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Abstract
Since macrobenthos play an important role in the energy �ow and material circulation of marine systems,
they can act as an indicator of ecosystem health. Because there are generally complex relationships
between macrobenthos and environmental factors, the optimal model for simulating macrobenthos
habitat is a nonlinear, nonparametric model with a relatively �exible structure. This study applied
canonical correlation analysis (CCA) to identify the key ecological factors affecting the community
characteristics of macrobenthos in the bivalve farming area near Xiaoqing estuary. Responses of species
richness to environmental factors were studied using the generalized additive model (GAM), and the
Margalef index (dM) was used instead of individual indicator species to indicate diversity variation. Six
factors were selected in the optimal model by stepwise regression: salinity (Sal), sediment organic matter
(SOM), ammonium nitrogen (NH4-N), phosphate in interstitial water (PO4-Psoil), ammonium nitrogen in
interstitial water (NH4-Nsoil), and nitrate nitrogen in interstitial water (NO3-Nsoil) in the substrates. The
response curves generated by the GAM showed a unimodal relationship between taxa diversity and Sal
and SOM, dM was positively correlated with NH4-N, and was negatively correlated with PO4-Psoil. The
model optimized by forward stepwise optimization explained 92.6% of biomass variation, with a small
residual (2.67). The measured dM was strongly correlated with the predicted dM (Pearson R2 = 0.845, p < 
0.05). This study can increase understanding of the relationships between the macrobenthic community
and aquaculture activities in the bivalve farming area near Xiaoqing estuary.

1. Introduction
Since the macrobenthic community plays a vital role in energy �ow, material circulation, and information
transfer of marine ecosystems, it is an important indicator of ecosystem health (Butkas et al. 2011; Zhao
et al. 2019; Hajializadeh et al. 2020). The macrobenthos is widely used as an indicator of ecological
health in marine monitoring and assessment due to the relatively weak ability of macrobenthos species
to migrate, their long life cycles, and their different tolerances to stressors (Xu and Li. 2021). Estuaries are
ecotones connecting freshwater and marine ecosystems and are important spawning and feeding
grounds for many economically important �shes (Yang et al. 2020). Macrobenthos communities also
play a key role in the functioning of estuarine systems. Estuaries are easily disturbed by anthropogenic
activities, and the ecological status of benthic organisms are regularly assessed in estuaries and
adjacent areas (Aubry and Elliott. 2006). There have been increasing anthropogenic pressures on coastal
habitat, including by coastal development and the habitat degradation (Lotze et al. 2006). Consequently,
there has been a decline in the biodiversity of the macrobenthos due to aquatic ecosystem habitat loss
and degradation (Geist. 2011). In addition, the spatial and temporal distributions of the estuarine
biological community may be directly or potentially affected by the changes in water and sedimentary
environments (Shi. 2014). Benthic communities are directly affected by a variety of physical and
chemical environmental factors, including temperature, salinity, hydrodynamic status, sediment type and
particle size, and nutrient content (Zhang et al. 2012; Xie et al. 2016; Shadrin et al. 2019; Huang et al.
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2022). Therefore, there is a need to explore the habitat requirements of macrobenthos communities and
their responses to changes in environmental factors.

In general, the habitat requirements of the living environment are referred to “habitat suitability”. The
evaluation of benthic biodiversity and the health of the ecological environment using the biological index
method is the basis of habitat suitability and habitat health evaluation (Li. 2021). Various biological
indices have been widely used in the evaluation of the marine environment, such as the Shannon-Wiener
diversity index, AZTI's Marine Biotic Index (AMBI), and Multivariate-AMBI (M-AMBI) (Qiu et al. 2018; Ni et
al. 2019). Models were established by the analysis of environment factors to evaluate the suitability of
habitats. These habitat models can effectively analyze the conditions of living creatures and explore the
drivers of environmental changes. Some advantages of these models include (Lu et al. 2021): (1) the
prediction of the emergence of species based on abiotic and biological variables; (2) their ability to
improve the understanding of relationships between species and habitat; (3) their ability to quantify
habitat requirements.

