Aben, F. M., N. Brantut, and T. M. Mitchell (2020), Off-Fault Damage Characterization During and After Experimental Quasi-Static and Dynamic Rupture in Crustal Rock From Laboratory P Wave Tomography and Microstructures, J. Geophys. Res., 125(8), n/a, https://doi:10.1029/2020JB019860.
Abercrombie, R. and J.R. Rice (2005). Can observations of earthquake scaling constrain slip weakening? Geophys. J. Int. (2005) 162, 406–424.https://doi: 10.1111/j.1365-246X.2005.02579.x
Aki, K., and Richards, P. G. (2002), Quantitative Seismology (second edition), University Science Books.
Aki, K. (1979). Characterization of Barriers on an Earthquake Fault. J. Geophys. Res., 84, 6140-6148.
Allam, A. A. and Y. Ben-Zion (2012). Seismic velocity structures in the Southern California plate-boundary environment from double-difference tomography, Geophys. J. Int., 190, 1181–1196, https://doi: 10.1111/j.1365-246X.2012.05544.x.
Ampuero, J.-P., Rippberger, J., & Mai, P. M. (2006). Properties of dynamic earthquake ruptures with heterogeneous stress drop. In R. Abercrombie, A. McGarr, G. Di Toro, G. & H. Kanamori (Eds.), Earthquakes: Radiated energy and the physics of faulting. https://doi.org/10.1029/170GM25.
Andrews, D. J. (2005). Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, https://doi:10.1029/2004JB003191.
Andrews, D.J. and Y. Ben-Zion (1997). Wrinkle-like slip pulse on a fault between different materials, J. Geophys. Res., 102, 553-571.
Archuleta RJ (1984) A faulting model for the 1979 Imperial- Valley Earthquake. J. Geophys. Res. 89(NB6): 4559–4585.
Asano, K., & Iwata, T. (2016). Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth, Planets and Space, 68(1), 147. https://doi.org/10.1186/s40623-016-0519-9.
Barras. F., M. Aldam, T. Roch, E.A. Brener, E. Bouchbinder and J.F. Molinari (2019). Emergence of Crack-like Behavior of Frictional Rupture: The Origin of Stress Drops, Phys. Rev. X 9, 041043, https://doi: 10.1103/PhysRevX.9.041043.
Ben-David, O., G. Cohen and J.Fineberg (2010) The Dynamics of the Onset of Frictional Slip, Science, 211, https://doi:10.1126/science.1194777.
Ben-Zion, Y., (2001). Dynamic Rupture in Recent Models of Earthquake Faults, J. Mech. Phys. Solids, 49, 2209-2244.
Ben-Zion, Y., (2003). Appendix 2, Key Formulas in Earthquake Seismology, in International Handbook of Earthquake and Engineering Seismology, eds. W. HK Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, Part B, 1857-1875, Academic Press.
Ben-Zion, Y., (2008). Collective Behavior of Earthquakes and Faults: Continuum-Discrete Transitions, Evolutionary Changes and Corresponding Dynamic Regimes, Rev. Geophysics, 46, RG4006, https://doi:10.1029/2008RG000260.
Ben-Zion, Y., (2019). A critical data gap in earthquake physics, Seism. Res. Lett., 90, 1721-1722, https://doi: 10.1785/0220190167.
Ben-Zion, Y. and J. R. Rice (1995). Slip patterns and earthquake populations along different classes of faults in elastic solids, J. Geophys. Res., 100, 12959-12983.
Ben-Zion, Y. and C. G. Sammis (2003). Characterization of Fault Zones, Pure Appl. Geophys., 160, 677-715.
Ben-Zion, Y. and Z. Shi (2005). Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth Planet. Sci. Lett., 236, 486-496, https://doi:10.1016/j.epsl.2005.03.025.
Ben-Zion, Y. and J.P. Ampuero (2009) Seismic radiation from regions sustaining material damage
Geophys. J. Int. (2009) 178, 1351–1356, https://doi:10.1111/j.1365-246X.2009.04285.x
Ben-Zion, Y. and I. Zaliapin, 2020. Localization and coalescence of seismicity before large earthquakes, Geophys. J. Int., 223, 561–583, https://doi:10.1093/gji/ggaa315.
