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Abstract 1 

With the rapid development of safety critical applications of Intelligent Transportation 2 

Systems (ITS), Global Navigation Satellite System (GNSS) fault detection and 3 

exclusion (FDE) methods have made navigation systems increasingly reliable. 4 

However, in multi-fault scenarios of urban environments, FDE methods generally 5 

demand massive calculations and have a high risk of missed detection and false alarm. 6 

To deal with this issue, we proposed a factor set based FDE algorithm for the integration 7 

of GNSS and Inertial Measurement Units (IMU). The FDE is first performed efficiently 8 

via consistency checking over far fewer subsets of the pseudorange. Afterwards, the 9 

FDE results are validated by missed-detection and false-alarm checks. The missed-10 

detection-check factor is designed by predicting the maximum horizontal GNSS 11 

positioning error, while the false-alarm-check factor is designed with the aid of IMU 12 
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mechanization. Following FDE, a loosely coupled GNSS/IMU integration is carried 13 

out to output the final estimation of the position, velocity and attitude of the vehicle. 14 

The proposed algorithm improved both horizontal and 3D positioning accuracy by 15 

more than 50% in the field test, compared to the traditional GNSS/IMU loosely coupled 16 

scheme. Additionally, with the proposed algorithm, the resultant accuracy of the 17 

velocity and of the heading angle were improved by over 20% and 50% respectively. 18 

 19 

Keywords: GNSS, IMU, integrated navigation, urban positioning, fault detection and 20 

exclusion 21 

 22 

Introduction 23 

For decades, the fusion of Global Navigation Satellite Systems (GNSS) and Inertial 24 

Measurement Units (IMU) has been of essential importance in its applications toward 25 

vehicular navigation (Sun et al. 2010; Chen et al. 2020). With the development of safety 26 

critical applications of Intelligent Transportation Systems (ITS), the necessity for 27 

navigation systems to be reliable has become more and more stringent (Feng and 28 

Ochieng 2007; Wang et al. 2020). However, it should be noted that GNSS pseudoranges 29 

may contain gross errors due to multipath interferences and non-line-of-sight (NLOS) 30 

receptions in urban environments (Macgougan et al. 2002; Sun et al. 2022). Faulty 31 

GNSS measurements significantly reduce the reliability of vehicular navigation 32 

systems in urban environments, with the driver’s life becoming threatened in the worst 33 

cases (Cheng et al. 2021). Therefore, it is of urgent necessity and importance to develop 34 

an efficient algorithm to detect and exclude faulty GNSS measurements to enhance the 35 

navigation safety. 36 

Fault detection and exclusion (FDE) methods typically work by checking the 37 
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consistency of GNSS measurements (Sabatini et al. 2017; Li et al. 2020). Generally, 38 

FDE methods can be classified into two categories: snapshot FDE and recursive FDE 39 

(Zabalegui et al. 2020). Snapshot FDE only checks the consistency of current 40 

measurements, while recursive FDE utilises both current and previously recorded 41 

historical measurements. Originally, FDE was applied in civil aviation as a major part 42 

of Receiver Autonomous Integrity Monitoring (RAIM) (Feng et al. 2006; Wang and 43 

Ober 2009). In the 1980s, classical FDE algorithms, including the pseudorange 44 

comparison method (Lee 1986), the least square residual (LSR) method (Parkinson and 45 

Axelrad 1988) and the parity vector method (Sturza 1988), were proposed successively. 46 

These three classical FDE algorithms are all based on single-fault assumptions. With 47 

the development of multi-frequency and multi-constellation GNSS, more satellites and 48 

signals are available: this does, however, mean that, the risk of multiple faults gets 49 

higher and cannot be ignored at the same time. Consequently, Advanced RAIM 50 

(ARAIM) was proposed based on multiple-hypothesis solution separation (Blanch et al. 51 

2012, 2013). In theory, ARAIM is able to detect multiple faults, but as a large number 52 

of subsets are involved in consistency checks, the consumption of computational 53 

resources is very high. Notably, the FDE schemes of classic RAIM and ARAIM are all 54 

snapshot. Alternatively, recursive Kalman Filter (KF) based FDE were also developed 55 

(Bhattacharyya and Mute 2020), however, may fail due to undetected faults in historical 56 

epochs. 57 

To improve the reliability of vehicular navigation systems, applying FDE to land 58 

transportation, on top of civil aviation, has also been proposed. There are, however, 59 

limitations when doing so, as FDE designed specifically for civil aviation cannot be 60 

implemented directly into urban environments, where measurement redundancy is low 61 

and the possibility of simultaneous multiple faults is much higher (Zhu et al. 2018). 62 
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Information space projection-based methods (Kaddour et al. 2015) and recursive 63 

consistency check-based FDE (Blanch et al. 2015) have been proposed to deal with 64 

multi-fault scenarios. These methods, however, demand a large amount of computing 65 

resources to enact, and have only been verified by simulated data. FDE based on 66 

innovation of GNSS/IMU fusion have also been applied to improve the performance of 67 

integrated navigation systems (Hwang et al. 2005; Zhu et al. 2017; Sun et al. 2021). 68 