A habitat suitability model is an effective tool for examining the combined in�uence of ecological factors
on taxa (Yi et al. 2018a). A variety of habitat suitability evaluation methods have been applied in recent
years. These include multivariate statistical methods such as the generalized linear model (GLM) and
generalized additive model (GAM), fuzzy logic models, arti�cial neural networks (ANNs), and
classi�cation trees (Ahmadi-Nedushan et al. 2006; Yang et al. 2020). Most of these methods have been
applied to habitat suitability and quality assessment. A comparison of the performances of the different
models showed that GAM is ideal for analysis of habitat suitability due to its �exibility, simulation of
complex nonlinear relationships, and accurate calculations (Yi et al. 2016). GAM is an expansion and a
nonparametric modi�cation of GLM, and is not only able to screen various environmental factors and �t
the best model, but can also intuitively evaluate the relationships between the number of macrobenthos
and various environmental factors in the form of a graph. GAM is able to detect complex relationships in
data, and has been applied in numerous ecological applications to predict species distribution as a
function of their environment (Glińska-Lewczuk et al. 2016; Wood and Augustin. 2002). GAM has also
been widely used in the study of the relationships between �shery resources and environmental factors
(Yan et al. 2021; Liu et al. 2021; Wu and Chen. 2020). However, there have been relatively few studies on
the relationships between the benthic population and environmental variables in the bivalve farming area.

Recent applications of GAM models have mainly focused on natural river ecosystems, and there has
been insu�cient focus on the impact of habitat factors on macrobenthic communities in the bivalve
farming area of tidal �ats. Related previous studies have discussed the mode of habitat utilization and
development by microbenthic communities in tidal �ats, with the suitability of habitats evaluated based
on theory (Wang and Zhu. 2009; Yang et al. 2010). The relationships between macrobenthic communities
and ecological factors are usually nonlinear and highly complex, and it is often di�cult to express these
relationships using traditional mathematical equations (Yi et al. 2014; Gezie et al. 2017). While past
studies have examined disturbances to macrobenthos and changes to community structure due to the
impacts of �shery activities (Yuan et al. 2006; Liao et al. 2011), there have been few studies on habitat
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adaptability of macrobenthos in the bivalve farming area of Laizhou Bay. Therefore, the present study
adopted the macrobenthos community of Xiaoqing estuary as a case study, key habitat factors affecting
the community structures were identi�ed by applying canonical correlation analysis (CCA) and correlation
analysis, and a GAM was developed to analyze the relationships between the macrobenthos community
and ecological factors. The community characteristics of macrobenthos were described using the
Margalef diversity index (dM), which is typically used to estimate the abundance of a taxa within a region.

The aim of the present study was to evaluate the effects of farming activities on the macrobenthic
community in the bivalve farming area near Xiaoqing estuary. The speci�c objectives of the present study
were to: (1) characterize the abundance and diversity of the cohabiting macrobenthic community in the
bivalve farming area near Xiaoqing estuary and to explore the effects of farming activities on the
macrobenthic community; (2) determine the in�uence of environmental parameters on the macrobenthic
community, and; (3) establish a GAM model of macrobenthos based on the dM.

2. Study Area And Methods

2.1. Study area
Laizhou Bay is in southern Bohai Sea, China, and is the largest bay in Shandong Province, accounting for
~ 10% of the area of the province. They bay acts as an important �sheries spawning and feeding ground
in the Bohai Sea. The Xiaoqing River is the second largest river �owing into Laizhou Bay after the Yellow
River. This river is a large-scale arti�cial river with navigation, irrigation, and sewage e�uent disposal
functions (Wang et al. 2018). The Xiaoqing River imports large quantities of organic matter and nutrient
into Laizhou Bay, resulting in serious ecological damage to the Bay (Cui et al. 2013). The Xiaoqing
Estuary is one of the main mud�at clam production areas of Laizhou Bay. The clam species that are
farmed in this area include Ruditapes philippinarum, Mactra veneriformis, Meretrix meretrix, and Cyclina
sinensis, with a collective annual output of ~ 20,000 tons.

The present study conducted four ecological surveys (in March, May, August, and October, 2021) to
describe the distribution of the macrobenthos community and analyze the responses between
macrobenthos and habitat factors in southwest Laizhou Bay. The present study established 12 sampling
sites (S1–S12) in the bivalve aquaculture area between longitude 37.20° and 37.35° and latitude 119.05°
and 119.15° to represent the different habitats (Fig. 1).