Bolton, D. C., Shreedharan, S., McLaskey, G. C., Rivi.re, J., Shokouhi, P., Trugman, D. T., & Marone, C. (2022). The high-frequency signature of slow and fast laboratory earthquakes. J. Geophys. Res., 127, e2022JB024170. https://doi. org/10.1029/2022JB024170
Brace, W. F., & Byerlee, J. D. (1966). Stick–slip as a mechanism for earthquakes. Science, 153, 990–992.
Brener, E.A. and E. Bouchbinder (2021). Unconventional singularities, scale separation and energy balance in frictional rupture, arXiv:2008.04697v2 [cond-mat.soft]
Campillo, M., P. Favreau, I.R. Ionescu and C. Voisin (2001), On the effective friction law of a heterogeneous fault, J. Geophys. Res., 106, 16307-16322.
Candela, T., F. Renard, Y. Klinger, K. Mair, J. Schmittbuhl and E. E. Brodsky (2012), Roughness of fault surfaces over nine decades of length scales, J. Geophys. Res.,117, B08409, https://doi:10.1029/2011JB009041.
Chen, X., S.S. Chitta, X. Zhu and Z. Reches (2021). Dynamic fault weakening during earthquakes: Rupture or friction? Earth Planet. Sci. Lett., 575 (2021) 117165, https://doi.org/10.1016/j.epsl.2021.117165
Chester, J.S., F.M. Chester and A. K. Kronenberg (2005) Fracture surface energy of the Punchbowl fault, San Andreas system, Nature, 437, 133-136, https://doi:10.1038/nature03942
Clark, K. J., Nissen, E. K., Howarth, J. D., Hamling, I. J., Mountjoy, J. J., Ries, W. F., et al. (2017). Highly variable coastal deformation in the 2016 Mw7. 8 Kaikōura earthquake reflects rupture complexity along a transpressional plate boundary. Earth Planet. Sci. Lett., 474, 334-344.
Cocco, M., Tinti, E., & Cirella, A. (2016). On the scale dependence of earthquake stress drop. J. Seismol., 20, 1151–1170. https://doi.org/10.1007/s10950-016-9594-4
Dahmen, K., D. Ertas and Y. Ben-Zion (1998). Gutenberg-Richter and characteristic earthquake behavior in simple mean-field models of heterogeneous faults. Phys. Rev. E, 58, 1494-1501.
de Geus, T.W. J., M. Popovi´ca, W. Ji, A. Rosso and M. Wyarta, (2019), How collective asperity detachments nucleate slip at frictional interfaces, PNAS, 116, 48, 23977–23983, https://doi/10.1073/pnas.1906551116.
Dieterich, J.H. (1978). Time-dependent friction in rocks, J. Geophys. Res., 77, 3690-3697.
Dieterich, J.H. (1978). Preseismic Fault Slip and Earthquake Prediction, J. Geophys. Res., 83, 3940-3948.
Dieterich, J.H. (1979). Modeling of Rock Friction, 2.Simulation of Preseismic Slip, Journ. Geophys. Res., 84, 2169-2175.
Dieterich, J. H. (1992) Earthquake nucleation on faults with rate- and state-dependent strength, Tectonophysics, 211, 115-134.
Di Toro, G., R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco and T. Shimamoto (2011). Nature, 471, 494-498, https://doi:10.1038/nature09838
Dor O., Y. Ben-Zion, T. K. Rockwell and J. Brune (2006). Pulverized Rocks in the Mojave section of the San Andreas Fault Zone, Earth Planet. Sci. Lett., 245, 642-654, https://doi:10.1016/j.epsl.2006.03.034.
Dresen, G., Kwiatek, G., Goebel, T., & Ben-Zion, Y. (2020). Seismic and Aseismic Preparatory Processes Before Large Stick–Slip Failure. Pure and Applied Geophysics, 177(12), 5741–5760. https://doi.org/10.1007/s00024-020-02605-x
Dublanchet, P., P. Bernard and P. Favreau (2013). Interactions and triggering in a 3D rate-and-state asperity model, J. Geophys. Res., 118, 2225–2245, https://doi:10.1002/jgrb.50187.
