, D., Franz, T., Führer, T., Gerhold, T., Görtz, S.,
Heinrich, R., Ilic, C., Jepsen, J., Jägersküpper, J., Kruse, M., Krumbein, A., Langer,
S., Liu, D., Liepelt, R., Reimer, L., Ritter, M., Schwöppe, A., Scherer, J., Spiering,
F., Thormann, R., Togiti, V., Vollmer, D., Wendisch, J.H.: DLR project Digital-X:
towards virtual aircraft design and flight testing based on high-fidelity methods. CEAS
Aeronautical Journal 7(1), 3–27 (2016). doi:10.1007/s13272-015-0179-7. URL https:

//doi.org/10.1007/s13272-015-0179-7

8. Krzikalla, O., Rempke, A., Bleh, A., Wagner, M., Gerhold, T.: Spliss: A sparse lin-
ear system solver for transparent integration of emerging HPC technologies into CFD
solvers and applications. In: A. Dillmann, G. Heller, E. Krämer, C. Wagner (eds.) New
Results in Numerical and Experimental Fluid Mechanics XIII, pp. 635–645. Springer
International Publishing, Cham (2021)

9. Matthes, A., Widera, R., Zenker, E., Worpitz, B., Huebl, A., Bussmann, M.: Tuning
and optimization for a variety of many-core architectures without changing a single line
of implementation code using the alpaka library. In: J.M. Kunkel, R. Yokota, M. Taufer,
J. Shalf (eds.) High Performance Computing, pp. 496–514. Springer International Pub-
lishing, Cham (2017)

10. McMullen, M.S.: The application of non-linear frequency domain methods to the Euler
and Navier-Stokes equations. Phd thesis, Stanford University (2003)

11. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version
4.0 (2021). URL https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

12. Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations:
theory and implementation. FRONTIERS IN APPLIED MATHEMATICS. Society for
Industrial and Applied Mathematics, Philadelphia (2008)

13. Sandberg, R.D., Michelassi, V.: Fluid dynamics of axial turbomachinery: Blade- and
stage-level simulations and models. Annual Review of Fluid Mechanics 54(1), 255–285
(2022). doi:10.1146/annurev-fluid-031221-105530

14. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying Performance Bottlenecks of
Stencil Computations Using the Execution-Cache-Memory Model. In: Proceedings of
the 29th ACM on International Conference on Supercomputing - ICS ✬15. ACM Press
(2015). doi:10.1145/2751205.2751240

15. Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments. In: 2010 39th International Conference on Parallel
Processing Workshops, pp. 207–216. IEEE (2010). doi:10.1109/icppw.2010.38

16. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual performance
model for multicore architectures. Communications of the ACM 52(4), 65–76 (2009).
doi:10.1145/1498765.1498785

https://doi.org/10.2514/2.1754
https://doi.org/10.1007/s13272-015-0179-7
https://doi.org/10.1007/s13272-015-0179-7
https://doi.org/10.1007/s13272-015-0179-7
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1146/annurev-fluid-031221-105530
https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1109/icppw.2010.38
https://doi.org/10.1145/1498765.1498785

	Introduction
	Model problem
	Computer architecture and SIMD vectorization
	Numerical results
	Conclusion
	Acknowledgements
	Appendix