2.2. Sampling Method

2.2.1. Macrobenthos sampling
Three replicate macrobenthos samples were taken at each sampling station using a Van Veen grab of
0.025 m2. Each sample was �ltered through a 0.5-mm iron screen. The �ltered-out specimens were then
transferred to sample bottles and �xed with 5% formalin. The samples were identi�ed, classi�ed, counted,
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and wet-weighted (accurate to 0.0001 g) in the laboratory, and �nally converted into abundance (ind./m2)
and biomass (g/m2) according to the sampling area. All samples were collected, treated, and stored
according to the “Speci�cations for oceanographic survey-Part 6: Marine biological survey”
(GB/T12763.6-2007).

2.2.2. Determination of ecological factors
Apart from macrobenthos-related measures, the present study also measured seventeen parameters. The
water quality parameters and physical features measured included water depth (H), water temperature
(T), pH, dissolved oxygen (DO), salinity (Sal), chlorophyll-a (Chl-a), particulate organic matter (POM),
phosphate (PO4-P), ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), and nitrite nitrogen (NO2-N).
The variables associated with the substrate measured in the present study included: the quantity of
sediment organic matter (SOM), median particle diameter (D50), phosphate in interstitial water (PO4-Psoil),
ammonium nitrogen in interstitial water (NH4-Nsoil), nitrate nitrogen in interstitial water (NO3-Nsoil), and
nitrite nitrogen in interstitial water (NO2-Nsoil). Some parameters (H, T, pH, DO, and Sal) were measured in
the �eld using a multi-parameter water quality analyzer (SMARTROLL MP). Median particle diameter
(D50) was examined by a laser particle sizer (Mastersizer 3000). Nutrient concentrations were determinate
by an automatic nutrient �uid analyzer (Auto Analyzer 3, Bran Luebbe, Germany) based on the
“Speci�cations for oceanographic survey-Part 4: Seawater analysis” (GB/1737-8.4-2007). Water and
sediment samples were collected and returned to the laboratory for the measurement of all other factors
using methods corresponding to national standards.

2.3. Data Analysis Method

2.3.1. Distribution of macrobenthos
The present study used the Margalef diversity index (dM) (Margalef, 1958) to describe the diversity of
benthic macroinvertebrates in the study area. Species-level taxa were used for calculating the index. dM

was calculated as:

dM =(S-1)/ln N (1)

In Eq. (1), S is taxa richness, i.e., number of taxa within a sampling area and N is the total number of
individuals.

2.3.2. Statistical analysis
Kolmogorov-Smirnov (K-S) normal inspection was conducted to identify habitat factors, whereas
Pearson’s correlation analysis was conducted according with normal distribution index. Alternatively,
Spearman correlation analysis was used inconsistently in cases in which the data followed a normal
distribution (Yigezu et al. 2018). Factors with a signi�cant in�uence on macrobenthos were then
identi�ed by Constrained Ordination (Takamura et al. 2009). All biological data and environmental data,
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besides for pH, were log transformed before analysis (Muylaert et al. 2000). Pearson’s and Spearman
correlation analysis were conducted in the SPSS 22 statistical software package.

Detrended correspondence analysis (DCA) was conducted on the relative abundance matrix of
macrobenthos. A gradient length of the �rst axis of DCA > 3.0 standard deviation (SD) indicates a
unimodal distribution of macrobenthos under which CCA is appropriate rather than linear distribution,
under which redundancy analysis (RDA) is suitable (Glińska-Lewczuk et al. 2016). The maximal gradient
length of DCA for macroinvertebrate communities is four. Macrobenthos species present in three or more
samples with a relative abundance > 1% were selected for CCA to reduce errors in the analysis (Xiong et
al. 2013). CCA was conducted in the software CANOCO version 5. Monte Carlo permutations were used
assess the effect of explanatory variables.

2.3.3. Generalized Additive Model (GAM)
A GAM was developed to quantify relationships between the Margalef diversity index (dM) and key
ecological factors. The general form of the GAM is:

In Eq. (2), f(.) is the connection function, µ(N) is the expected value of the response variable Y, β0 is the
intercept, and Yi(.) is the smoothing function for the ith explanatory variable xi.

Stepwise regression was used to assess the accuracy of the model according to the Akaike Information
Criterion (AIC). The AIC value of the single-factor prediction function was detected, following which other
environmental factors were progressively added to the single-factor prediction function until no further
decrees in the AIC could be obtained.

