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Abstract
Extreme weather events threaten food security, yet global assessments of crop waterlogging are rare.
Here, we make three important contributions to the literature. First, we develop a paradigm that distils
common stress patterns across environments, genotypes and climate horizons. Second, we embed
improved process-based understanding into a contemporary farming systems model to discern changes
in global crop waterlogging under future climates. Third, we elicit viable systems adaptations to
waterlogging. Using projections from 27 global circulation models, we show that yield penalties caused
by waterlogging increased from 3–11% historically to 10–20% by 2080. Altering sowing time and
adopting waterlogging tolerant genotypes reduced yield penalties by up to 18%, while earlier sowing of
winter genotypes alleviated waterlogging risk by 8%. We show that future stress patterns caused by
waterlogging are likely to be similar to those occurring historically, suggesting that adaptations for future
climates could be successfully designed using current stress patterns.

Main
Increasingly frequent and compound extreme weather events driven by intensification of the global water
cycle threaten the sustainability and consistency of agri-food production1, 2, 3. Coupled with global
population growth and a burgeoning demand for food, climate extremes are demanding the development
of new knowledge, technologies and practices that enable scalable, sustainable intensification4, 5.

Robust projections of climate impacts on crop growth underpinned by process-based models6, 7 are
fundamental in the quest to design effective and credible systems-based adaptations that minimise
down-side risk associated with future climates8, 9, 10. Application of such models enables consideration
of nonlinear and integrated crop responses to environmental, genetic and management conditions7, 11,
supporting the development of socially-acceptable and profitable climate change adaptation and/or
greenhouse gas emissions mitigation strategies12, 13, 14. However, while the overwhelming majority of
previous climate change assessments have used a lens that has been focused on either drought, heat or
gradual climate change1, 15, 16, 17, our knowledge of the impacts of soil waterlogging on crop growth is
very much in its infancy18, 19, 20.

Globally, around 27% of cultivated lands are impacted by flooding each year, with annual costs of flood
damage over the last half century reaching a headline value of US$19 billion 21 22, 23, 24. Intensification of
the global water cycle driven by the climate crisis would appear to be driving a higher prevalence of
waterlogging, placing pressure on use of economic, natural and social capital 20 . While genotype (G) ×
environment (E) × management (M) studies pertaining to climate change adaptation abound 25, 26, 27, 28

29, 30, such work is often not conducted in a way that facilitates scaling (to other regions) or transference
(to other studies). Here, we develop a new approach for assimilating manifold results from crop models
into common, discrete sets of groups. These groups - characterised by daily stress trajectories plotted
over the crop lifecycle as a function of phenology – invoke plant stress, because perceived stress
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represents an integrated measure of biomass, canopy leaf area, cumulative water supply, vapor pressure
deficit and several other factors interacting across an atmosphere-plant-soil continuum. As such, plant
stress has long been a ubiquitous target for quantification and manipulation in molecular, breeding and
agronomic studies 31, 32, 33 .

While GxExM factorial studies are useful, attempts to interpret results using the association between
management interventions and maturity biomass or yield34 can make it difficult to derive functional,
rationally-bounded35 insights across all of the interventions deployed. In contrast, we suggest that crop
stress patterns characterised as a function of phenology are limited in type; when grouped across an
entire factorial analysis, such relationships can be aggregated into common groups and recurrence
intervals, even though individual stress trajectories may appear unique. To standardize contrasts across
treatments, we grouped waterlogging stress as a function of phenology. We focus on waterlogging stress
and barley as case studies, but the principles could be generically applied to any crop or biological
variable. A fundamental contribution of our approach is the ability to functionally categorize big datasets.
Armed with knowledge of stress prevalence and typology using this method, decision-makers can more
intuitively identify the most appropriate adaptation within their target stress pattern, but can also transfer
adaptations across regions within any given stress type33, 36.

Building on our insights from previous waterlogging experiments conducted using a range of genotypes
and treatments in controlled environments37, we enumerate effects of waterlogging on photosynthesis
and phenology then use these insights to improve the capacity of the internationally-renowned model
APSIM to simulate impacts of waterlogging on crop growth38. Although our new waterlogging algorithms
reproduced effects of waterlogging stress on contemporary barley genotypes38 with reasonable precision,
the validity of our new algorithms across a broad array of global cropping environments remains
unknown. To fill these knowledge gaps, we first calibrated and validated the waterlogging-enabled version
of APSIM using measured field data from five countries. We then applied the waterlogging-enabled model
and clustering paradigm in each of the major barley production zones across the world with the specific
objectives of (1) quantifying effects of climate change on waterlogging, (2) characterising common
waterlogging stress patterns and frequencies across environments, (3) determining the extent to which
common stress patterns change under future climates, (4) quantifying the extent to which waterlogging
tolerance genotypes, genotypic phenology and sowing time mitigate effects of waterlogging under future
climates.

