1. Phillip D, Young AJ. Occurrence of the carotenoid lactucaxanthin in higher plant LHC
II. Photosynth Res. 1995;43:273–
282.
2. Sandmann G, Kuhn M, Böger P. Carotenoids in photosynthesis: Protection of D1 degradation
in the light.
Photosynth Res
. 1993;35:185–
190.
3. Alboresi A, Dall’Osto L, Aprile A, Carillo P, Roncaglia E, Cattivelli L, Bassi R.
Reactive oxygen species and transcript analysis upon excess light treatment in wild-type
Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC Plant Biol. 2011;11:62.
5. Sponsel VM. The deoxyxylulose phosphate pathway for the biosynthesis of plastidic
isoprenoids: early days in our understanding of the early stages of gibberellin biosynthesis.
J plant growth regul. 2002;20:332–345.
6. Song MH, Lim SH, Kim JK, Jung ES, John KMM, You MK, Ahn SN, Lee CH, Ha SH. In planta
cleavage of carotenoids by Arabidopsis carotenoid cleavage dioxygenase 4 in transgenic rice plants. Plant Biotechnol Rep.
2016;10:291–300.
7. Wang Y, Ding GQ, Gu TT, Ding J, Li Y. Bioinformatic and expression analyses on carotenoid
dioxygenase genes in fruit development and abiotic stress responses in Fragaria vesca. Mol Genet Genomics. 2017;292: 895–907.
8. Yamaguchi M. Role of carotenoid β-cryptoxanthin in bone homeostasis. J Biomed Sci.
2012;19:36.
9. Nisar N, Li L, Lu S, Khin NC, Pogson BJ. Carotenoid metabolism in plants. Mol Plant.
2015;8: 68–82.
10. Schweiggert RM, Steingass CB, Heller A, Esquivel P, Carle R. Characterization of chromoplasts
and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.). Planta. 2011;234:1031–1044.
12. Nogueira M, Mora L, Enfissi EMA, Bramley PM, Fraser PD. Subchromoplast sequestration
of carotenoids affects regulatory mechanisms in tomato lines expressing different
carotenoid gene combinations. The Plant Cell. 2013;25:4560–4579.
13. Karppinen K, Zoratti L, Sarala M, Carvalho E, Hirsimäki J, Mentula H, Martens S, Häggman
H, Jaakola L. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis
and degradation. BMC Plant Biol. 2016;16:95.
14. Lee WL, Huang JZ, Chen LC, Tsai CC, Chen FC. Developmental and LED light source modulation
of carotenogenic gene expression in Oncidium gower ramsey flowers Plant Mol Biol Rep. 2013;31:1433–1445.
15. Lester GE, Eischen F. Beta-carotene content of postharvest orange-fleshed muskmelon fruit: Effect of cultivar,
growing location and fruit size. Plant Foods Hum Nutr. 1996;49:191–197.
16. Taber H, Perkins-Veazie P, Li SS, White W, Rodermel S, Xu Y. Enhancement of tomato
fruit lycopene by potassium is cultivar dependent. Hortsci. 2008;43(1):159–165.
17. Erdoğan A, Demirel Z, Eroğlu AE, Dalay MC. Carotenoid Profile in Prochlorococcus sp. and Enrichment of Lutein Using Different Nitrogen Sources.
J Appl Phycol
</a>
.
2016;
28
(6
):
3251–
3257.</p>
18. Muzolf-Panek M, Kleiber T, Kaczmarek A. Effect of increasing manganese concentration in nutrient solution on the antioxidant
activity, vitamin C, lycopene and polyphenol contents of tomato fruit. Food Addit Contam A. 2017;34(3):379–389.
19. Lu Q, Huang XJ, Lv SY, Pan SY. Carotenoid profiling of red navel orange "Cara Cara" harvested from five regions in
China. Food Chem. 2017;232:788–798.
21. Carmona L, Zacarias L, Rodrigo MJ. Stimulation of coloration and carotenoid biosynthesis during postharvest storage of
'Navelina' orange fruit at 12 degrees C. Posth Biol Technol. 2012;74:108–117.