The present study regarded the model with the smallest AIC value to be the optimal model. The
signi�cance of the prediction model was evaluated based on the results of F-test. The generalized
additive model was implemented by the "mgcv" package in the R software (Wood, 2008), and basic data
processing was completed in Excel 2019.

3. Results

3.1. Ecological factors and the composition of the
macrobenthos community

3.1.1. Ecological factors
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Table 1 lists the values for each of the measured ecological factors. 11 parameters such as water
temperature and water depth in water bodies and 6 sediment parameters such as sediment particle size
and nutrients in pore water were monitored.

Table 1 Values for each of the measured ecological factors

  Factors Max Min Mean

Water Water depth (m) 4.40 1.80 3.20

  Temperature (℃) 29.10 12.90 20.50

  pH 8.00 7.60 7.90

  DO(mg/L) 8.03 7.64 7.94

  Salinity (psu) 25.1 11.8 21.30

  Chlorophyll-a (μg/L) 9.95 2.15 5.04

  POM (mg/L) 20.00 3.80 8.69

  PO4-P (μmol/L) 10.16 0.09 1.59

  NH4-N (μmol/L) 109.89 2.96 35.20

  NO3-N (μmol/L) 139.00 2.11 30.00

  NO2-N (μmol/L) 12.61 0.30 3.84

Substrate SOM (%) 0.20 0.01 0.03

  D50 (μm) 113.00 7.50 74.9

  PO4-Psoil (μmol/L) 10.84 0.45 2.80

  NH4-Nsoil (μmol/L) 85.28 0.44 26.55

  NO3-Nsoil (μmol/L) 49.86 2.43 14.78

  NO2-Nsoil (μmol/L) 10.26 0.23 2.49

Abbreviations: POM, particulate organic matter; SOM, sediment organic matter; DO,

dissolved oxygen; D50, median particle diameter of sediment.

3.1.2. Composition of the benthic macrobenthos fauna
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The macrobenthos taxa were classi�ed to species level for further analysis. The four surveys obtained 84
macrobenthos species, including 61 families falling into nine phyla, nine classes, and 31 orders. Among
these, there were 30 species of Polychaeta, including 12 orders, 21 families, and 25 genera, accounting
for 35.7% of the total taxonomic unit; followed by 20 species of crustaceans, including 6 orders, 12
families and 15 genera, accounting for 23.8%; 17 species of Gastropods, including 4 orders, 14 families,
and 12 genera, accounting for 20.2%, 12 species of Bivalvia, including 5 orders, 9 families, and 10 genera,
accounting for 14.3%, and 5 other species. There were 4 orders, 5 families, and 5 genera, accounting for
6% of the total taxonomic unit (Fig. 2).

Fig. 2 Community structure of macrobenthos

Mactra chinensis, Mactra veneriformis, Ruditapes philippinarum, Musculus senhousei, and Nephtys
polybranchia were the dominant species in the survey (Table 2).

Table 2 Dominant species of macrobenthos in different months

Group Species Dominance

March May August October

Mollusca Mactra chinensis 0.551 0.156        

  Mactra veneriformis         0.024 0.254

  Ruditapes philippinarum             0.024

  Musculus senhousei         0.035    

  Decorifera matusimana             0.033

  Cultellus attenuates     0.025        

Annelida Nephtys polybranchia     0.024     0.024

  Notomastus latericeus Sars 0.296            

  Mediomastus californiensis             0.021

Arthropoda Heterocuma sarst     0.078        

The results of cluster analysis and multidimensional scaling (MDS) showed a higher community stability
in March and August than in May and October (Figs. 3–6) (No sediment was collected for S5 and S12 in
March and S8 and S9 in October due to adverse weather conditions).

Fig. 3. Results of cluster analysis and multidimensional scaling (MDS) for Macrobenthos in March

Fig. 4. Results of cluster analysis and multidimensional scaling (MDS) for Macrobenthos in May

Fig. 5. Results of cluster analysis and multidimensional scaling (MDS) for Macrobenthos in August
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Fig. 6. Results of cluster analysis and multidimensional scaling (MDS) for Macrobenthos in October

3.2. Effects of ecological factors on benthic macrobenthos
DCA analysis of the macrobenthos relative abundance matrix indicated a maximum gradient length of 4,
following which CCA was applied to analyze the correlations between key habitat factors and
macrobenthos (Table 3, Fig. 7). A Monte Carlo test (999 transpositions) showed signi�cant differences
between all axes and the �rst two axes (P < 0.05). The CCA ordination table indicated relatively large
eigenvalues of the �rst two ordination axes of 0.7849 and 0.4837, respectively, which explained 38.88%
and 62.84% of variance in dominant species data and in species-environment relationships. Axes 3 and 4
showed relatively low eigenvalues and interpretation rates.

