1. Glutamic Acid and Monosodium Glutamate (MSG) Market Size is likely to reach more than 4 million tons by 2023 | Global Market Insights. https://www.mynewsdesk.com/us/global-market-insights/pressreleases/glutamic-acid-and-monosodium-glutamate-msg-market-size-is-likely-to-reach-more-than-4-million-tons-by-2023-1379400.
2. China drives MSG growth both domestically and in exports. https://www.foodnavigator-asia.com/Article/2015/10/08/China-drives-MSG-growth-both-domestically-and-in-exports.
3. Global Demand for Flavor Enhancer MSG Grows as Incomes Expand, Cultures Shift, IHS Says | Business Wire. https://www.businesswire.com/news/home/20151006005707/en/Global-Demand-for-Flavor-Enhancer-MSG-Grows-as-Incomes-Expand-Cultures-Shift-IHS-Says.
4. Ingestion of monosodium glutamate (MSG) in adult male rats reduces sperm count, testosterone, and disrupts testicular histology. https://escholarship.org/uc/item/6wq9p6zn.
5. Zanfirescu, A. et al. A review of the alleged health hazards of monosodium glutamate. Compr. Rev. food Sci. food Saf. 18, 1111 (2019).
6. Ahluwalia, P., Tewari, K. & Choudhary, P. Studies on the effects of monosodium glutamate (MSG) on oxidative stress in erythrocytes of adult male mice. Toxicol. Lett. 84, 161–165 (1996).
7. Okwudiri Onyema, O., Sylvanus Alisi, C., Oscar Okwudiri, O., Chinwe Sylvanus, A. & Adaeze Peace, I. Monosodium glutamate induces oxidative stress and affect glucose metabolism in the kidney of rats Singeing of Cattle Hides View project Monosodium Glutamate Induces Oxidative Stress and Affects Glucose Metabolism in the Kidney of Rats. Res. Artic. Int. J. Biochem. Res. Rev. 2, 1–11 (2012).
8. Mondal, M., Sarkar, K., Nath, P. P. & Paul, G. Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. Environ. Toxicol. 33, 198–208 (2018).
9. Mustafa, Z., Ashraf, S., Tauheed, S. F. & Ali, S. Monosodium Glutamate, Commercial Production, Positive and Negative Effects on Human Body and Remedies - A Review. undefined (2017) doi:10.32628/IJSRST173490.
10. Hernández-Bautista, R. J. et al. Biochemical Alterations during the Obese-Aging Process in Female and Male Monosodium Glutamate (MSG)-Treated Mice. Int. J. Mol. Sci. 15, 11473 (2014).
11. María Catalina, O. et al. Monosodium Glutamate Affects Metabolic Syndrome Risk Factors on Obese Adult Rats: A Preliminary Study. J. Obes. Weight. Medicat. 4, (2018).
12. Hajihasani, M. M., Soheili, V., Zirak, M. R., Sahebkar, A. & Shakeri, A. Natural products as safeguards against monosodium glutamate-induced toxicity. Iran. J. Basic Med. Sci. 23, 416 (2020).
13. Kazmi, Z., Fatima, I., Perveen, S. & Malik, S. S. Monosodium glutamate: Review on clinical reports. Int. J. Food Prop. 20, 1807–1815 (2017).
14. Niaz, K., Zaplatic, E. & Spoor, J. Extensive use of monosodium glutamate: A threat to public health? EXCLI J. 17, 273 (2018).
15. Lucas, D. R. & Newhouse, J. P. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA. Arch. Ophthalmol. 58, 193–201 (1957).
16. Hossain, A., Roy, S. & Datta, A. An Overview on Monosodium Glutamate: Its direct and indirect effects ‘Measurement of solubility and solvation thermodynamics of pharmaceutically important biomolecules in mixed solvent systems by experimental and theoretical modeling’ View project NSOU RESEARCH GRANT View project Arup Datta Shibpur dinobundhoo Institution An Overview on Monosodium Glutamate: Its direct and indirect effects. Artic. Res. J. Pharm. Technol. 12, (2019).
17. Manal Said, T. & Nawal, A.-B. Adverse Effects of Monosodium Glutamate on Liver and Kidney Functions in Adult Rats and Potential Protective Effect of Vitamins C and E. Food Nutr. Sci. 2012, 651–659 (2012).
18. Bhattacharya, T., Bhakta, A. & Ghosh, S. K. Long term effect of monosodium glutamate in liver of albino mice after neo-natal exposure.
19. Egbuonu, A. C. C., Obidoa, O., Ezeokonkwo, C. A., Ezeanyika, L. U. S. & Ejikeme, P. M. Hepatotoxic effects of low dose oral administration of monosodium glutamate in male albino rats. African J. Biotechnol. 8, 3031–3035 (2009).
20. Ali, A. A., El-Seify, G. H., Haroun, H. M. El & Soliman, M. A. E. M. M. Effect of monosodium glutamate on the ovaries of adult female albino rats and the possible protective role of green tea. Menoufia Med. J. 27, 793 (2014).