Though these innovation-based FDE methods are valid for multiple faults and avoid 69 

numerous subsets based consistency check, it should be noted that errors in IMU 70 

measurements could result in potentially false FDE. In addition, the difficulty of 71 

detecting and excluding simultaneous multiple faults also increases the risk of false 72 

alarm and missed detection greatly. However, for GNSS FDE applied in integrated 73 

navigation, most of the research directly inputs the FDE results to the filter of 74 

integration, which significantly reduces the robustness of the navigation system. 75 

As demonstrated above, current FDE methods are not well suited to combat 76 

performance degradation of vehicle navigation in urban areas, due to current FDE 77 

methods demanding large amounts of calculations, as well as having high risk of false 78 

alarm and missed detection. To overcome this problem, we proposed a new factor set 79 

based FDE algorithm. In particular, simultaneous multiple faults can be detected and 80 

iteratively excluded by consistency checking over the universal set and single-fault 81 

hypothesis subsets of the pseudoranges with fewer computational resources required. 82 

Also, the improvement of the correctness and robustness of FDE is achieved by 83 

reducing the possibility of missed detection and false alarm. The missed-detection 84 

check is performed by predicting the maximum of horizontal GNSS positioning error, 85 

while the false-alarm check is based on the vehicular position reckoned by IMU 86 

mechanization. 87 
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 88 

Algorithm framework 89 

The framework of the proposed algorithm is shown in Fig. 1. In this figure, 𝑁𝐵 and 90 𝑁𝐺  are current number of BDS and GPS satellites, which could be reduced due to fault 91 

exclusion. In addition, 𝐹𝐿𝑆  and 𝐹𝑢𝑝𝑑𝑎𝑡𝑒  are two constants used in the judgement 92 

segments of the algorithm. On the whole, the proposed FDE scheme has two steps, 93 

preliminary FDE and FDE validation. Specifically, in step one, when 𝑁𝐵 ≥ 4  and 94 𝑁𝐺 ≥ 4 , the fault-detection factor 𝑆𝑘,0𝐿𝑆   is calculated and compared with the 95 

predetermined threshold 𝑇𝐿𝑆. If 𝑆𝑘,0𝐿𝑆 ≤ 𝑇𝐿𝑆, 𝐹𝐿𝑆 is set to 1. Otherwise, iterative fault 96 

exclusion is implemented as follows. In the first iteration of fault exclusion, the single-97 

fault-hypothesis subsets of the pseudorange are constructed to obtain the minimum 98 

fault-exclusion factor (𝑆𝑘,𝑗𝐿𝑆)𝑚𝑖𝑛 . And the measurement excluded by the subset 99 

corresponding to (𝑆𝑘,𝑗𝐿𝑆)𝑚𝑖𝑛 is marked as faulty. Then, if (𝑆𝑘,𝑗𝐿𝑆)𝑚𝑖𝑛 > 𝑇𝐿𝑆, the fault-100 

exclusion iteration needs to be continued until all faults have been excluded or the 101 

condition 𝑁𝐵 + 𝑁𝐺 > 6, 𝑁𝐵 ≥ 1 and 𝑁𝐺 ≥ 1 is not satisfied. 102 

In step two of the proposed FDE scheme, missed-detection check or false-alarm 103 

check is performed. When 𝐹𝐿𝑆 = 1, missed-detection-check factor 𝑆𝑘𝑀𝐷 is calculated 104 

and compared with the threshold 𝑇𝑀𝐷. If 𝑆𝑘𝑀𝐷 ≤ 𝑇𝑀𝐷, the variances of pseudorange 105 

residuals are updated and 𝐹𝑢𝑝𝑑𝑎𝑡𝑒 is set to 1. Otherwise, 𝐹𝑢𝑝𝑑𝑎𝑡𝑒 is set to 0. When 106 𝐹𝐿𝑆 = 0, false-alarm-check factor 𝑆𝑘𝐹𝐴 is calculated and compared with the threshold 107 𝑇𝐹𝐴 to determine the value of 𝐹𝑢𝑝𝑑𝑎𝑡𝑒.  108 

Above is the basic procedure of the proposed FDE. After the two-step FDE, if 109 𝐹𝑢𝑝𝑑𝑎𝑡𝑒 = 1 , the vehicular navigation state reckoned by IMU mechanization gets 110 

updated by the solution of remained GNSS measurements to obtain the final estimations 111 
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of vehicular position, velocity and altitude. 112 

 113 

 114 

Fig. 1 Framework of the proposed algorithm 115 

 116 

Preliminary FDE 117 

In step one, preliminary FDE is performed and the flag 𝐹𝐿𝑆  used in step two is 118 

determined. If 𝑁𝐵 ≥ 4  and 𝑁𝐺 ≥ 4 , the LSR solution of the position is calculated 119 

with all the pseudoranges whose ionosphere delays, troposphere delays and satellite 120 

clock errors have been corrected with corresponding models. Then, the fault-detection 121 

factor is defined as: 122 



7 

 