Eshelby, J. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. Lond. Ser. A, 241, 376-396. 10.1098/rspa.1957.0133
Fisher, D.S. (1998): Collective transport in random media: from superconductors to earthquakes, Phys. Rep., 301, 113-150.
Fleming, R. W., Messerich, J. A., & Cruikshank, K. M. (1998). Fractures along a portion of the Emerson fault zone related to the 1992 Landers, California, earthquake: Evidence for the rotation of the Galway-Lake-Road block. Geol. Soc. Am., Map and Chart Series, MCH082.
Fletcher et al., 2014
Freund, L.B. (1972). Crack propagation in an elastic solid subjected to general loading-I. J. Mech. Phys. Solids, 1972, 20, 129 to 140.
Freund, L.B. (1990). Dynamic Fracture Mechanics. Cambridge University Press.
Freund, L.B. and Y.J. Lee (1990). Observations on high strain rate crack growth based on a strip yield model. Int. J. Fracture, 42, 261-276.
Gabriel, A.-A., J.-P. Ampuero, L. A. Dalguer, and P. M. Mai (2013), Source properties of dynamic rupture pulses with off-fault plasticity, J. Geophys. Res., 118, 4117–4126, https://doi:10.1002/jgrb.50213.
Goebel, T.H.W., Becker, T.W., Schorlemmer, D., Stanchits, S., Sammis, C., Rybacki, E., and Dresen, G. (2012). Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. J. Geophys. Res., 117. https://doi.org/10.1029/2011JB008763.
Goebel, T. H. W., Kwiatek, G., Becker, T. W., Brodsky, E. E., & Dresen, G. (2017). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick–slip experiments. Geology, 45(9), 815–818. https://doi.org/10.1130/G39147.1
Goebel, T. H. W., T. W. Becker, C. G. Sammis, G. Dresen and D. Schorlemmer (2014). Off-fault damage and acoustic emission distributions during the evolution of structurally complex faults over series of stick-slip events, Geophys. J. Int. (2014) 197, 1705–1718, https://doi: 10.1093/gji/ggu074.
Gombert, B., Duputel, Z., Jolivet, R., Doubre, C., Rivera, L., & Simons, M. (2018). Revisiting the 1992 Landers earthquake: A Bayesian exploration of co-seismic slip and off-fault damage. Geophysical Journal International, 212(2), 839–852. https://doi.org/10.1093/gji/ggx455.
Guerin-Marthe, S., Dresen, G., Kwiatek, G., Wang, L., Bonnelye, A., and Martinez-Garzon, P. (2022). Effects of asperities and roughness on frictional slip of laboratory faults, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9997, https://doi.org/10.5194/egusphere-egu22-9997.
Gvirtzman; S. and J. Fineberg (2021). Nucleation fronts ignite the interface rupture that
initiates frictional motion, Nature Physics, 17, 1037–1042, doi.org/10.1038/s41567-021-01299-9
Hirose, H., and K. Obara (2005). Repeating short- and long-term slow slip events with deep tremor activity around the Bungo channel region, southwest Japan, Earth Planets Space, 57, 961– 972.
Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith’s
specific surface energy, J. Geophys. Res., 77, 3796– 3805.
Im, K., D. Saffer, C. Marone and J.P. Avouac (2020). Slip-rate-dependent friction as a universal mechanism for slow slip events. Nature Geoscience, 13, 705-710, https://doi.org/10.1038/s41561-020-0627-9.
Kammer D.S., M. Radiguet, J.P. Ampuero and J.F. Molinari, Linear elastic fracture mechanics predicts the propagation distance of frictional slip, Tribol. Lett., https://doi:10.1007/s11249-014-0451-8
Kammer, D.S. and G.C. McLaskey (2019). Fracture energy estimates from large-scale laboratory earthquakes, Earth Planet. Sci. Lett., 511, 36-43, https://doi.org/10.1016/j.epsl.2019.01.031.
Ke, C.Y., D.S. Kammer and G.C. McLaskey (2021). The earthquake arrest zone, Geophys. J. Int. (2021) 224, 581–589, https://doi: 10.1093/gji/ggaa386.
Kovachki, N., B. Liu, X. Sun, H. Zhou, K. Bhattacharya, M. Ortiz, A Stuart (2022). Multiscale modeling of materials: Computing, data science, uncertainty and goal-oriented optimization, Mechanics of Materials 165, 104156.