Conceptualising impacts of waterlogging on photosynthesis and phenology

Past work has shown that crop sensitivity to waterlogging stress is critically dependent on the
developmental stage in which waterlogging occurs30. As such, we modelled waterlogging stress as a
function of phenology, which is in itself a significant advance on the majority of previous studies, the
latter assuming that waterlogging stress is primarily a function of water-filled pore space (e.g. Ref38). We
developed new functions to account for measured effects of waterlogging on photosynthesis and
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phenology (oxdef photo and oxdef pheno, respectively; Fig. 1a)38. Each dimensionless function assumes
multipliers ranging from nil to unity in the form of y = f(x), where y is the stress factor and x is soil
moisture. When x is at or below field capacity, y = 0; y linearly increases with increasing x until the point at
which the soil is saturated (y = 1). These functions were incorporated into the APSIM software platform
to enable improved simulation of crop responses to waterlogging as part of an integrated system. We
calibrated the waterlogging-enabled framework using published data from field observations across five
countries (Australia, Argentina, China, Canada and Ireland; Supplementary Table 4). Including the new
waterlogging functions significantly improved the performance of APSIM in simulating biophysical
impacts of waterlogging relative to the default version of the model, with the root mean square error
(RMSE) for waterlogged yield loss predictions decreasing from 0.3 to 0.1 (Fig. 1b). The modified model
adequately captured the variation in grain yield of multiple genotypes in response to a range of
waterlogging treatments across environments (Fig. 1b), with simulations accounting for 70% of the
variation in observed yield.

Impacts of a changing climate on global soil waterlogging and yield

Using downscaled projections from Assessment Report 6 (AR634) from 27 global circulation models
(GCMs; Supplementary Table 1), we quantified how current waterlogging frequencies may change under
future climates. Following recent reports39, we simulated crop growth and development using the most
plausible greenhouse gas emissions scenario (ie. SSP585) for climate periods of 2030-2059 and 2070-
2099 (hereafter respectively referred to as 2040 and 2080). To account for variable growing season
durations under future climates, we examine crops sown relatively early and late at each site in factorial
combination with shorter growing season genotypes (‘spring’) and longer growing season genotypes
(‘winter’; Supplementary Table 2). 

Our simulations suggest that even though the risk of severe waterlogging will increase under future
climates (2-10% increase across GCMs, sites and sowing dates; Supplementary Fig. 1), yields will also
slightly increase due to CO2 fertilization and mitigation of cold stress at high latitudes (Fig. 2a-d and
Supplementary Fig. 1). It is likely that past estimates of yield that do not account for soil waterlogging
may be overestimated: here we show that simulated future yields decreased by 8%-18% in 2040s and
17% to 26% in 2080s when physiological effects were embedded in the modelling framework (Fig. 2a, d).
This modulating effect of waterlogging on yield was especially pronounced in winter genotypes regions
(Fig. 2c), likely because such regions have longer growing seasons and greater annual rainfall. Globally,
average yield penalty caused by waterlogging was 11% for historical baseline, 14% in 2040s and 20% in
2080s for winter barley [median yield penalty 130-591 kg ha-1; Fig. 4d]; for spring barley yield penalties
were 3% for the historical baseline, 6% in 2040s and 10% in 2080s [median yield penalty 50-91 kg ha-1;
Fig. 4a] across GCMs, sites and sowing dates. 

Despite increased impacts of waterlogging, spring barley yields increased by 5% in 2040s and 13% in
2080s for early sowing (ES) and by 7% in 2040s and 18% in 2080s for late sowing (Supplementary Fig.
1). Future climate change had variable effects on spring barley yield, ranging from positive (e.g. Australia,
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Germany, Spain, France, United Kingdom, Ukraine and Russia) to antagonistic (Argentina, Canada, Central
Ethiopia, Ukraine and United states; Supplementary Table 1). Averaged across sites and climate horizons,
yields increased by 22% and 9% for early and late sown winter barley (Supplementary Fig. 1). For both
future climate horizons, winter barley yields increased for most regions under early sowing, with greater
gains expected in Europe (18%; Supplementary Table 1). These changes suggest that forward shifts in
sowing time of long season genotypes may benefit yields, congruent with other recent work40. 

Distilling common stress patterns across diverse environments, genotypes and management approaches 

Improved understanding of common waterlogging-stress seasonal patterns allows insight into the timing
of waterlogging stress relative to crop phenology, which then governs cumulative effects on growth,
tillering, floral development and yield33, 38, 41. When applied in the present study, these results help explain
differences between yield penalty caused by waterlogging stress between winter and spring barley (Fig. 3
a-c, d-f). Using waterlogging stress outputs from the model computed as a function of historical climate,
soil physics, atmospheric demand, plant biology and agronomy, we calculate stress indices for each day
of crop growth. 