 𝑆𝑘,0𝐿𝑆 = √∑ 𝑟𝑖2𝜎𝑖2𝑁𝐵+𝑁𝐺𝑖=1  (2.1) 123 

where 𝑟𝑖 is the 𝑖th element of the pseudorange residual vector 𝒓; 𝜎𝑖 is the standard 124 

deviation of the pseudorange residual of satellite 𝑖. The value of 𝜎𝑖 is determined with 125 

experience initially and updated by the formula (2.14) in the following epochs. 126 

It is assumed that the pseudoranges are only affected by nominal errors which obey 127 

zero-mean Gaussian distributions in fault-free cases, while one or more pseudoranges 128 

contain a large bias in faulty cases. Under this assumption, we can obtain that: 129 

 In fault-free cases, (𝑆𝑘,0𝐿𝑆 )2~𝜒2(𝑚, 0) (2.2) 130 

 In faulty cases, (𝑆𝑘,0𝐿𝑆 )2~𝜒2(𝑚, 𝜆), 𝜆 ≠ 0 (2.3) 131 

where 𝜒2(𝑚, 0)  represents central Chi square distribution with 𝑚  degrees of 132 

freedom; 𝑚  equals 𝑁𝐵+𝑁𝐺 − 5 ; 𝜒2(𝑚, 𝜆)  represents non-central Chi square 133 

distribution with 𝑚 degrees of freedom and the non-centrality parameter 𝜆. 134 

The threshold of 𝑆𝑘,0𝐿𝑆  is obtained by 135 

 𝑇𝐿𝑆 = √𝐹𝜒2(𝑚,0)−1 (1 − 𝑃𝐹𝐴) (2.4) 136 

where 𝐹𝜒2(𝑚,0)−1   is the inverse of the cumulative probability distribution function of 137 𝜒2(𝑚, 0); 𝑃𝐹𝐴 is the predetermined false-alarm probability. 138 

If 𝑆𝑘,0𝐿𝑆 < 𝑇𝐿𝑆, all pseudoranges are marked as normal measurements, and 𝐹𝐿𝑆 is set 139 

to 1. Otherwise, faulty measurements are believed to exist, and fault exclusion should 140 

be performed. Firstly, all single-fault-hypothesis subsets which exclude one 141 

pseudorange and include at least one BDS pseudorange and one GPS pseudorange are 142 

constructed: 143 

 𝐴𝑘,1, 𝐴𝑘,2, ⋯ , 𝐴𝑘,𝑁𝐴1  (2.5) 144 

where 𝐴𝑘,𝑖 (𝑖 = 1,2,⋯ ,𝑁𝐴1)  represents the 𝑖 th single-fault-hypothesis subset; 145 
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subscripts 𝑘 and 𝑖 mean indexes of the epoch and the subsets, respectively; 𝑁𝐴1 is 146 

the number of subsets in the first iteration. 147 

Based on those subsets, we can obtain the test statistics of each subset according to 148 

formula (2.1): 149 

 𝑆𝑘,1𝐿𝑆 , 𝑆𝑘,1𝐿𝑆 , ⋯ , 𝑆𝑘,𝑁𝐴1𝐿𝑆
 (2.6) 150 

Their thresholds can be calculated according to formula (2.4), but it should be pointed 151 

out that the degrees of freedom should be reduced by one. 152 

If the minimum test statistics, (𝑆𝑘,𝑗𝐿𝑆)𝑚𝑖𝑛 , is lower than the threshold 𝑇𝐿𝑆 , the 153 

pseudorange excluded by the subset corresponding to (𝑆𝑘,𝑗𝐿𝑆)𝑚𝑖𝑛 is regarded as a faulty 154 

measurement, and 𝐹𝐿𝑆  is set to 1. Otherwise, the next fault-exclusion iteration is 155 

performed on the subset corresponding to (𝑆𝑘,𝑗𝐿𝑆)𝑚𝑖𝑛. And the iteration is continued until 156 

all faults have been excluded or 𝑁𝐵 + 𝑁𝐺 > 6, 𝑁𝐵 ≥ 1 and 𝑁𝐺 ≥ 1 is not satisfied 157 