21. Eweka, A. & Om’Iniabohs, F. Histological Studies of the Effects of Monosodium Glutamate on the Ovaries of Adult Wistar Rats. Ann. Med. Health Sci. Res. 1, 37 (2011).
22. (PDF) Effects of Monosodium Glutamate in Ovaries of Female Sprague-Dawley Rats. https://www.researchgate.net/publication/284730349_Effects_of_Monosodium_Glutamate_in_Ovaries_of_Female_Sprague-Dawley_Rats.
23. Ajani, E., Ogunlabi, O., Adegbesan, B., Adeosun, O. & Akinwande, O. Nigerian mistletoe (Loranthus micranthusLinn) aqueous leaves extract modulates some cardiovascular disease risk factors in monosodium glutamate induced metabolic dysfunction. African J. Biotechnol. 13, (2015).
24. Hazzaa, S. M., El-Roghy, E. S., Abd Eldaim, M. A. & Elgarawany, G. E. Monosodium glutamate induces cardiac toxicity via oxidative stress, fibrosis, and P53 proapoptotic protein expression in rats. Environ. Sci. Pollut. Res. 2020 2716 27, 20014–20024 (2020).
25. Monosodium glutamate is related to a higher increase in bloo... : Journal of Hypertension. https://journals.lww.com/jhypertension/Fulltext/2011/05000/Monosodium_glutamate_is_related_to_a_higher.7.aspx?casa_token=aJdbM7DtJLIAAAAA:jUcuUMa7zbfVO3z5pePSmEK0KDhinVU9w70RIFtabjzSElnNQgxMC9DX7qLCscthY3uF0RxsHuzfgMKvRcDthqzFVbA4iN21EQ.
26. Chakraborty, S. P. Patho-physiological and toxicological aspects of monosodium glutamate. https://doi.org/10.1080/15376516.2018.1528649 29, 389–396 (2019).
27. Lopes, F. N. C. et al. Antioxidant therapy reverses sympathetic dysfunction, oxidative stress, and hypertension in male hyperadipose rats. Life Sci. 295, 120405 (2022).
28. Dhar, R. et al. MTiness in pseudo-malignant behavior of trophoblasts during embryo implantation. Front. Biosci. - Landmark 26, 717–743 (2021).
29. Cohen, M. & Bischof, P. Factors Regulating Trophoblast Invasion. Gynecol. Obstet. Invest. 64, 126–130 (2007).
30. Chang, W. L. et al. Plac8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion and migration. Dev. 145, (2018).
31. Farombi, E. O. & Onyema, O. O. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: Modulatory role of vitamin C, vitamin E and quercetin. Hum. Exp. Toxicol. 25, 251–259 (2006).
32. (PDF) Monosodium glutamate induces oxidative stress and affect glucose metabolism in the kidney of rats. https://www.researchgate.net/publication/298105979_Monosodium_glutamate_induces_oxidative_stress_and_affect_glucose_metabolism_in_the_kidney_of_rats.
33. MSG—monosodium glutamate - Cancer FactFinder. https://cancerfactfinder.org/diet-nutrition/monosodium-glutamate/.
34. Al-Agili, Z. H. The Effect of Food Additives (Monosodium Glutamate - MSG) On Human Health - A Critical Review. J. AlMaarif Univ. Coll. 362–369 (2020) doi:10.51345/.V31I1.235.G162.
35. Das, D., Banerjee, A., Bhattacharjee, A., Mukherjee, S. & Maji, B. K. Dietary food additive monosodium glutamate with or without high-lipid diet induces spleen anomaly: A mechanistic approach on rat model. Open Life Sci. 17, 22 (2022).
36. Araujo, T. R. et al. Benefits of l-alanine or l-arginine supplementation against adiposity and glucose intolerance in monosodium glutamate-induced obesity. Eur. J. Nutr. 56, 2069–2080 (2017).
37. He, K. et al. Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). Am. J. Clin. Nutr. 93, 1328–1336 (2011).
38. Collison, K. S. et al. Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutr. Metab. 9, 1–13 (2012).
39. Rahayu, M. S., Sri Wahyuni & Yuziani. Effects of Oral Administration of Monosodium Glutamate (MSG) on Obesity in Male Wistar Rats (Rattus Norvegicus). Biosci. Med. J. Biomed. Transl. Res. 5, 879–882 (2021).
40. Roman-Ramos, R. et al. Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mRNA expression of peroxisome proliferator-activated receptors in mice. Basic Clin. Pharmacol. Toxicol. 108, 406–413 (2011).
41. Long term effects of monosodium glutamate on spermatogenesis following neonatal exposure in albino mice--a histological study | Request PDF. https://www.researchgate.net/publication/50905995_Long_term_effects_of_monosodium_glutamate_on_spermatogenesis_following_neonatal_exposure_in_albino_mice--a_histological_study.
42. Merve Bayram, H., Fatih Akgoz, H., Kizildemir, O. & Ozturkcan, A. Monosodium Glutamate: Review on Preclinical and Clinical Reports. 13, 149 (2023).