Kurzon, I., V. Lyakhovsky and Y. Ben-Zion, (2019). Dynamic rupture and seismic radiation in a damage-breakage rheology model, 176, 1003-1020, Pure and Applied Geophysics, https://doi: 10.1007/s00024-018-2060-1.
Kurzon, I., V. Lyakhovsky and Y. Ben-Zion, (2021). Earthquake source properties from analysis of dynamic ruptures and far-field seismic waves in a damage-breakage model, Geophys. J. Int., 224, 1793–1810, https://doi: 10.1093/gji/ggaa509.
Lebihain, M., Roch, T., Violay, M., & Molinari, J.-F. (2021). Earthquake nucleation along faults with heterogeneous weakening rate. Geophys. Res. Lett., 48, e2021GL094901. https://doi.org/10.1029/2021GL094901.
Linker, M. and Dieterich, J. H (1992) Effects of variable normal stress on rock friction: Observations and constitutive equation, J. Geophys. Res., 97, 4923-4940.
Lockner, D.A., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1992). Observations of quasistatic fault growth from acoustic emissions. In: Fault Mechanics and Transport Properties of Rocks, Evans, B. and T.-f. Wong, eds. Academic Press.
Lomnitz-Adler, J. (1991), Model for steady friction, J. Geophys. Res., 96, 6121-6131.
Lyakhovsky, V. and Y. Ben-Zion, (2014a). Damage-Breakage rheology model and solid-granular transition near brittle instability, J. of Mech. and Phys. of Solids, 64, 184-197, https://doi: 10.1016/j.jmps.2013.11.007.
Lyakhovsky, V. and Y. Ben-Zion, (2014b). A continuum damage-breakage faulting model accounting for solid-granular transitions, Pure Appl. Geophys., 171, 3099–3123, https://doi:10.1007/s00024-014-0845-4.
Lyakhovsky, V., Y. Ben-Zion, A. Ilchev and A. Mendecki, (2016). Dynamic rupture in a damage-breakage rheology model, Geophys. J. Int., 206, 1126-1143, https://doi:10.1093/gji/ggw183.
Lyakhovsky, V. and Y. Ben-Zion, (2020). Isotropic seismic radiation from rock damage and dilatancy, Geophys. J. Int., 222, 449–460, https://doi:10.1093/gji/ggaa176.
Mai, P. M., and Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake fields. J. Geophys. Res., 107, 2308. https://doi.org/10.1029/2001JB000588
Mai, P. M. and K. K. S Thingbaijam (2014). SRCMOD: An Online Database of Finite‐Fault Rupture Models, Seismol. Res. Lett., 85 (6): 1348–1357.
Manghetti, I., M. Campillo; S. Boulay and F. Cotton, (2007). Earthquake scaling, fault segmentation and structural maturity, Earth Planet. Sci. Lett. 253, 429–438, https://doi:10.1016/j.epsl.2006.11.004.
Matouš, K. M., G. D. Geers, V. G. Kouznetsova, A. Gillman (2017). A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comp. Phys., 330, 192–220.
Marone, C. (1998) Laboratory-derived friction laws and their application to Seismic faulting, Ann. Rev. Earth Planet. Sci. 1998.26:643-696.
McBeck, J., Y. Ben-Zion and F. Renard, (2022). Volumetric and shear strain localization throughout triaxial compression experiments on rocks, Tectonophysics, 822, https://doi: 10.1016/j.tecto.2021.229181.
McLaskey, G. C. (2019). Earthquake Initiation From Laboratory Observations and Implications for Foreshocks. J. Geophys. Res., 124, https://doi.org/10.1029/2019JB01836
Melosh, H. J. (1979), Acoustic fluidization: A new geological process?, J. Geophys. Res., 84, 7513-7520.
Milliner, C. W. D., J. F. Dolan, J. Hollingsworth, S. Leprince, F. Ayoub, and C. G. Sammis (2015), Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake, Geochem. Geophys. Geosyst., 16, 1577–1598, doi:10.1002/2014GC005693.