We applied unsupervised k-means clustering to many thousand individual trajectories of discretised
waterlogging stress as a function of phenological stage into four common clusters (Fig. 3, 4); within each
stage the algorithm minimises within-cluster variances. The four clusters accounted for 71% of the
variance for spring barley and 80% for winter barley (increasing to five clusters accounted for 74% and
85% of total variance for spring and winter barley and was deemed superfluous accuracy; Supplementary
Fig. 9). While we showcase barley and waterlogging stress as exemplars, the principles shown here could
be applied to any crop, region, stress type or biophysical model output.

Winter genotypes experienced substantially different patterns of seasonal waterlogging stress relative to
spring genotypes at the global scale (cf. Fig. 3a-c, d-f); waterlogging primarily occurred in the juvenile
phases of winter barley (WW3) cf. during reproductive development of spring types (SW2-3). While
cereals are more likely to experience yield losses when exposed to waterlogging during their reproductive
phases (yield formation of cereals being tightly coupled with kernel number and mass) we showed that
winter genotypes exposed to waterlogging during their juvenile phases had lower yields than spring
genotypes exposed to waterlogging during their productive phases, because the magnitude of
waterlogging experienced by winter types was greater. Put another way, yield penalties caused by
waterlogging reflected an important trade-off between the duration of waterlogging experienced within a
given phase and the timing of waterlogging relative to crop stage; across simulations, yield penalties
associated with winter barley were more severe than those of spring barley (Fig. 4a, d).

While recurrence frequencies for each of the four main waterlogging stress patterns for spring genotypes
remained similar under future climates, frequencies of early severe (WW3) and mild (WW1) waterlogging
during the juvenile phases of winter genotypes increased under future climates at the expense of seasons
with minimal waterlogging. Stress pattern WW1 increased from 7% to 17% (under early sowing; Fig. 4e)
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while WW3 from 3% to 8% (under late sowing; Fig. 4f) compared with the baseline and 2080 periods (Fig.
3). Increased frequencies of severe waterlogging underpin the greater reductions in yields observed for
winter genotypes compared with spring genotypes under future climates (Fig. 2a, c; 4d), primarily due to
increased waterlogging in France, the UK, Russia and China (Supplementary Fig. 4). 

Prospective pathways for adapting to waterlogging

Adaptation of agricultural systems to climate change has and will require cross-disciplinary action: new
knowledge, practices and technologies that integrate agronomic, environmental, molecular, social and
institutional dimensions will be required5, 42, 43. By 2080, early sowing of spring barley reduced occurrence
of low waterlogging (SW0; Fig. 4b), while later sowing of spring barley increased the likelihood of low
waterlogging occurrence (but did not affect the frequency of the most severe type of waterlogging SW3;
Fig. 4c). In contrast, earlier sowing of winter barley diminished frequencies of both severe and low
waterlogging stress (WW1 and WW3; Fig. 4e), while later sowing of winter types increased risk of early-
onset severe and moderate waterlogging (WW1-WW3; Fig. 4f). Overall, we suggest that sowing time of
spring barley in 2080 had relatively little effect on the magnitude of type of waterlogging stress, while
later sowing of winter barley was likely to increase likelihood of exposure to waterlogging stress.

Altering sowing time coupled with adoption of superior genetics resulted in further gains in yield. Based
on experimental observations, we developed in silico genotypes tolerant to soil hypoxia and anoxia
typically experienced when soils become waterlogged44. After verifying the ability of the improved model
to capture behavior of tolerant genotypes during and after waterlogging (Fig. 1b), we examined the long-
term performance and yield benefit expected when waterlogging tolerant spring and winter genotypes
were coupled with other prospective adaptations (altered sowing time and/or phenological duration).
New genotypes with waterlogging tolerance demonstrably increased barley yield under wetter years (Fig.
5) and in general (Supplementary Fig. 7) under future climates. Across sites, the average yield benefit of
waterlogging tolerant lines was 14% and 18% (s.d., 23% and 34%) for early- and later sowing in the 2040s
compared with the baseline genotypes. Similar yield benefits were observed in 2080 (Supplementary Fig.
6). Mean yield benefits were greater for winter genotypes (480-620 kg ha-1) than spring genotypes (194-
213 kg ha-1; Fig. 5). Importantly, yield benefits associated with waterlogging tolerance of new genotypes
did not come at the expense of yield in drier years, and reduced downside risk associated with low
yielding years (Supplementary Fig. 7).