(single-fault-hypothesis subsets with redundancy can’t be constructed appropriately 158 

under this condition). 159 

 160 

Missed-detection check 161 

If 𝐹𝐿𝑆  is equal to 1, all the remaining pseudoranges are marked as normal 162 

measurements by preliminary FDE. However, it is possible that faulty measurements 163 

still exist. Hence, to reduce the risk of missed detection, the theoretical undetected 164 

maximum of the horizontal positioning errors of the GNSS solution is predicted. The 165 

theoretical maximum of vertical or 3D positioning errors is not used in the missed-166 

detection check after the attempt in the field test. With the predetermined possibility of 167 

missed detection, 𝑃𝑀𝐷 , the maximum undetectable non-centrality parameter, 𝜆max , 168 

can be obtained by solving: 169 
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 𝑃𝑀𝐷 = ∫ 𝑓𝜒2(𝑚𝑓𝑖𝑛𝑎𝑙,𝜆𝑚𝑎𝑥)(𝑥)𝑑𝑥(𝑇𝑓𝑖𝑛𝑎𝑙𝐿𝑆 )20  (2.7) 170 

where 𝑇𝑓𝑖𝑛𝑎𝑙𝐿𝑆   and 𝑚𝑓𝑖𝑛𝑎𝑙  represent the threshold and degrees of freedom of Chi 171 

square distribution corresponding to the set of the finally remaining pseudorange, 172 

respectively. 173 

Matrix 𝑯+ is the pseudo inverse of the GNSS observation matrix 𝑯: 174 

 𝑯+ = (𝑯𝑇𝑯)−1𝑯𝑇
 (2.8) 175 

Matrix S  can be obtained by: 176 

 𝑺 = 𝑰 − 𝑯𝑯+
 (2.9) 177 

where 𝑰 is an identity matrix whose size is the same as that of matrix 𝑯𝑯+. 178 

The 𝑘𝑠𝑙𝑜𝑝𝑒,𝑖 , which projects the pseudorange error of satellite 𝑖  onto horizontal 179 

positioning domain, can be calculated by： 180 

 𝑘𝑠𝑙𝑜𝑝𝑒,𝑖 = √(𝐻1,𝑖+ )2+(𝐻2,𝑖+ )2𝑆𝑖,𝑖  (2.10) 181 

where 𝐻1,𝑖+  represents the element in the 1st row and 𝑖th column of the matrix 𝑯+; 182 𝐻2,𝑖+  represents the element in the 2nd row and 𝑖th column of the matrix 𝑯+; 𝑆𝑖,𝑖 is 183 

the 𝑖th diagonal element of the matrix 𝑺. 184 

Then, the predicted maximum of the horizontal GNSS positioning error was defined 185 

as the missed-detection-check factor: 186 

 𝑆𝑘𝑀𝐷 = {𝜎𝑖 ∙ 𝑘𝑠𝑙𝑜𝑝𝑒,𝑖}𝑚𝑎𝑥 ∙ √𝜆𝑚𝑖𝑛 (2.11) 187 

The threshold of 𝑆𝑘𝑀𝐷 is obtained by: 188 

 𝑇𝑀𝐷 = 𝜇𝑀𝐷 + 𝛼 ∙ 𝜎𝑀𝐷 (2.12) 189 

where 𝜇𝑀𝐷  is the mean of 𝑆𝑘𝑀𝐷 ; 𝜎𝑀𝐷  is the standard deviation of 𝑆𝑘𝑀𝐷 ; 𝛼  is an 190 

empirical coefficient taking a value from 3 to 5. 191 

The variances of pseudorange residuals are initialized at the first epoch. In the later 192 
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epochs, they get updated by the data in the sliding window: 193 

 

𝑟1,𝑘−𝐿+1 𝑟1,𝑘−𝐿+2 ⋯ 𝑛𝑢𝑙𝑙𝑛𝑢𝑙𝑙 𝑟2,𝑘−𝐿+2 ⋯ 𝑟2,𝑘⋮ ⋮ ⋱ ⋮𝑟𝐶𝐵+𝐶𝐺,𝑘−𝐿+1 𝑛𝑢𝑙𝑙 ⋯ 𝑟𝐶𝐵+𝐶𝐺,𝑘 (2.13) 194 

Where 𝐶𝐵  and 𝐶𝐺  are the numbers of satellites in BDS and GPS constellations, 195 

respectively; 𝑟𝑖,𝑗(𝑖 = 1,2,⋯ , 𝐶𝐵 + 𝐶𝐺 ;  𝑗 = 𝑘 − 𝐿 + 1, 𝑘 − 𝐿 + 2,⋯ , 𝑘)  is the 196 

pseudorange residual of satellite 𝑖 at epoch 𝑗; 𝐿 is the empirical length of the sliding 197 

window generally taking the value of 1000; 𝑛𝑢𝑙𝑙 means corresponding pseudorange 198 

residual is empty because the satellite is invisible, or the pseudorange is faulty in step 199 

one of the corresponding epoch. 200 

The variance of the pseudorange residual of satellite 𝑖 is updated by: 201 

 𝜎𝑖 =
{  
  
  √∑ (𝑟𝑖,𝑗)2𝑁𝑖𝑗=1𝑁𝑖 , 𝑁𝑖 > 𝛽𝐿,√∑ (𝑟𝑖,𝑗)2𝑁𝑖𝑗=1𝑁𝑖 > 𝜎𝑖𝑚𝑖𝑛

𝜎𝑖𝑚𝑖𝑛, 𝑁𝑖 > 𝛽𝐿,√∑ (𝑟𝑖,𝑗)2𝑁𝑖𝑗=1𝑁𝑖 ≤ 𝜎𝑖𝑚𝑖𝑛𝜎𝑖𝑝𝑟𝑒 , 𝑁𝑖 ≤ 𝛽𝐿
 (2.14) 202 

where 𝑁𝑖 represents the count of non-empty pseudorange residuals of satellite 𝑖; 𝛽 203 