Table 3 Results of canonical correlation analysis (CCA) of macrobenthos community structure and
environmental factors

Axis1 Eigenvalues Pseudo-Canonical
correlation

Explained Variation
(cumulative)

Explained �tted Variation
(cumulative)

1 0.7849 0.9564 22.18 38.88

2 0.4837 0.8874 35.85 62.84

3 0.2887 0.8700 44.00 77.14

4 0.1316 0.6765 47.72 83.66

The ordination axes and environmental ordination axes of the two species were approximately vertical,
and the correlation coe�cients were 0.01 and 0.00, respectively. The results demonstrated that the
relationship between benthos and environmental factors was re�ected by a linear combination between
ordination axes and environmental factors, and the ordination results were reliable. The CCA ordination
diagram showed high correlations between Axis 1 and environmental factors NH4-N, PO4-P, NH4-Nsoil, and
NO2-Nsoil and between Axis 2 and temperature (T), dissolved oxygen (DO), salinity (Sal), and NO2-N.
Therefore, these factors had a signi�cant impact on the abundance of macrobenthos.

Fig. 7. Canonical correlation analysis (CCA) ordination chart of macrobenthos community structure and
environmental factors

3.3. Responses of community diversity to ecological
factors
The present study examined the relationship between each individual ecological factor and the Margalef
diversity index (dM). The model was constructed using the data sampled in March, May, and August,
following which the relationships between the 17 environmental factors and dM were assessed. Twelve
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environmental factors that had signi�cant effects on taxa diversity (dM) were identi�ed (H, T, pH, Sal, DO,
POM, SOM, NH4-N, PO4-Psoil, NH4-Nsoil, NO3-Nsoil and D50). Since the correlation coe�cients between DO
and NH4-N and between T and NH4-Nsoil exceeded 0.5, these variables were not simultaneously added to
the model to avoid collinearity, and higher correlations between dM and NH4-N, NH4-Nsoil, and Sal were
retained. The remaining nine environmental indicators were used to establish the GAM, and the model
structure was optimized by forward stepwise regression (Table 5). The addition of the variables SOM,
PO4-Psoil, NO3-Nsoil, NH4-Nsoil, Sal, and NH4-N signi�cantly increased model performance (p < 0.05).
Variables H, T, and pH were removed since their inclusion did not improve model performance. Model 9
represents the �nal form of the model: dM~s(SOM) + s(PO4-Psoil) + s(NO3-Nsoil) + s(NH4-Nsoil) + s(Sal) +

s(NH4-N). The model explained 92.6% of variance (adjusted coe�cient of determination R2 = 0.845). The
Pearson's correlation coe�cient between the calculated dM and the measured dM was highly correlated at
0.9635 (p < 0.05, Fig. 8).

The response curve of dM to environmental factors shows a unimodal relationship between species
diversity and SOM and Sal. In addition, there was a linear relationship between species diversity and NH4-
N and PO4-Psoil, and dM was positively correlated with NH3-N and negatively correlated with PO4-Psoil (Fig.
9).

Table 5 Variance analysis table of the forward stepwise regression process

Model Residual deviation Cumulative deviation AIC p

Model 1 8.4899 19.5% 28.9733 0.0035

Model 2 7.7887 27.5% 27.3027 0.0014

Model 3 6.8724 43.4% 21.9143 0.0054

Model 4 4.5450 79% 3.5953 0.9830

Model 5 4.5103 79.6% 3.1832 0.7660

Model 6 4.4361 80.2% 2.6007 0.7332

Model 7 4.3078 80.7% 3.4475 0.0002

Model 8 2.9922 90.8% −13.9273 0.0092

Model 9 2.6667 92.6% −20.5398 0.0081

Notes: Only SOM was added to Model 1. The factors PO4-Psoil, NO3-Nsoil, pH, POM and water depth were
successively added into Models 2, 3, 4, 5, and 6. Models 4, 5, and 6 were not improved after the addition
of pH, POM, and H (p>0.05). pH, POM and H were removed from Model 7. Models 7, 8, and 9 were
improved after the addition of NH4-Nsoil, Sal, and NH4-N (p < 0.05).