Our results suggest that there would be more scope for and potential impact of waterlogging tolerant
genotypes in environments with longer, cooler and more temperate growing seasons (e.g. the UK, France,
Russia and China; Fig. 5, Supplementary Fig. 5), compared with shorter-growing season environments
requiring fast-maturity genotypes. This result may reflect the fact that longer growing season
environments have higher rainfall, more frequent soil saturation, and/or greater propensity for extreme
rainfall events. In countries with higher annualised ratios of evapotranspiration to precipitation and lower
risk of waterlogging (e.g. Australia), genotypes with waterlogging tolerance conferred relatively little
benefit over the long-term. 
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Future crop waterlogging stress patterns remain similar to those occurring historically

We developed a new approach for clustering common stress patterns to facilitate functional insight into
big data that would otherwise be outside the bounds of reasonable cognitive capacity. This
characterisation of the timing of waterlogging stress as a function of phenology across diverse
management, environments and climate types revealed two fundamental insights when assessed at the
global scale. First, winter genotypes experience earlier seasonal patterns of waterlogging stress relative to
spring genotypes (cf. Fig. 3a-c, d-f). Even though cereal crops are more sensitive to waterlogging during
their reproductive phases, winter genotypes experienced greater yield penalty under early waterlogging
(than spring genotypes under later waterlogging), because waterlogged durations experienced by winter
genotypes were generally longer (Fig. 3, 4a, d). Second, even though future crop waterlogging events are
likely to increase by 2-10% (Supplementary Fig. 8), we revealed the serendipitous outcome in which
waterlogging stress patterns for each of winter and spring genotypes under present conditions are likely
to be similar to those expected in future climates (Supplementary Fig. 3). Equipped with such knowledge,
agronomists and crop breeders would likely to achieve more widespread impact if new spring genotypes
were adapted to late-season waterlogging, while proposed development of new winter barley genotypes
would likely achieve wider impact if designed with early waterlogging in mind. It should be noted that
while situations with minimal waterlogging stress (SW0 and WW0) would predominate (Fig. 3c, f); this
result does not guarantee that such environments will not experience waterlogging stress under future
climates, rather that low waterlogging stress is more likely to emanate over the long-term38, 45. 

Similar frequencies of waterlogging under historical and future conditions is a fortuitous outcome,
because it suggests that practitioners could effectively develop today’s adaptations for the temporal
waterlogging patterns of tomorrow. If future waterlogging-stress patterns were dissimilar to those
occurring historically, then the design of effective adaptations to future conditions would be more
hindered due to the need to establish controlled-stress environments46 or create synthetic waterlogging
stress patterns similar to those expected in future. However, similar historical and future waterlogging
stress patterns suggest that beneficial adaptations within each waterlogging stress pattern – e.g. the
early-onset severe pattern of winter barley – could be readily transferred between regions, production
systems and time periods, provided that other factors remained unchanged (e.g. local-adaptation of
genotypes for disease resistance). Clustering stress patterns into common groups allows us to move
away from locally-specific factors causing the waterlogging stress (e.g. poor drainage, rising ground
water, superfluous rainfall, sowing time, genotype, soil type etc.) to the stress pattern that would most
likely be realised in a given environment as a function of crop phenology.  

On the implications of regional climate change for waterlogging and yield 

Our work has shown that mean yield penalty caused by waterlogging increased from 6-14% in 2040 to
10-20% by 2080 across GCMs, genotypes, management and sites. This result encompasses locally-
specific findings for Europe (e.g. France, Germany, United Kingdom and Spain)47 and China41 under
superfluous precipitation scenarios. In these regions, yields were higher under future climates due to
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elevated atmospheric CO2 concentrations and moderate alleviation of cold stress when water was not

limiting48, 49, 50, analogous to yield gains seen in US dairy systems16, 17. Our findings also align with
previous work which suggests that winter crop yields in Europe will rise by 205051 due to greater biomass
production, grain number and grain weight associated with a fertilisation effect of atmospheric CO2 and

moderate warming11. In waterlogging-prone regions within Australia, we showed that yields are likely to
increase under future climates due to lower incidence of waterlogging (Fig. 2). Less rainfall in regions
with high precipitation (>600 mm/year) may reduce disease susceptibility (e.g. stripe rust), improve crop
health and further raise yield under future climates, although it should be noted that biotic pressures were
not accounted for in the modelling framework used here. 