is the empirical coefficient taking the value between 0.7 and 0.9; 𝜎𝑖𝑚𝑖𝑛  is the 204 

predetermined minimum of 𝜎𝑖; 𝜎𝑖𝑝𝑟𝑒 is the standard deviation of pseudorange residual 205 

of satellite 𝑖 in the last epoch. 206 

 207 

False-alarm check 208 

In the case when 𝐹𝐿𝑆 is equal to 0 after step one, either the visible satellites are too few 209 

for the proposed fault detection scheme, or the fault exclusion iteration cannot be 210 

performed or continued. If the GNSS data is to be abandoned directly in this case, 211 

measurement update would not be performed at this epoch. It increases the risk of error 212 
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divergence of integrated navigation systems. Therefore, we proposed a false-alarm-213 

check scheme as follows. 214 

If the condition 𝑁𝐵 + 𝑁𝐺 > 4 , 𝑁𝐵 ≥ 1  and 𝑁𝐺 ≥ 1  is not satisfied, 𝐹𝑢𝑝𝑑𝑎𝑡𝑒  is 215 

set to 0. Otherwise, based on the GNSS position solution and the lever arm between 216 

GNSS antenna and IMU, the position of IMU can be estimated: 217 

 𝑷𝑘𝐺𝑁𝑆𝑆 = (𝑝𝑋𝐺𝑁𝑆𝑆, 𝑝𝑌𝐺𝑁𝑆𝑆, 𝑝𝑍𝐺𝑁𝑆𝑆)𝑇 (2.15) 218 

where 𝑝𝑋𝐺𝑁𝑆𝑆, 𝑝𝑌𝐺𝑁𝑆𝑆 and 𝑝𝑍𝐺𝑁𝑆𝑆 are respectively estimated X, Y and Z coordinates of 219 

the IMU with GNSS pseudoranges in earth-centered earth-fixed frame (e frame). 220 

At this epoch, the estimated position of the IMU can also be obtained by IMU 221 

mechanization: 222 

 𝑷𝑘𝐼𝑀𝑈 = (𝑝𝑋𝐼𝑀𝑈, 𝑝𝑌𝐼𝑀𝑈, 𝑝𝑍𝐼𝑀𝑈)𝑇 (2.16) 223 

where 𝑝𝑋𝐼𝑀𝑈, 𝑝𝑌𝐼𝑀𝑈 and 𝑝𝑍𝐼𝑀𝑈 are respectively the estimated X, Y and Z coordinates 224 

of the IMU in e frame by IMU mechanization. 225 

Then, the innovation in position domain can be obtained as follows: 226 

 𝑰𝑘𝑃𝑜𝑠 = 𝑷𝑘𝐺𝑁𝑆𝑆 − 𝑷𝑘𝐼𝑀𝑈 (2.17) 227 

The false-alarm-check factor is defined as: 228 

 𝑆𝑘𝐹𝐴 = |𝑰𝑘𝑃𝑜𝑠| (2.18) 229 

The threshold can be obtained by: 230 

 𝑇𝐹𝐴 = 𝜇𝐹𝐴 + 𝛾𝜎𝐹𝐴 (2.19) 231 

where 𝜇𝐹𝐴 is the mean of 𝑆𝑘𝐹𝐴; 𝛾 is an empirical coefficient which takes a value from 232 

3 to 6; 𝜎𝐹𝐴 is the standard deviation of 𝑆𝑘𝐹𝐴. 233 

If 𝑆𝑘𝐹𝐴 > 𝑇𝐹𝐴, 𝐹𝑢𝑝𝑑𝑎𝑡𝑒 is set to 0. Otherwise, the remaining GNSS measurements 234 

are remarked as normal measurements and 𝐹𝑢𝑝𝑑𝑎𝑡𝑒 is set to 1. 235 
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GNSS/IMU Fusion Scheme 236 

As the FDE is performed in the position domain, Extended Kalman Filter (EKF) based 237 