Abbreviations: AIC, Akaike Information Criterion.
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Fig. 8. Calculated Margalef diversity index (dM) versus dM based on Model 9

Fig. 9. Response curves of the Margalef diversity index (dM) to ecological factors in the generalized
additive model (GAM) analysis

Notes: The vertical axes indicate the relative in�uence of each explanatory variable on the prediction.
Shaded areas indicate 95% con�dence limits.

3.4 Validation of the model
Sampling data collected in October 2021 were used to validate Model 9. As shown in Table 6, measured
dM values were strongly correlated with the dM predicted by Model 9 (Pearson R2 = 0.845, p < 0.05), with a
small mean square error (MSE). This result con�rmed the good performance of the model and its ability
to effectively simulate the distribution of benthic fauna diversity in the bivalve farming area in the
Xiaoqing estuary, Laizhou Bay (Fig. 10).

Table 6 Statistical summary of the performance of the optimal model (Model 9) in October

Site Measured dM Predicted dM Site Measured dM Predicted dM

S1 0.3467 0.5320 S6 0.5758 0.1054

S2 0.8873 0.3592 S7 0.8546 0.9453

S3 0.3775 0.4296 S10 1.2792 1.2764

S4 1.2792 0.8639 S11 0.4293 0.4261

S5 1.0193 1.8208 S12 0.3941 0.4438

MSE 0.1363 R2 0.845 p 0.0383

Notes: data shown with mean squared error (MSE), correlation coe�cient (R2), and signi�cance level (p
value) between predicted and measured data; No sediment samples were taken in sites 8 and 9 due to
adverse weather.

Fig. 10. The spatial distributions of the measured and predicted Margalef diversity index (dM)

4. Discussion
The present study investigated soft-bottom macrobenthic communities in southwest Laizhou Bay. The
survey identi�ed 84 species of macrobenthos. The order of the major taxonomic groups in terms of
species numbers was: Polychaeta > Mollusca > crustaceans > echinoderms. This result is consistent with
those of many previous studies and con�rms the signi�cant changes to the community structure of
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macrobenthos in Laizhou Bay. These changes included the gradual replacement of individual species
with smaller body sizes by those with larger body sizes as the dominant species of the macrobenthos
community (Luo et al. 2013; Zhou et al. 2010; Liu et al. 2014). This trend indicates that the decline in
macrobenthos biodiversity is related to the effects of anthropogenic activities, such as pollution and
eutrophication.

Macrobenthos inhabit the marine substrate environment and are characterized by strong regionality,
weak activity, and limited ability to avoid unfavorable environments (Huang et al. 2021). The water and
substrate environments have the greatest impacts on macrobenthos, thereby regulating the species
occupying the macrobenthos community (Veiga et al. 2017). The results of clustering and non-metric
multidimensional scale analysis indicated a high spatial variability and poor stability of the macrobenthic
community in the survey area. These results are consistent with those of previous studies (Li et al. 2007;
Ding et al. 2021). On the one hand, there is aquaculture of �lter-feeding bivalve in the study area. These
bivalve excrete a signi�cant proportion of assimilated organic detritus to the sediment in the form of
feces and pseudo-feces, resulting in hypoxia and sul�de accumulation due to a lack of diffusion in the
substrate environment. Thus, the composition of the benthic community and the nutrient structure of
aquaculture areas are deeply affected, with decreases in the diversity and richness of the community
(Dubois et al. 2007; Ma et al. 2014). On the other hand, the surface sedimentary environment is disturbed
by the harvesting of bivalve (usually by rake harvesting), resulting in damage to the macrobenthos (Han
et al. 2011; Ding. 2020). There is a need to develop a reasonable layout for bivalve aquaculture since
intensive aquacultural activities may have indirect impacts on macrobenthos through the modi�cation of
physical sediment characteristics (Liao et al. 2019). Meanwhile, other studies have shown that the ocean
current is a key factor regulating the bio-deposition of organic matter and minimizing the impact of
bivalve on benthic communities (Han et al. 2013). Bivalve farming may be considered in areas with
higher or tidal currents. Moreover, the structure of the macrobenthic community may be in�uenced by
unstable environmental factors, particularly the in�uence of river runoff and rainfall changes on the
marine environment. In addition, studies in other sea areas have shown that the complex marine
environment results in the formation of different habitat niches, which are inhabited by different benthic
community structures, resulting in low similarities between the benthic communities of each station (Cai
et al. 2013; Jia et al. 2022).