Climatic transition towards drier and hotter conditions by the end of 21st century is projected for many
regions, often with increased likelihood of extreme weather events39, 38, 48, 49, 50. Even though future
climates were conducive to 2-10% higher risk of severe waterlogging across the entire solution space
(Supplementary Fig. 8), high variation between regions and genotypic lifecycles (Supplementary Figs. 3,
4) was offset by beneficial effects of climate change that collectively improved yield by 8-17% under
future climates. As part of this, we found higher frequencies of early-onset severe waterlogging stress in
Argentina, Ethiopia, China, the UK, France and Germany, in line with reports of increased flash flooding in
some regions towards the end of the 21st century, particularly Asia and Africa52. We suggest that
particular attention should be placed on the development of waterlogging mitigation approaches for
smallholders and the rural poor in lower-latitude countries where increased flood frequency is projected
and prevailing rainfall is already high; women, youth and marginalized groups need to be empowered for
proposed adaptation approaches to be successful. To engender adoption, appropriate research,
development, policy and extension packages will be required to ensure that proposed adaptations are
cost-effective, demand-driven, socially-responsible and equitable53, 54.

A requirement for contextualised adaptation to future climate change

The effectiveness of genotypic adaptation (i.e. introduction of crops with waterlogging tolerance genes)
was higher in Ethiopia, China, Germany, France and UK. Across countries analysed, we showed that
adoption of waterlogging tolerant genotypes could mitigate up to 18% yield penalty caused by
waterlogging under future climates, suggesting further research and development of such genotypes
would be a worthwhile investment. In other regions, converting from longer-season winter genotypes to
short-season spring genotypes could help avoid waterlogging, but with regional specificity viz. long-
season waterlogging tolerant genotypes were shown to be more effective in Ethiopia, while short-season
waterlogging tolerant genotypes were more effective in Europe and China. Taken together, our results
suggest that contextualised adaptation will be key: there is no panacea, and certainly no singular generic
solution for all environments. Fruitful future research may include ‘stacking’ or combining of several
beneficial adaptations to determine whether the benefit from individual adaptations is synergistic or
antagonistic5, 49.
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As far as we are aware, the present study is the first experimental quantification of waterlogging expected
under future climates in each of the major barley cropping zones of the world. To quantify waterlogging
stress patterns, we develop and exemplify a simple, transferable approach for clustering crop stress
patterns across regions, climates, management and genotypes. We show that even though frequencies of
global waterlogging will become higher, these changes will be outweighed overall by reduced
waterlogging in other regions together with elevated CO2 and warmer growing season temperatures. Our
clustering approach comprises a pathway in which diverse bio-climatic applications may be able to
categorise big data outputs into functional and biologically-meaningful patterns. While we apply this
method to waterlogging and barley, although the framework could be readily applied to any crop,
production system, or temporal biological variable. With regards to adaptation, we show that
waterlogging tolerance genetics will have benefit in Ethiopia, France and China, but particularly in regions
were long-season ‘winter’ genotypes are commonplace. Shifting from relatively late to early sowing or
from late to early maturity genotypes may alleviate waterlogging-induced yield penalties in some
environments (Australia, Canada, Spain, Turkey and US). This pilot study only employs a single crop
model and in view of large uncertainties associated with these models, follow-up work should corroborate
our results based on additional models in the vein of multi-model assessments pioneered by AgMIP55.
Successful implementation of these adaptations could only occur if coupled with appropriate socio-
economic policies and extension programmes to enable awareness of waterlogging and uptake of
context-specific genotype by management by environment adaptations.

Methods
Data for model development and validation. Measured data from five two-year experiments (Exp1, Exp2,
Exp3, Exp4, Exp5) conducted in five countries (Australia, Argentina, Canada, China and Ireland) were used
for model development and validation. Exp1 was conducted under controlled conditions (Mt Pleasant
Laboratories, Launceston, Tasmania, Australia) with four waterlogging treatments using six
contemporary Australian barley genotypes differing in their waterlogging tolerance from 2019 to 2020
(see ref.37, 38). For Exp2 barley yields were measured under five waterlogging treatments in the
greenhouse and field conditions at the School of Agronomy, University of Buenos Aires, Argentina during
2010 (see ref.56). In Exp3, barley genotypes were evaluated for waterlogging tolerance in controlled field
conditions at Brandon Research and Development Centre, Brandon, Manitoba, Canada from 2016 to
2017. Waterlogging treatments were initiated at the tillering stage by adding the water to heights of 0.5–1
cm above the soil surface (see ref.57). In Exp4, barley yields were measured in field conditions carried out
at Oak Park, Carlow, Ireland from 2017 to 2018. Waterlogging treatments were initiated at the tillering
stage using a boom irrigator (see ref.58). In Exp5, field experiments were conducted in 2003-2004 and
2005-2006 at Zhejiang University, Hangzhou, China. Waterlogging treatments were imposed at tillering
(see ref.59, 60). All experiments were carefully managed to provide adequate nutrition and control of biotic
pressures. 
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Impact of waterlogging tolerance genes on barley growth and development. The waterlogging gene
evaluated enables barley plants to tolerate saturated soils by accelerating aerenchyma formation and
increasing root porosity following a waterlogging event. To account for this, we propose three stages of
plant response and adaptation (Supplementary Fig. 11). Stage one is the immediate plant response upon
waterlogging at which time water supply to the plant is unlimited and with soil strength lowered, root
growth has little physical impediment. With this situation the expectation is that biological functioning is
not limited by oxygen or water availability, and hence growth processes are not affected. During the
second stage, soil water pores become fully saturated and oxygen dependent bioprocesses (e.g.
photosynthesis; 1 = no stress, 0 = full stress) are negatively influenced. The third stage encompasses
adaptation responses, the net result of which is a variable level of adaptation depending on waterlogging
tolerance genetics. After the adaptation stage, genotypes that are tolerant to waterlogging may exhibit
similar or increased function compared with before the waterlogging event, analogous to plants that grow
aerenchyma after waterlogging37. Barley genotypes that are sensitive to waterlogging and devoid of
genetics conducive to aerenchyma formation exhibit decreased growth and capacity to recover after
waterlogging events; depending on waterlogging duration and timing this may penalise grain filling and
yield. We embed these concepts within the source code of APSIM; the executable containing the modified
source code and XML files are available from the authors upon reasonable request. Genotypic
parameters describing waterlogging tolerance were calibrated and validated in our previous study38.