Loosely Coupled (LC) scheme is utilized to fuse GNSS and IMU. The state vector is 238 

defined as: 239 

 𝑿𝑘 = [(𝛿𝒓𝐼𝑀𝑈𝑒 )𝑇 (𝛿𝒗𝐼𝑀𝑈𝑒 )𝑇 (𝛿𝝓𝐼𝑀𝑈𝑒 )𝑇 (𝒃𝑔)𝑇 (𝒃𝑎)𝑇 (𝒔𝑔)𝑇 (𝒔𝒂)𝑇]𝑇(2.20) 240 

where 𝛿𝒓𝐼𝑀𝑈𝑒 , 𝛿𝒗𝐼𝑀𝑈𝑒 , 𝛿𝝓𝐼𝑀𝑈𝑒  are the position error vector, the velocity error vector 241 

and the attitude error vector of IMU mechanization in e-frame, respectively; 𝒃𝑔 and 242 𝒃𝑎 are the vectors of gyroscope and accelerometer three-axis biases, respectively; 𝒔𝑔 243 

and 𝒔𝑎  are the vectors of gyroscope and accelerometer three-axis scale factors, 244 

respectively. 245 

After FDE, if 𝐹𝑢𝑝𝑑𝑎𝑡𝑒 = 0, the measurement update is not performed, otherwise the 246 

state vector is updated with the measurement vector: 247 

 𝒁𝑘 =
[  
   
 𝑝𝑋𝐺𝑁𝑆𝑆 − 𝑝𝑋𝐼𝑀𝑈𝑝𝑌𝐺𝑁𝑆𝑆 − 𝑝𝑌𝐼𝑀𝑈𝑝𝑍𝐺𝑁𝑆𝑆 − 𝑝𝑍𝐼𝑀𝑈𝑣𝑋𝐺𝑁𝑆𝑆 − 𝑣𝑋𝐼𝑀𝑈𝑣𝑌𝐺𝑁𝑆𝑆 − 𝑣𝑌𝐼𝑀𝑈𝑣𝑍𝐺𝑁𝑆𝑆 − 𝑣𝑍𝐼𝑀𝑈]  

   
 
 (2.21) 248 

where (𝑣𝑋𝐺𝑁𝑆𝑆, 𝑣𝑌𝐺𝑁𝑆𝑆, 𝑣𝑍𝐺𝑁𝑆𝑆) is the velocity solution with GNSS Doppler shifts in the 249 

e-frame and the lever arm effect has been corrected; (𝑣𝑋𝐼𝑀𝑈, 𝑣𝑌𝐼𝑀𝑈 , 𝑣𝑍𝐼𝑀𝑈)  is the 250 

estimated velocity by IMU mechanization in the e-frame. 251 

Next, the estimated position, velocity and altitude get corrected utilizing the state 252 

vector of the EKF, thus, the final estimation of the vehicular state would be the output. 253 

 254 

Field test and results analysis 255 

A field test was conducted in order to validate the proposed algorithm on November 10, 256 
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2021, in Nanjing, China. The experimental vehicle and equipment are shown in Fig. 2. 257 

The raw GNSS data were collected with a BDStar Navigation C520-AT receiver at a 258 

sample rate of 10Hz, while the raw IMU data were collected with a MEMS IMU, STIM-259 

300, at a sampling rate of 125Hz. The reference trajectory was determined by the post 260 

processing kinematic mode of the data from a high grade inertial/GNSS navigator, 261 

HGuide N580, and the data from a GNSS base station in Hohai University with 262 

NovAtel Inertial Explorer software. Antenna 1 and 2 are both ZYACF-S806 antennas 263 

of Zhejiang ZhongYu Communication Technology Co., Ltd. The HGuide N580 was 264 

connected with antenna 1, and the BDStar Navigation receiver was connected with 265 

antenna 2. 266 

 267 

 268 

Fig. 2 Experimental setup 269 

 270 

The vehicle was driven around the area near Nanjing South Railway Station. Fig. 3 271 
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shows the driving trajectory of our experimental vehicle in this test. In the four parts of 272 

the trajectory, the positioning errors of the traditional GNSS/IMU fusion algorithm are 273 

much bigger. Part 1 of the trajectory is situated around the start point because the vehicle 274 

was static during this period. 275 

 276 

 277 

Fig. 3 The trajectory of our experimental vehicle in the test 278 

 279 

The experimental scenes in the four parts of the trajectory are shown as Fig. 4. Tall 280 

buildings are situated on either side of part 1 and part 3 of the trajectory. The vehicle 281 

was driven through a tunnel in part 2 of the trajectory, and under elevated roads in part 282 

4 of the trajectory. 283 

 284 

 285 
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Fig. 4 Partial experimental scenes 286 

 287 

Table 1 shows the setting of relevant parameters of the proposed algorithm. Both 288 𝑃𝐹𝐴 and 𝑃𝑀𝐷 were set to 1 × 10−5 since we referred to the classical RAIM in civil 289 

aviation and adjusted them according to the results of the experiment. By analyzing 290 

historical data collected in the same area on another day, November 9, 2021, we 291 

calculated the mean and standard deviations of the missed-detection-check factor and 292 

false-alarm-check factor, resulting in our choice to set the thresholds 𝑇𝑀𝐷 and 𝑇𝐹𝐴 293 