Nicol, A. et al. (2018). Preliminary Geometry, Displacement, and Kinematics of Fault Ruptures in the Epicentral Region of the 2016 Mw 7.8 Kaikōura, New Zealand, Earthquake Preliminary Geometry, Displacement, and Kinematics of Fault Ruptures in the Epicentral Region. Bull. Seismol. Soc. Am. 108, 1521–1539.
Ohnaka, M., & Shen, L. (1999). Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. J. Geophys. Res., 104, 817–844.
Okal, E. A., and L. M. Stewart (1982), Slow earthquakes along oceanic fracture zones: evidence for asthenospheric flow away from hotspots?, Earth Planet. Sci. Lett., 57, 75–87.
Okubo, K., H. S. Bhat, E. Rougier, S. Marty, A. Schubnel, Z. Lei, E. E. Knight, and Y. Klinger (2019), Dynamics, Radiation, and Overall Energy Budget of Earthquake Rupture With Coseismic Off-Fault Damage, J. Geophys Res., 124(11), 11771-11801, https://doi:10.1029/2019JB017304.
Olgaard, D.L. and W. Brace (1983). The Microstructure of Gouge from a Mining-induced Seismic Shear Zone, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 20, 11-19, 1983.
Ostermeijer, G.A., Mitchell, T.M., Aben, F.M., Dorsey, M.T., Browning, J., Rockwell, T.K., Fletcher, J.M., Ostermeijer, F., (2020). Damage zone heterogeneity on seismogenic faults in crystalline rock; a field study of the Borrego Fault, Baja California. J. Struct. Geol., 104016.
Paglialunga, F., F.X.Passelègue, N. Brantut, F. Barras, M. Lebihain and M.Violay (2022). On the scale dependence in the dynamics of frictional rupture: Constant fracture energy versus size-dependent breakdown work, Earth Planet. Sci. Lett. 584, 117442, https://doi.org /10 .5281/zenodo .6200886
Palmer, A.C. and Rice, J.R., (1973). The growth of slip surfaces in the progressive failure of overconsolidated clay, Proc. R. Soc. Lond., A, 332, 527–548.
Passelegue, F., Latour, S., Schubnel, A., Nielsen, S., Bhat, H., and Madariaga, R. (2017). Influence of fault strength on precursory processes during laboratory earthquakes. In M. Thomas, T. M. Mitchell, & H. S. Bhat (Eds.), Fault zone dynamic processes: Evolution of fault properties during seismic rupture (Vol. 227, pp. 229–242). New York: Wiley.
Peng, Z., Y. Ben-Zion, A. J. Michael and L. Zhu, (2003). Quantitative analysis of seismic trapped waves in the rupture zone of the 1992 Landers, California earthquake: Evidence for a shallow trapping structure, Geophys. J. Int., 155, 1021-1041.
Petley-Ragan, A., Y. Ben-Zion, H. Austrheim, B. Ildefonse, F. Renard and B. Jamtveit, 2019. Dynamic rupturing in the lower crust, Science Advances, 5 (7), eaaw0913, https://doi:10.1126/sciadv.aaw0913.
Poliakov, A.N.B., R. Dmowska and J.R. Rice (2002). Dynamic shear rupture interactions with fault bends and off-axis secondary faulting, J. Geophys. Res., 107, 2295, https://doi:10.1029/2001JB000572.
Prakash, V. and Clifton, R. J. (1993) Time-resolved dynamic friction measurements in pressure-shear, in Experimental Techniques in the Dynamics of Deformable Solids, Applied Mechanics Div., 165 (AMD-Vol 165), American Society of Mechanical Engineers, New York, pp. 33-48.
Qiu, H., Y. Ben-Zion, R. Catchings, M. R. Goldman, A. A. Allam, and J. Steidl, (2021). Seismic imaging of the Mw 7.1 Ridgecrest earthquake rupture zone from data recorded by dense linear arrays, J. Geophys. Res., 126, e2021JB022043, https://doi:10.1029/2021JB022043.
Reches, Z. and J. Fineberg (2022). Earthquakes as dynamic fracture phenomena, in review.
Reid, H.F. (1910) Mechanics of the earthquake, the California Earthquake of April 18, 1906. Report of the State Investigation Commission, Carnegie Institution of Washington, Washington DC.