Study sites. Simulations were conducted using data from thirteen countries based on national barley
production and planting area. In each country, simulated sites were prioritised based on dominant soil
types in cropping zones from the Digital Soil Map of the World61. These representative sites (see
Supplementary Table 2 and Supplementary Figure 9) where barley is grown62 have sites with
documented reports of waterlogging63.  

Historical and future weather data. Historical daily climate data for maximum and minimum temperature,
rainfall and solar radiation for 1985-2016 at each location were obtained from the National Aeronautics
and Space Administration/Prediction of Worldwide Energy Resources (NASA/POWER). NASA/POWER
presents a global coverage of complete climate data at horizontal resolution of 1° latitude-longitude. The
yearly atmospheric [CO2] for future periods were calculated using empirical equations that were obtained
by nonlinear least-squares regression, based on the Shared Socio-economic Pathway 585 (SSP585), a
business-as-usual (high) emission scenario. This scenario most closely represents the climate trajectory
to date39. For SSP585, representative annual atmospheric CO2 concentrations were estimated for each
year (see Supplementary Methods). 

To generate climate scenarios for 2040 and 2080, monthly temperature, rainfall and radiation projected
from 27 GCMs (Supplementary Table 1) are available from the Coupled Model Intercomparison Project
Phase 6 (CMIP6). Here we used the statistical downscaling model NWAI-WG, developed by Liu and Zuo64

to downscale GCM monthly gridded data to daily climate data for each of study sites. Spatial
downscaling used inverse distance-weighted (IDW) interpolation as described in our previous study65
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then applied bias correction, resulting in bias-corrected monthly data using a relationship derived from
observations and GCM data for the historical training period of 1985-2016. Bias-corrected and
downscaled GCM trends were then transcribed into time series of daily maximum and minimum
temperature, rainfall and radiation using a modified stochastic weather generator. The major advantage
of this statistical downscaling method, particularly in comparison with more computationally demanding
dynamical downscaling, is that it can be easily applied to any location for which a long-term daily
historical climate record is available. 

Model calibration and validation. A recent review53 revealed that APSIM is one of the most appropriate
extant farming systems models for simulating waterlogging phenomena. In APSIM-Barley (version 7.9)66,
phenology is described in terms of thermal time accumulation using 11 crop stages and 10 phases (time
between stages). Further model details, including phenology and growth are detailed66, 67. Site-specific
genotype selection, crop management (e.g. sowing date) were based on local expert advice and
experimental records (Supplementary Table 2). We created site-specific genotypes to match the thermal
time between emergence and maturity for each site by adjusting phenological parameters in APSIM
barley for vernalisation (vern_sens), photoperiod (photop_sens) and the thermal time between emergence
and the end of the juvenile phase (tt_end_of_juvenile). The purpose of this was to identify and create
appropriate genotypes (representative synthetic genotypes) that suited local context, with lifecycles
developed in line with sowing, flowering and maturity times observed in practice. 

In the APSIM source code, effects of waterlogging on photosynthesis and phenology in the APSIM source
code were represented by the new functions oxdef_photo and oxdef_pheno, respectively. Each
dimensionless function assumes multipliers ranging from nil to unity in the form of y = f(x), where y
represents the stress factor and x is soil moisture. When x is equal to or below field capacity, y = 0; y
increases linearly with increasing x until y = 1 when the soil is saturated.