23. Wei X, Hu H, Tong HR, Gmitter Jr Frederick G. Profiles of gene family members related
to carotenoid accumulation in citrus genus. J. Plant Biol. 2017;60:1–10.
24. Tao J, Zhang SL, Xu JG, Liu CR. Analysis of major carotenoid composition and its content
in citrus fruit. Sci Agric Sinica. 2003;36 (10) :1202–1208.
26. Smita S, Rajwanshi R, Lenka SK, Katiyar A, Chinnusamy V, Bansal KC. Expression profile
of genes coding for carotenoid biosynthetic pathway during ripening and their association
with accumulation of lycopene in tomato fruits. India Acad Sci. 2013;92(3):363–368.
27. Li PR, Zhang SJ, Zhang SF, Li F, Zhang H, Liu XY, Wu J, Wang XW, Sun RF. Carotenoid
identification and molecular analysis of carotenoid isomerase-encoding BrCRTISO, the candidate gene for inner leaf orange coloration in Chinese cabbage. Mol Breeding.
2015;35:72.
28. Yoshioka S, Aida R, Yamamizo C, Shibata M, Ohmiya A. The carotenoid cleavage dioxygenase 4 (CmCCD4a) gene family encodes a key regulator of petal color mutation in chrysanthemum. Euphyt.
2012;184:377–387.
29. Gady ALF, Vriezen WH, Wal MHBJVD, Huang PP, Bovy AG, Visser RGF, Bachem CWB. Induced
point mutations in the phytoene synthase 1 gene cause differences in carotenoid content
during tomato fruit ripening. Mol Breeding. 2012;29:801–812.
30. Fu XM, Feng C, Wang CY, Yin XR, Lu PJ, Grierson D, Xu CJ, Chen KS. Involvement of multiple phytoene synthase genes in tissueand cultivar-specific accumulation
of carotenoids in loquat. J Exp Bot. 2014;65(16): 4679–4689.
31. Li QR, Farre G, Naqvi S, Breitenbach J, Sanahuja G, Bai C, Sandmann G, Capell T, Christou
P, Zhu CF. Cloning and functional characterization of the maize carotenoid isomerase
and β-carotene hydroxylase genes and their regulation during endosperm maturation. Transgenic
Res. 2010;19:1053–1068.
32. Xu Q, Yu KQ, Zhu AD, Ye JL, Liu Q, Zhang JC, Deng XX. Comparative transcripts profiling
reveals new insight into molecular processes regulating lycopene accumulation in a
sweet orange (Citrus sinensis) red-flesh mutant. BMC Genomics. 2009;10:540.
33. Fraser PD, Hedden P, Cooke DT, Bird CR, Schuch W, Bramley PM. The effect of reduced
activity of phytoene synthase on isoprenoid levels in tomato pericarp during fruit
development and ripening. Planta. 1995.196:321–326.
34. Borthakur PK, Ranjit K. Effect of growth regulators on chlorophyll and carotenoid content in the flavedo
of Baramasi lemon fruits during storage. Haryana J Hortic Sci. 2005;34(1/2):42–44.
35. Dijkstra C, Adams E, Bhattacharya A, Page AF, Anthony P, Kourmpetli S, Power JB, Lowe
KC, Thomas SG, Hedden P, Phillips AL, Davey MR. Over-expression of a gibberellin 2-oxidase
gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Rep. 2008;27:463–470.
36. Löhr B, Streitner C, Steffen A, Lange T, Staiger D. A glycine-rich RNA-binding protein
affects gibberellin biosynthesis in Arabidopsis. Mol Biol Rep. 2014;41:439–445.
37. Tonelli C, Salvi C, Gavazzi G, Marziani LGP, Rossi G, Longo C. Benzyladenine partially
restores the normal phenotype in a chlorophyll mutant of maize. J Plant Physiol. 1989;133(6):713–718.