Renard, F., J. McBeck, N. Kandula, B. Cordonnier, P. Meakin and Y. Ben-Zion (2019). Volumetric and shear processes in crystalline rock on the approach to faulting, Proc. Natl. Acad. Sci. U.S.A., 116, 16234–16239, https://doi: 10.1073/pnas.1902994116.
Rice, J. R. (1980). The mechanics of Earthquake Rupture, in Physics of the Earth’s Interior, eds. A. M. Dziewonski and E. Boschi, pp. 555-649, Italian Physical Society / North Holland, Amsterdam.
Rice, J.R. and A.L. Ruina (1983), Stability of steady frictional slipping. J. Appl. Mech., 50, 343-349, 1983
Rice, J. R. (1993) Spatio-temporal complexity of slip on a fault, J. Geophys. Res., 98, 9885-9907.
Rice, J. R. (2006), Heating and Weakening of Faults During Earthquake Slip, J. Geophys. Res., 111, B05311, https://doi:10.1029/2005JB004006.
Ripperger, J., Ampuero, J.-P., Mai, P. M., & Giardini, D. (2007). Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress, J. Geophys. Res. 112. https://doi.org/10.1029/2006JB004515.
Rockwell, T., M. Sisk, G. Girty, O. Dor, N. Wechsler and Y. Ben-Zion (2009). Chemical and Physical Characteristics of Pulverized Tejon Lookout Granite Adjacent to the San Andreas and Garlock Faults: Implications for Earthquake Physics, Pure appl. geophys., 166, 1725–1746, https://doi10.1007/s00024-009-0514-1
Rodriguez Padilla, A., Oskin, M., Milliner, C. W. D., and Plesch, A. (2022), Widespread rock damage from the 2019 Ridgecrest earthquakes. Nature Geoscience, 15, 222–226.
Romanet, P., Bhat, H. S., Jolivet, R., & Madariaga, R. (2018). Fast and slowslip events emerge due to fault geo-metrical complexity. Geophys. Res. Lett., 45, 4809–4819. https://doi.org/10.1029/2018GL077579.
Rosakis, A. (2002). Intersonic shear cracks and fault ruptures. Advances Phys. 51, 1189–1257.
Rubino, V., N. Lapusta and A. J. Rosakis (2022). Intermittent lab earthquakes in dynamically weakening fault gouge, Nature, https://doi.org/10.1038/s41586-022-04749-3.
Rubinstein S.M., Cohen, G. and J. Fineberg (2004). Detachment fronts and the onset of dynamic friction. Nature, 430, 1005-1009.
Sagy, A., E. E. Brodsky and G. J. Axen (2007). Evolution of fault-surface roughness with slip, Geology, 35 (3): 283–286. https://doi.org/10.1130/G23235A.1.
Scholz, C.H., Dawers, N.H., Yu, J.-Z., Anders, M.H. and Cowie, P.A. (1993). Fault growth and scaling laws: Preliminary results, J. Geophys. Res., 98, 21951-21961, .
Scuderi, M.M., C. Collettini, C. Viti, E. Tinti, and C. Marone (2017).Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode, Geology, 45, 731–734 | https://doi:10.1130/G39033.1
Scuderi, M. M., Tinti, E., Cocco, M., and Collettini, C. (2020). The role of shear fabric in controlling breakdown processes during laboratory slow‐slip events. J. Geophys.Res., 125, e2020JB020405, https://doi.org/10.1029/2020JB020405.
Schuster, V., Rybacki, E., Bonnelye, A., Kwiatek, G., Schleicher, A. M., & Dresen, G. (2022). Strain Partitioning and Frictional Behavior of Opalinus Clay during Fault Reactivation. Rock Mechanics and Rock Engineering, under review.
Sharon, E., S. P. Gross, and J. Fineberg (1995). Local Crack Branching as a Mechanism for Instability in Dynamic Fracture", Phys. Rev. Lett. 74, 5096
Shi, Z., A. Needleman and Y. Ben-Zion (2010). Slip modes and partitioning of energy during dynamical frictional sliding between identical elastic-viscoplastic solids, International Journal of Fracture, 162, 51–67, https://doi: 10.1007/s10704-009-9388-6.