Our previous studies have shown that waterlogging affects both photosynthesis and phenology to
varying degrees depending on the timing and duration of waterlogging37. We thus modelled the impacts
of waterlogging as a function of water-filled pore space and crop stage (oxdef_photo), which is a
significant advance on the majority of previous studies that assume that waterlogging stress depends
only on water-filled pore space. In light of this, we applied a stage dependency on the functions such that
the plant's response to waterlogging stress is different across growth stage (e.g. more extreme during the
reproductive stages). The stage dependency component provided the model with more flexibility with
which to fit experimental observations and perform scenario analysis regarding the susceptibility of
cultivars to waterlogging stress. The crop stage at which the plant is more sensitive to excess water is a
user defined parameter. Similarly, our experimental work has shown that waterlogging delays crop
development, and in some cases induces premature senescence. The phenology function we added to
APSIM (oxdef_pheno) was derived using information from environment-controlled experiments37. In
general, it follows the principles used in the oxdef_photo function.
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Experimental data described above were used to parameterise and validate. As barley phenology
datasets were only recorded in Exp1 and yield datasets were measured in all experiments, here we only
parameterised and validated yield datasets. We first initialised APSIM for the (non-waterlogged) control
using APSIM’s SWIM3 (soil water infiltration and movement) Module (Supplementary Fig. 12), then later
tested the new functions using data measured in the waterlogging treatments. To examine the extent to
which the new processes added to APSIM-Barley improved the ability to simulate crop growth and
development under waterlogging, we also run a default (unimproved) version of APSIM-Barley with
waterlogging. Simultaneous multi-objective optimisation (Harrison et al 2019) of oxdef_photo for each
genotype was performed for waterlogging treatments by minimising the sum of squared residuals across
datasets. 

Factorial simulations. Barley was sown at 180 plants m2 using a depth of 20 mm and row spacing of 200
mm. Nitrogen was applied as NO3

− and maintained above 200 kg ha−1 in the top 300 mm throughout the
season to ensure that nitrogen supply did not limit growth. Other nutrients were also assumed unlimiting.
Simulations were continuous from one year to the next. To ensure successful crop establishment, initial
plant available water at sowing was set 15 mm to ensure consistency of emergence across sites and
sowing dates. Soil parameters and management settings were prescribed constant values for all climate
horizons. Soil parameters (soil texture, bulk density, pH, and organic carbon content etc) were obtained
from the International Soil Reference and Information Centre68. Global groundwater table depths used in
model initialisation were obtained from Aquaknow69.

Advancing the process basis of APSIM-Barley for simulation of waterlogging. Using detailed data from
several waterlogging treatments conducted in controlled environments37, we embedded recent
physiological results into APSIM-Barley, improving the ability of the model to simulate waterlogging38.
Upon realisation of appropriate verification statistics, this work substantiated the performance of APSIM-
Barley in simulating impacts of waterlogging on phenology and photosynthesis. Details of the
waterlogging algorithms and their implementation within the APSIM source code are provided38 and are
available from the corresponding author on reasonable request. Waterlogging tolerance (or susceptibility)
of genotypes used in the present study were parameterised and validated in previous studies37, 38, 33. 

Novel approach for clustering seasonal waterlogging-stress typologies. To categorise waterlogging stress
patterns, we output seasonal time-courses of waterlogging-stress days relative to phenology (APSIM
output variable oxdef_photo). These stresses were clustered across simulation years, sites, genotypes
and management. For each environment, waterlogged days (i.e. days with oxdef_photo lower than 1)
were cumulated for each of six discrete growth stages (i.e. early juvenile (JV1, 10<=APSIM growth
stage<21); late juvenile (JV2, 21<=APSIM growth stage<32); floral initiation to heading (FIN, 32<=APSIM
growth stage<65); flowering to grain filling (FIN, 65<=APSIM growth stage<71); early grain filling (GF1,
71<=APSIM growth stage<80); late grain filling (GF2, 80<=APSIM growth stage<87). oxdef_photo was
averaged for each growth stage across simulation years, sites, genotypes and management. Prevailing
seasonal waterlogging patterns were realised by applying unsupervised k-means clustering to all
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seasonal trajectories of oxdef_photo against phenology. Clustering was applied using R statistical
package (R Development Core Team, 2013), with clusters being defined such that total within-cluster
variation was minimised (partitioning n observations into k clusters (the value of K is assigned as four)
where each observation belongs to the cluster with the nearest mean, i.e. the cluster centroid). 

Impacts of extreme waterlogging events on yield. The impact of waterlogging stress on crop yield for a
given location was quantified by comparing the yield difference of each year simulated by default version
of APSIM and improved APSIM with waterlogging algorithms. The yield difference caused by
waterlogging (Yield percentageWL) was calculated in Equation 1.