Different environmental factors play important roles in the distribution of benthic communities, thereby
contributing to the high spatial and temporal heterogeneity in benthic community structure (Chapman
and Wang. 2001; Mosbahi et al. 2016). Ocean currents and other factors have contributed to
hydrodynamic factors in the ocean being more complex than those in fresh water. In particular, estuaries
are affected by the interactions between land and sea, resulting in a more complex natural environment.
Therefore, environmental factors have a more signi�cant impact on the spatiotemporal changes in
macrobenthic communities (Wang et al. 2021). The results of CCA showed that the macrobenthic
communities were affected by environmental variables, mainly T, DO, Sal, NH4-N, NH4-Nsoil, PO4-P, NO2-N,
and NO2-Nsoil, consistent with the results of previous studies (Verneaux and Schmitt. 2004; Sturdivant et
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al. 2013; Zhou et al. 2018; Wang et al. 2020; Dong et al. 2021). Many studies have shown that changes in
runoff into the sea can lead to regional differences in salinity and nutrient input. Salinity then directly
affects the distribution and composition of benthic communities (Currie and Small. 2005; Meng et al.
2021; Huang et al. 2021). The present study found a decrease in the abundance of species in August
compared with that in other months. This result can be related to continuous heavy rainfall and increased
river runoff during this month. An increase in the variation in salinity may increase the physiological
pressure on macrobenthos, thereby resulting in increased rates of death or migration amongst the adult
and juvenile populations and a decline in the number of species (Alongi. 1990). Therefore, there is a need
to strengthen research on the spatiotemporal changes in salinity and to clearly describe the effects of
salinity on the community structure of macrobenthos.

Since the comprehensive multi-parameter evaluation index relies heavily on the weights of parameters,
the biological index is more suitable for the assessment of ecological health under the in�uences of
anthropogenic activities (Gezie et al. 2017). Identifying the spatiotemporal distribution of the benthic
community is essential for the conservation and sustainable development of local benthic resources. The
relationships between various environmental factors, such as temperature and salinity, on benthic
species richness are often not linear. However, GAM typically shows higher performance in analyzing the
nonlinear relationship between dependent and multiple independent variables. Thus, the application of
GAM has great signi�cance for the study of benthic communities. The present study screened and �tted
the response curves of the macrobenthic richness index to key environmental factors based on GAM. The
results of the GAM indicated a signi�cant response between dM and environmental variables (Sal, SOM,
NH4-N, PO4-Psoil, NH4-Nsoil, and NO3-Nsoil) (p < 0.05). The model simulations also showed a good �t to
measurements, with a total residual deviation after model optimization of 2.67 and an AIC of −20.54.
This result is consistent with those of previous studies (Zhang et al. 2021). The GAM indicated that dM

was positively correlated with NH4-N and negatively correlated with PO4-Psoil, consistent with the results
of previous studies. NH4-N is an essential nutrient for the growth of aquatic plants and algae in water,
and the application of nitrogen to aquatic plants in previous studies improved the productivity of
macrobenthos (Miserendino et al. 2008; Yang et al. 2020). Eutrophication results from increases in PO4-
Psoil, which in turn increase the biomass and diversity of plankton, but results in changes to the
community structure and a reduction in the species richness of benthic communities (Zhang et al. 2021).
Organic matter and nutrients are often the factors limiting the survival of benthic communities (Levin et
al. 1998; Lv et al. 2016). There were high correlations between DO and NH4-N, T, and NH4-Nsoil, with
increases in T and DO. Although there were clear changes in NH4-N and NH4-Nsoil, the factors T and DO
were removed to increase the degree of �t of the model. Other studies have suggested that DO is an
important factor regulating the survival of benthos, with impacts on the abundance and distribution of
macrobenthos (Luo et al. 2016). Therefore, the present study considered the interactions between these
environmental factors, and the above environmental factors were added into the GAM to allow
comprehensive future studies.
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Salinity is an important environmental factors affecting the survival, growth, and distribution of benthic
communities (Shou et al. 2013). The salinity of the benthic environment in the study area ranged between
21–25 psu. The model results showed a minimum dM under a salinity of 22.5 psu. The rate of decline in
dM was highest under a salinity of 20–22 psu, whereas there was a gradual upward trend at a salinity of
24–25 psu. Exchanges in fresh and salt water inputs have resulted in changes to the structure of the
benthic community in the estuary (Chainho et al. 2006).