to 9 and 40 respectively. 294 

 295 

Table 1 The values of relevant parameters of the proposed algorithm 296 

Parameter Value 

The possibility of false alarm, 𝑃𝐹𝐴 1 × 10−5 

The possibility of missed detection, 𝑃𝑀𝐷 1 × 10−5 

The threshold of missed-detection-check factor, 𝑇𝑀𝐷 9 

The threshold of false-alarm-check factor, 𝑇𝐹𝐴 40 

 297 

As illustrated before, the preliminary FDE is performed first. Fig. 5 compares the 298 

fault-detection factor and its threshold at the start of step one. Since the scale of the 299 

vertical axis is too large for the threshold in the upper subfigure, the part in the yellow 300 

dashed rectangle is consequently enlarged, as seen in the lower subfigure. From Fig. 5, 301 

it can be seen that the fault-detection factor exceeds the threshold a large part of the 302 

time, about 75% percent of the time specifically. Additionally, the value of the fault-303 

detection factor exceeds 100 in many epochs, and exceeds 1000 in a few epochs, while 304 

the threshold remains at 7 approximately. These characteristics of Fig. 5 are due to the 305 
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complex environment of the experimental area, where GNSS measurements easily arise 306 

as faulty. 307 

 308 

 309 

Fig. 5 Fault-detection factor and the threshold at the start of step one 310 

 311 

After the preliminary FDE in step one, the fault-detection factor drops sharply as 312 

illustrated in Fig. 6. It is clear that the fault-detection factor is lower than the threshold 313 

most of the time, except in little epochs when the value of the fault-detection factor is 314 

slightly over the threshold. It should be noted that the threshold is also reduced with the 315 

reduction of the number of pseudoranges. 316 

 317 
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 318 

Fig. 6 Fault-detection factor and the threshold at the end of step one 319 

 320 

The change in the number of visible BDS and GPS satellites is depicted in Fig. 7. It 321 

is common for more than one measurement to be identified as faulty by the preliminary 322 

FDE. In addition, the change of PDOP after step one is shown in Fig. 8. It is reasonable 323 

for the PDOP to get higher, because some measurements are excluded. However, 324 

excluding faulty measurements benefits the navigation algorithm. 325 

 326 

 327 

Fig. 7 Number of visible BDS and GPS satellites 328 
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 329 

 330 

Fig. 8 Value of PDOP before and after step one 331 

 332 

The preliminary fault exclusion is based on the single-fault-hypothesis subsets of the 333 

pseudorange. Fig. 9 shows the number of such subsets during the experiment. The 334 

maximum number of subsets is 175, and fewer than 100 subsets are needed in most 335 

fault-exclusion epochs. However, far more subsets are needed with ARAIM: for 336 

example, when 10 BDS satellites and 6 GPS satellites are visible, and just considering 337 

the possibility of fewer than 4 faulty measurements, 𝐶161 + 𝐶162 + 𝐶163 = 696 subsets 338 

should be included in calculations with ARAIM. It should be noted that the number of 339 

subsets increases rapidly when there are more visible satellites or more possible faulty 340 

measurements with ARAIM. 341 

 342 
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 343 

Fig. 9 Number of the single-fault-hypothesis subsets 344 

 345 

After the preliminary FDE, a missed-detection check or false-alarm check is 346 

performed according to the value of the flag determined in step one. Fig. 10 depicts the 347 

missed-detection-check factor and the threshold during the experiment. It is clear that 348 

the value of the missed-detection-check factor is smaller than the predetermined 349 

threshold in a great number of epochs. There also are some epochs when the missed-350 

detection-check factor exceeds the threshold. 351 

 352 

 353 

Fig. 10 The value of missed-detection-check factor and the threshold 354 

 355 
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Fig. 11 shows the value of the false-alarm-check factor and the threshold. The count 356 

of epochs when the false-alarm check was performed is less than that when missed-357 

detection check was performed. The false-alarm-check factor is lower than the 358 

threshold in the major part of those epochs. As illustrated before, if the false-alarm-359 

check factor is lower than the threshold, the solution of the remaining GNSS 360 

measurements is still used to update the GNSS/IMU integrated filter. 361 

 362 

 363 

Fig. 11 The value of false-alarm-check factor and the threshold 364 

 365 

In order to evaluate the improvement in performance of the proposed algorithm, (1) 366 

traditional EKF-based fusion algorithm and (2) EKF based fusion with LSR FDE are 367 

two candidate algorithms. The settings of EKF paramaters of the proposed algorithm 368 

and the two candidate algorithms are the same. The detailed steps of the algorithms are 369 

shown in Table 2.  370 
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Table 2 Summary of the algorithms 371 

Candidate algorithm Algorithm description 

EKF 

GNSS and IMU fusion is implemented in a 

loosely coupled mode with EKF. The 

measurement vector is based on the position and 

velocity solutions of GNSS measurements. 

EKF with LSR FDE 

Step 1: LSR FDE is implemented. 

Step 2: GNSS and IMU fusion is performed with 

EKF. The measurement vector is based on the 

position and velocity solution of normal GNSS 

measurements determined by LSR FDE. 