Yield percentageWL= (Yieldy-YieldY, WL)/Yieldy×100%                                                                      (1)

Where Yieldy was the simulated yield (kg ha-1) obtained by default APSIM version from 1985-2100 (Y =

1985, 1986, …, 2100) and yieldWL,y
 was the simulated yield (kg ha-1) obtained by the modified version of

APSIM with waterlogging algorithms for the said year. 

Data availability

Data and parameters are available in Supplementary Table 2. Downscaled climate data and simulated
yield data are available from the corresponding author upon reasonable request. 

Code availability
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waterlogging algorithms are available from the corresponding author upon reasonable request. 
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Figure 1

Framework for modelling the effects of waterlogging (WL) stress, including conceptual design of crop
physiological responses to waterlogging and model evaluation. a, schematic of genotypic traits
influenced by waterlogging and linkage with existing soil and water sub-models in APSIM b, Comparison
of observed (Obs) and simulated (Sim) waterlogged yield loss compared with controls across
environments simulated by improved and default versions of APSIM. Data in (b) represent contemporary
barley genotypes with varying waterlogging tolerance (n=36). Details of each parameter are provided in
Supplementary Table 4.
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Figure 2

Impacts of waterlogging on yield under future climate (2040, 2080) relative to the historical baseline
(1985-2016) for early and late sowing (E, L). a, c, Simulated yield differences under future climate with
and without waterlogging (WL) for genotypes with early- (spring) or late maturity (winter). b, d, simulated
yields (pie charts; dark segments denote yield penalty) under late sowing for spring barley and early
sowing for winter barley in 2040 (results for early or late sowing in 2040 and 2080 can be found in
supplementary Fig. 2). Yields were simulated with APSIM using downscaled projections from 27 GCMs.
Boxplots indicate simulated yield change across sites and GCMs; box boundaries indicate 25th and 75th
percentiles, whiskers below and above each box denote the 10th and 90th percentiles, respectively. Green
regions in the maps define predominant barley cropping areas.



Page 23/25

Figure 3

Waterlogging stress patterns and frequencies and grain yields for the baseline (1985-2016), 2040 (2030-
2059) and 2080 (2070-2099). Data shown for spring (a-c) and winter barley (d-f) across sites, sowing
times and genotypes. Four key waterlogging stress patterns across sites and genotypes are depicted:
stress patterns for spring barley include SW0 (minimal waterlogging); SW1 (low moderate-late
waterlogging); SW2 (late-onset moderate waterlogging); SW3 (late-onset severe waterlogging) and winter
barley WW0 (minimal waterlogging); WW1 (low early-onset waterlogging relieved later); WW2 (moderate
early-onset waterlogging); WW3 (severe early-onset waterlogging). Boxplots indicate yield for spring and
winter barley across sites and GCMs; box boundaries indicate the 25th and 75th percentiles across 27
GCMs, whiskers below and above the box indicate the 10th and 90th percentiles. Growth stages include
the early juvenile phase (JV1, 10<=APSIM growth stage<21; late juvenile phase (JV2, 21<=APSIM growth
stage<32); floral initiation to heading (FIN, 32<=APSIM growth stage<65); flowering to grain filling (FIN,
65<=APSIM growth stage<71; early grain filling (GF1, 71<=APSIM growth stage<80) and late grain filling
(GF2, 80<=APSIM growth stage<87).
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Figure 4

Yield penalty and prevailing waterlogging stress patterns for the baseline (1985-2016), 2040 (2030-2059)
and 2080 (2070-2099). Yield penalties are shown for spring (a) and winter (d) barley across sites and
genotypes for relatively early or late sowing (ES, LS) at each site. Waterlogging stress patterns for spring
barley include SW0 (minimal waterlogging); SW1 (low moderate-late waterlogging); SW2 (late-onset
moderate waterlogging); SW3 (late-onset severe waterlogging) and winter barley, WW0 (minimal
waterlogging); WW1 (low early-onset waterlogging relieved later); WW2 (moderate early-onset
waterlogging); WW3 (severe early-onset waterlogging). Different letters in (b), (c), (e) and (f) indicate
significant difference(s) in frequency of stress patterns between climate periods within waterlogging
stress patterns. Boxplots indicate yield penalty for spring and winter barley across sites and GCMs; box
boundaries indicate 25th and 75th percentiles, whiskers below and above the box indicate the 10th and
90th percentiles, respectively.
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Figure 5

Mean and standard error of the mean (SEM) of yield benefit associated with waterlogging tolerant
genotypes relative to waterlogging-susceptible genotypes for 2040 (2030-2059). Values were computed
across years and 27 GCMs in which barley growing season rainfall was higher than the 90th percentile;
numerical values shown in each panel represent mean yield benefit across sites, years and GCMs.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Liuetal2022Supplementaryinformation16July2022submitted.docx

https://assets.researchsquare.com/files/rs-1863270/v1/8edd5cde810373aa82aee20e.docx