The distribution of target species was predicted by exploring the relationship between species distribution
and related variables using the species distribution model. The GAM has been widely used to explore
relationships between species distribution and environmental factors in �shes (Hua et al. 2019) and
submerged plants (Yang et al. 2020). However, there have been few studies on the relationships between
macrobenthos and environmental variables in estuaries. The present study applied the GAM in
combination with the common zero-value richness index to analyze the distribution of benthic resources
in southwest Laizhou Bay. Although the results of the current study are consistent with �eld monitoring
observations, certain limitations of the model remain since the model was established by considering the
species richness index (dM) only. The present study also considered a limited number of environmental
factors. In addition, the present study did not consider the in�uences of spatial and temporal auto
correlation on the modeling. Future studies can improve the accuracy of the model by considering the
effect of time through the addition of an autoregressive process.

It was also worth noting that the establishment of the GAM model was based on environmental data
surveyed in March, May, and August 2021. Therefore, the present study provides a preliminary exploration
of the relationships between benthic biomass and environmental factors. Future studies should apply
different methods (such as the habitat index, linear partial differential equation with �rst-order variable
coe�cient, and quantile regression) to integrate long-term quantitative and environmental data into
future habitat suitability models. These models can then be used to more comprehensively analyze the
distribution and dynamics of benthic organisms. Moreover, there have been changes to some
environmental factors in the study area, such as salinity and inorganic salts, due to heavy rain, which
may partially explain the deviation in the model results.

5. Conclusions
Macrobenthos in the bivalve farming area near Xiaoqing estuary, Laizhou Bay was dominated by
Polychaeta, with individual species with smaller body forms gradually replaced by individual species with
larger body forms as the dominant species of the macrobenthos community. The results of clustering
and non-metric multidimensional scale analysis indicated that the macrobenthic community has been
affected by bivalve farming. The GAM model showed that the Margalef index was correlated with
environmental factors (Sal, NH4-N, SOM, PO4-Psoil, NO3-Nsoil, NH4-Nsoil,). The optimal GAM model
explained 92.6% of observed variation in microbenthic biomass, with a small residual (2.67). The
measured dM was strongly correlated with predicted dM (Pearson R2 = 0.845, p < 0.05). In general, the
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model showed good performance and could effectively simulate the distribution of benthic fauna
diversity in the bivalve farming area in the Xiaoqing estuary of Laizhou Bay. The complementary use of
different indices is recommended to assess the effects of farming activities on macrobenthos in China.
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Figure 1

Locations of sampling sites of the present study in Xiaoqing Estuary, Laizhou Bay

Figure 2
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Community structure of macrobenthos

Figure 3

Results of cluster analysis and multidimensional scaling (MDS) for Macrobenthos in March 

Figure 4

Results of cluster analysis and multidimensional scaling (MDS) for Macrobenthos in May

Figure 5
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Results of cluster analysis and multidimensional scaling (MDS) for Macrobenthos in August

Figure 6

Results of cluster analysis and multidimensional scaling (MDS) for Macrobenthos in October
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Figure 7

Canonical correlation analysis (CCA) ordination chart of macrobenthos community structure and
environmental factors

(Notes: S1: Notomastus latericeus Sars; S2: Mactra chinensis; S3: Nephtys polybranchia; S4: Heterocuma
sarst; S5: Cultellus attenuatus; S6: Mactra venerformis Reeve; S7: Musculus senhousei; S8: Mediomastus
californiensis; S9: Decorifera matusimana; S10: Ruditapes philippinarum)
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Figure 8

Calculated Margalef diversity index (dM) versus dM based on Model 9
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Figure 9

Response curves of the Margalef diversity index (dM) to ecological factors in the generalized additive
model (GAM) analysis

Notes: The vertical axes indicate the relative in�uence of each explanatory variable on the prediction.
Shaded areas indicate 95% con�dence limits.
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Figure 10

The spatial distributions of the measured and predicted Margalef diversity index (dM)