43. Monosodium Glutamate, Commercial Production, Positive and Negative Effects on Human Body and Remedies - A Review | Semantic Scholar. https://www.semanticscholar.org/paper/Monosodium-Glutamate%2C-Commercial-Production%2C-and-on-Mustafa-Ashraf/391860fc838ab808c7ca4ebd079bf80bf439119f.
44. Airaodion, A. I. Toxicological Effect of Monosodium Glutamate in Seasonings on Human Health. Glob. J. Nutr. Food Sci. 1, (2019).
45. Harvest of the Sea Launches Seafood Medley at Costco Locations Regionally | News | wfmz.com. https://www.wfmz.com/news/pr_newswire/pr_newswire_food_beverages/harvest-of-the-sea-launches-seafood-medley-at-costco-locations-regionally/article_5698eb68-5b02-5786-a896-844347a68d85.html.
46. Monosodium Glutamate (MSG) - Chemical Economics Handbook (CEH) | IHS Markit. https://ihsmarkit.com/products/monosodium-glutamate-chemical-economics-handbook.html.
47. Banerjee, A., Mukherjee, S. & Maji, B. K. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicol. Reports 8, 938 (2021).
48. Pavlovic, V. et al. Effect of monosodium glutamate on oxidative stress and apoptosis in rat thymus. Mol. Cell. Biochem. 303, 161–166 (2007).
49. Rosa, S. G., Chagas, P. M., Pesarico, A. P. & Nogueira, C. W. Monosodium glutamate induced nociception and oxidative stress dependent on time of administration, age of rats and susceptibility of spinal cord and brain regions. Toxicol. Appl. Pharmacol. 351, 64–73 (2018).
50. Yang, Y. et al. Reactive Oxygen Species are Essential for Placental Angiogenesis During Early Gestation. Oxid. Med. Cell. Longev. 2022, 1–14 (2022).
51. Weaver, A. M. Regulation of Cancer Invasion by Reactive Oxygen Species and Tks Family Scaffold Proteins. Sci. Signal. 2, pe56 (2009).
52. Perillo, B. et al. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 2020 522 52, 192–203 (2020).
53. Gopalakrishna, R. & Jaken, S. Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med. 28, 1349–1361 (2000).
54. Lyall, F. The human placental bed revisited. Placenta 23, 555–562 (2002).
55. Foidart, J. M., Hustin, J., Dubois, M. & Schaaps, J. P. The human placenta becomes haemochorial at the 13th week of pregnancy. Int. J. Dev. Biol. 36, 451–453 (2002).
56. Ahmed, A., Dunk, C., Ahmad, S. & Khaliq, A. Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen - A review. Placenta 21, (2000).
57. Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604–4613 (1996).
58. Jauniaux, E., Hempstock, J., Greenwold, N. & Burton, G. J. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am. J. Pathol. 162, 115–125 (2003).
59. Jauniaux, E., Greenwold, N., Hempstock, J. & Burton, G. J. Comparison of ultrasonographic and Doppler mapping of the intervillous circulation in normal and abnormal early pregnancies. Fertil. Steril. 79, 100–106 (2003).
60. Huppertz, B. The Critical Role of Abnormal Trophoblast Development in the Etiology of Preeclampsia. Curr. Pharm. Biotechnol. 19, 771–780 (2018).
61. Weiss, G., Sundl, M., Glasner, A., Huppertz, B. & Moser, G. The trophoblast plug during early pregnancy: a deeper insight. Histochem. Cell Biol. 146, 749–756 (2016).
62. Mukherjee, I. et al. Oxidative stress-induced impairment of trophoblast function causes preeclampsia through the unfolded protein response pathway. Sci. Rep. 11, (2021).
63. Xu, X. et al. Retraction for Xu et al., Reactive oxygen species-triggered trophoblast apoptosis is initiated by endoplasmic reticulum stress via activation of caspase-12, CHOP, and the JNK pathway in Toxoplasma gondii infection in mice. Infect. Immun. 83, 1735 (2015).
64. Fisher, J. J., Bartho, L. A., Perkins, A. V. & Holland, O. J. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin. Exp. Pharmacol. Physiol. 47, 176–184 (2020).
65. Greenbaum, S. et al. Spatio-temporal coordination at the maternal-fetal interface promotes trophoblast invasion and vascular remodeling in the first half of human pregnancy. bioRxiv 2021.09.08.459490 (2021).
66. Sharma, S., Godbole, G. & Modi, D. Decidual Control of Trophoblast Invasion. Am. J. Reprod. Immunol. 75, 341–350 (2016).
67. Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401 (2013).
68. Tebay, L. E. et al. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med. 88, 108 (2015).
69. Kobayashi, M. et al. The Antioxidant Defense System Keap1-Nrf2 Comprises a Multiple Sensing Mechanism for Responding to a Wide Range of Chemical Compounds. Mol. Cell. Biol. 29, 493–502 (2009).
70. Mukherjee, I. et al. Oxidative stress-induced impairment of trophoblast function causes preeclampsia through the unfolded protein response pathway. Sci. Reports 2021 111 11, 1–20 (2021).