Shirahama, Y., Yoshimi, M., Awata, Y., Maruyama, T., Azuma, T., Miyashita, Y., et al. (2016). Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth, Planets and Space, 68(1), 191. https://doi.org/10.1186/
s40623-016-0559-1
Sibson, R. H. (1973), Interaction between temperature and pore-fluid pressure during earthquake faulting-A mechanism for partial or total stress relief, Nature, 243, 66-68.
Sone, H. and T. Shimamoto (2009). Frictional resistance of faults during accelerating and decelerating earthquake slip, Nature Geosci., 2, 705-708, https://doi:10.1038/NGEO637.
Stanchits, S., S. Vinciguerra and G. Dresen (2006). Ultrasonic Velocities, Acoustic Emission Characteristics and Crack Damage of Basalt and Granite, Pure appl. geophys. 163 (2006) 974–993, https://doi 10.1007/s00024-006-0059-5.
Stanchits, S., G. Dresen, and JAGUARS Research Group (2010). Formation of Faults in Diorite and Quartzite Samples Extracted From a Deep Gold Mine (South Africa). Geophysical Research Abstracts, Vol. 12, EGU2010-5605, 2010, EGU General Assembly 2010.
Svetlizky, I., and J. Fineberg (2014). Classical shear cracks drive the onset of dry frictional motion, Nature, 509, https://doi:10.1038/nature13202.
Svetlizky, I., E. Bayart, G. Cohen, and J. Fineberg (2017). Frictional Resistance within the Wake of Frictional Rupture Fronts, PRL 118, 234301.
Svetlizky, I., E. Bayart and J. Fineberg (2019). Brittle Fracture Theory Describes the Onset of Frictional Motion. Annual Review of Condensed Matter Physics, Ann. Rev., 10 (1), 253-273. https://doi:10.1146/annurev-conmatphys-031218-013327.
Udias, A., Madariaga, R. and E. Bufon (2014). Source Mechanisms of Earthquakes: Theory and Practice, Cambridge Univ. Press, 311p.
Viesca, R.C. and D.I. Garagash (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature Geosci., 8, 875-879, https://doi:10.1038/NGEO2554.
Wang, L., G.Kwiatek, E.Rybacki, A. Bonnelye, M. Bohnhoff and G. Dresen (2020). Laboratory study on fluid‐induced fault slip behavior: The role of fluid pressurization rate. Geophys. Res. Lett., 47, e2019GL086627, https://doi.org/10.1029/2019GL086627.
Wechsler, N., Y. Ben-Zion and S. Christofferson, (2010). Evolving Geometrical Heterogeneities of Fault Trace Data, Geophys. J. Int., 182, 551–567, https://doi: 10.1111/j.1365-246X.2010.04645.x
Wei, M., Sandwell, D., Fialko, Y., & Bilham, R. (2011). Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR. Geophysical Research Letters, 38, L01308. https://doi.org/10.1029/2010GL045235.
Wong, T.-f. (1982). Shear fracture energy of Westerly granite from post-failure behavior. J. Geophys. Res., 87, 990-1000.
Wesnousky, S.G. (1988). Seismological and structural evolution of strike-slip faults. Nature, 335, 340-343.
Wynants‐Morel, N., Cappa, F., DeBarros, L., & Ampuero, J.‐P. (2020). Stress perturbation from aseismic slip drives the seismic front during fluid injection in a permeable fault. J. Geophys. Res., 125, e2019JB019179. https://doi.org/10.1029/2019JB019179
Xu, S., E. Fukuyama, F. Yamashita, K. Mizoguchi, S. Takizawa and H. Kawakata, (2018). Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments, Tectonophys., 733, 209-231, https://doi.org/10.1016/j.tecto.2017.11.039.
Yamashita, F., E.Fukuyama, S. Xu, H.Kawakata, K. Mizoguchi and S. Takizawa (2021) Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault, Nature Comm.12:4302, https://doi.org/10.1038/s41467-021-24625-4
Ye, Z., & Ghassemi, A. (2020). Heterogeneous fracture slip and aseismic‐seismic transition in a triaxial injection test. Geophys. Res. Lett., 47, e2020GL087739. https://doi. org/10.1029/2020GL087739.
Yue, H., Lay, T., & Koper, K. D. (2012). En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes. Nature, 490(7419), 245–249. https://doi.org/10.1038/nature11492.