38. Bai BZ, Kastori R. Physiological effects of the cytokinin 6-BA in sunflower. Oil Crops of China. 1990;4: 95–101.
39. Tung MS. Cytokinins-efficiently enhanced pigment production in detached cotyledons of dark-grown
cucumber seedlings. J Agric Forest. 1997;46(2):85–91.
40. Zhao J, Bai WQ, Zeng QW, Song SQ, Zhang M, Li XB, Hou L, Xiao YH, Luo M, Li DM, Luo
XY, Pei Y. Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. Mol Breeding. 2015;35:60.
41. Barry CS, Giovannoni JJ. Ethylene and fruit ripening. J Plant Growth Regul. 2007;26:143–159.
42. Gao L, Zhao WH, Qu HO, Wang QS, Zhao LX. The yellow‑fruited tomato 1 (yft1) mutant has altered fruit carotenoid accumulation and reduced ethylene production
as a result of a genetic lesion in ETHYLENE INSENSITIVE2. Theor Appl Genet, 2016;129:717–728.
45. Hou BZ, Li CL, Han YY, Shen YY. Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. BMC Plant Biol. 2018;18:162.
47. Ruduś I, Sasiak M, Kępczyński J. Regulation of ethylene biosynthesis at the level
of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiol Plant. 2013;35:295–307.
48. Xie XL, Shen SL, Yin XR, Xu Q, Sun CD, Grierson D, Ferguson I, Chen KS. Isolation,
classification and transcription profiles of the AP2/ERF transcription factor superfamily
in citrus. Mol Biol Rep. 2014;41:4261–4271.
51. Konishi M, Yanagisawa S. Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate
control of EBF2 expression by EIN3. Plant J. 2008;55(5):821–831.
52. Fu CC, Han YC, Kuang JF, Chen JY, Lu WJ. Papaya CpEIN3a and CpNAC2 co-operatively
regulate carotenoid biosynthesis-related genes CpPDS2/4, CpLCY-e and CpCHY-b during fruit ripening. Plant Cell Physiol. 2017;58(12):2155–2165.
53. Wang RH, Yuan XY, Meng LH, Zhu BZ, Zhu HL, Luo YB, Fu DQ. Transcriptome analysis provides
a preliminary regulation route of the ethylene signal transduction component, SlEIN2, during tomato ripening. PLOS ONE. 2016;11 (12):e0168287.
54. Zhu ZQ, Guo HW. Genetic basis of ethylene perception and signal transduction in Arabidopsis. J Integr Plant Biol. 2008; 50(7):808–815.
55. Deng H, Pirrello J, Chen Y, Li N, Zhu SH, Chirinos X, Mondher B, Liu YS, Liu MC. A novel tomato F-box protein, SlEBF3, is involved in tuning ethylene signaling during
plant development and climacteric fruit ripening. The Plant J. 2018;95(4): 648–658.
56. Su LY, Diretto G, Purgatto E, Danoun S, Zouine M, Li ZG, Roustan JP, Bouzayen M, Giuliano
G, Chervin C. Carotenoid accumulation during tomato fruit ripening is modulated by
the auxin-ethylene balance. BMC Plant Biol. 2015;15:114.
58. Thula S, Akash, NandKiran N, Rahul K. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). Plant Mol Biol. 2018;98(4/5):455–469.
59. Cho, MS, Henry, EM, Lewis, DR, Wu, GS, Muday, GK, Spalding, EP. Block of ATP-binding cassette B19 ion channel activity by 5-nitro-2-(3-phenylpropylamino)-benzoic
acid impairs polar auxin transport and root gravitropism. Plant Physiol. 2014;166(4):2091–2099.
60. O’Neill DP, Davidson SE, Clarke VC, Yamauchi Y, Yamaguchi S, Kamiya Y, Reid JB, Ross
JJ. Regulation of the gibberellin pathway by auxin and DELLA proteins. Planta. 2010;232:1141–1149.
62. Chen KG, Tian SL, Yandell BS, Kaeppler SM, An YC. Loss-of-function of DELLA protein
SLN1 activates GA signaling in barley aleurone. Acta Physiol Plant. 2010;32:789–800.