Proposed Algorithm 

Step 1: The FDE is performed via iterative 

consistency checking over the universal set and 

single-fault hypothesis subsets of the 

pseudoranges. 

Step 2: The preliminary FDE results are validated 

by missed-detection check and false-alarm check. 

Step 3: GNSS and IMU fusion is performed with 

EKF. The measurement vector is based on the 

position and velocity solution of normal GNSS 

measurements after step 2. 

 372 

Positioning errors of the three algorithms in terms of the local-level coordinate 373 

system is shown in Fig. 12. The four parts enclosed by yellow dashed rectangles 374 

correspond to each of the four parts of the trajectory in Fig. 3. It can be seen that the 375 
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positioning accuracy is improved greatly with the proposed algorithm in part 1, 3 and 376 

4. Even though the positioning accuracy is also developed with LSR FDE, the extent to 377 

which the accuracy is improved is much smaller than that of the proposed algorithm. 378 

The total count of visible satellites is kept below 5 in the part-2 trajectory as Fig 6 shows. 379 

Thus, that is why the positioning accuracy is not improved with neither the proposed 380 

algorithm nor the EKF with LSR FDE. 381 

 382 

 383 

Fig. 12 Positioning errors in local-level coordinate system 384 

 385 

The position root mean square error (RMSE) results are listed in Table 3, and the 386 

percentages of improvements in position accuracy are listed in Table 4. The horizontal 387 

and 3D position RMSE of the proposed algorithm are 3.296 m and 4.562 m respectively, 388 

corresponding to 52.2% and 56.9% improvements over the traditional EKF-based 389 

fusion algorithm, much higher than that of the EKF with LSR FDE. 390 
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 391 

Table 3 Position RMSE results comparison 392 

Algorithm 

Position RMSE (m) 

North East Down Horizontal 3D 

EKF 4.157 5.504 8.014 6.898 10.574 

EKF with LSR FDE 3.905 4.227 7.129 5.755 9.162 

Proposed algorithm 2.430 2.227 3.154 3.296 4.562 

 393 

Table 4 Position accuracy improvement compared to the traditional EKF-based fusion 394 

results 395 

Algorithm 

The improvement percentages of position 

accuracy (%) 

North East Down Horizontal 3D 

EKF with LSR FDE 6.1 23.2 11.0 16.6 13.4 

Proposed algorithm 41.5 59.5 60.6 52.2 56.9 

 396 

The RMSE of velocity and altitude are listed in Table 5, and the accuracy 397 

improvement percentages are listed in Table 6. The integrated navigation system 398 

outputs notably more accurate velocities and altitudes with the proposed algorithm. The 399 

heading angle accuracy of the proposed algorithm is improved by 52.1% compared with 400 

the traditional EKF-based fusion. Even though there is a slight decrease of 0.3% in the 401 

accuracy of the pitch angle for the proposed algorithm, the magnitude of the pitch angle 402 

error is far lower than that of the heading angle error for all the three algorithms in the 403 

test. In addition, the proposed algorithm obtained a velocity accuracy development of 404 

over than 20%, which is much higher than that of the EKF with LSR FDE. 405 
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 406 

Table 5 Velocity and altitude RMSE results comparison 407 

Algorithm 

Velocity RMSE (m/s) Altitude RMSE (Degree) 

North East Down Roll Pitch Heading 

EKF 0.260 0.284 0.279 0.445 1.155 5.518 

EKF with LSR FDE 0.220 0.267 0.249 0.450 1.161 4.526 

Proposed algorithm 0.187 0.220 0.138 0.433 1.158 2.645 

 408 

Table 6 Velocity and altitude accuracy improvement compared to the traditional EKF-409 

based fusion results 410 

Algorithm 

The improvement percentages 

of velocity accuracy (%) 

The improvements 

percentage of altitude 

accuracy (%) 

North East Down Roll Pitch Heading 

EKF with LSR FDE 15.5 5.8 10.7 -1.2 -0.6 18.0 

Proposed algorithm 28.1 22.5 50.4 2.6 -0.3 52.1 

 411 

Conclusion 412 

Ultimately, we developed a novel factor set based FDE scheme for integrated 413 

navigation of vehicles in urban environments. Simultaneous multiple faults can be 414 

detected and excluded efficiently with the proposed algorithm since far fewer subsets 415 

are included in the consistency check. Significantly, the missed-detection-check factor 416 

and the false-alarm-check factor are also designed to enhance the correctness and 417 

robustness of the FDE, and the performance of the proposed algorithm is validated by 418 

the real-life field test. The horizontal and 3D positioning accuracy of the proposed 419 
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algorithm are 3.296 m and 4.562 m respectively in the deep-urban-environments field 420 

test. These results correspond to an over 50% improvement compared to the traditional 421 

EKF based GNSS/IMU loose fusion algorithm. Furthermore, the proposed algorithm 422 

resulted in a more than 20% improvement in velocity accuracy and a more than 50% 423 

improvement in heading accuracy. 424 
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