63. Shan W, Kuang JF, Chen L, Xie H, Peng HH, Xiao YY, Li XP, Chen WX, He QG, Chen JY, Lu WJ. Molecular characterization of banana NAC transcription factors and their interactions
with ethylene signalling component EIL during fruit ripening. J Exp Bot. 2012;63(14):5171–5187.
64. Ma NN, Feng HL, Meng X, Li D, Yang DY, Wu CG, Meng QW. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol. 2014;14:351.
66. Zhu MK, Chen GP, Zhou SA, Tu Y, Wang Y, Dong TT, Hu ZL. A New tomato NAC (NAM/ATAF1/2/CUC2)
transcription factor, SlNAC4, functions as a positive regulator of fruit ripening
and carotenoid accumulation. Plant Cell Physiol. 2014;55(1):119–135.
68. Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters
involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner.
Plant Physiol. 2011;157(3):1568–1579.
69. Dong TT, Chen GP, Tian SB, Xie QL, Yin WC, Zhang YJ, Hu ZL. A non-climacteric fruit
gene CaMADS-RIN regulates fruit ripening and ethylene biosynthesis in climacteric
fruit. PLoS ONE. 2014;9(4): e95559.
70. Wang YY, Wang WH, Cai JH, Zhang YR, Qin GZ, Tian SP. Tomato nuclear proteome reveals
the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Gen
Biol. 2014;15:548.
71. Yin WC, Yu XH, Chen GP, Tang BY, Wang YS, Liao CG, Zhang YJ, Hu ZL. Suppression of
SlMBP15 inhibits plant vegetative growth and delays fruit ripening in tomato. Front Plant
Sci. 2018;9:938.
75. Xin PF, Gao CS, Cheng CH, Tang Q, Dong ZX, Zhao LN, Zang GG. Identification and characterization
of hemp WRKY transcription factors in response to abiotic stresses. Biol Plantarum.
2016;60(3): 489–495.
76. Sun YZ, Niu YY, Xu J, Li Y, Luo HM, Zhu YJ, Liu MZ, Wu Q, Song JY, Sun C, Chen SL.
Discovery of WRKY transcription factors through transcriptome analysis and characterization
of a novel methyl jasmonateinduciblePqWRKY1 gene from Panax quinquefolius. Plant Cell Tiss Organ Cult. 2013;114:269–277.
79. Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M. Alteration of flower colour
in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Res. 2018;27:25–38.
81. Ballester AR, Molthoff J,Vos RD, Hekkert BTL,Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the
gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant
Physiol. 2010;152(1):71–84.
84. Zhu F, Luo T, Liu CY, Wang Y, Yang HB, Yang W, Zheng L, Xiao X, Zhang MF, Xu RW, Xu JG, Zeng YL, Xu J, Xu Q, Guo WW, Larkin RM, Deng XX, Cheng YJ. An R2R3-MYB transcription factor represses the transformation of alpha - and beta
-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytol. 2017;216(1):178–192.
85. Persak H, Pitzschke A. Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic
stress. Int J Mol Sci. 2014;15(2):2517–2537.
87. Guo JE, Hu ZL, Yu XH, Li AZ, Li FF, Wang YS, Tian SB, Chen GP. A histone deacetylase
gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation.
Plant Cell Rep. 2018;37: 125–135.
88. Yoon G M, Kieber JJ. 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell. 2013;25(3):1016–1028.
89. Guo F, Yu HW, Xu Q, Deng XX. Transcriptomic analysis of differentially expressed genes
in an orange-pericarp mutant and wild type in pummelo (Citrus grandis). BMC Plant
Biol. 2015;15:44.
90. Li WY, Liu CH, He M, Li JQ, Cai YQ, Ma YH, Xu J. Largely different contents of terpenoids
in beef red-flesh tangerine and its wild type. BMC Plant Biol. 2017;17: 36.
91. Zhu XQ, Jin XL, Feng YQ, Shen YY. An effective method for isolation of high-quality
total RNA from fruit pulps. J Beijing Univ Agric. 2008; 23(2):16–18.