1. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecology letters 15, 365–377 (2012).
2. Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science 287, 443 (2000).
3. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990 (2008).
4. Tompkins, D. M., Carver, S., Jones, M. E., Krkošek, M. & Skerratt, L. F. Emerging infectious diseases of wildlife: a critical perspective. Trends in parasitology 31, 149–159 (2015).
5. Harvell, C. D. et al. Emerging marine diseases--climate links and anthropogenic factors. Science 285, 1505–1510 (1999).
6. Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).
7. Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
8. Baker, R. E. et al. Infectious disease in an era of global change. Nature Reviews Microbiology 20, 193–205 (2022).
9. Maynard, J. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nature Climate Change 5, 688–694 (2015).
10. Kock, R. A. et al. Saigas on the brink: Multidisciplinary analysis of the factors influencing mass mortality events. Science advances 4, eaao2314 (2018).
11. Kafle, P. et al. Range expansion of muskox lungworms track rapid arctic warming: implications for geographic colonization under climate forcing. Scientific reports 10, 1–14 (2020).
12. Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).
13. Ros, A. et al. Current and projected impacts of the parasite Tetracapsuloides bryosalmonae (causative to proliferative kidney disease) on Central European salmonid populations under predicted climate change. Freshwater Biology 66, 1182–1199 (2021).
14. Paniw, M. et al. Higher temperature extremes exacerbate negative disease effects in a social mammal. Nature Climate Change 1–7 (2022).
15. Greenspan, S. E. et al. Warming drives ecological community changes linked to host-associated microbiome dysbiosis. Nature Climate Change 10, 1057–1061 (2020).
16. Sepulveda, J. & Moeller, A. H. The effects of temperature on animal gut microbiomes. Frontiers in microbiology 11, (2020).
17. Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. The ISME journal 13, 2916–2926 (2019).
18. Sommer, F. & Bäckhed, F. The gut microbiota—masters of host development and physiology. Nature Reviews Microbiology 11, 227–238 (2013).
19. Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends in Ecology & Evolution 31, 689–699 (2016).
20. Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodiversity and Conservation 26, 763–786 (2017).
21. Harris, E. V., de Roode, J. C. & Gerardo, N. M. Diet–microbiome–disease: Investigating diet’s influence on infectious disease resistance through alteration of the gut microbiome. PLoS pathogens 15, e1007891 (2019).
22. Fleischer, R. et al. Interaction between MHC diversity and constitution, gut microbiota and Astrovirus infections in a neotropical bat. Molecular Ecology (2022).
23. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).
24. Moeller, A. H. & Sanders, J. G. Roles of the gut microbiota in the adaptive evolution of mammalian species. Philosophical Transactions of the Royal Society B 375, 20190597 (2020).
25. Carmody, R. N., Sarkar, A. & Reese, A. T. Gut microbiota through an evolutionary lens. Science 372, 462–463 (2021).
26. Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).
27. Parsons, S. D., Drewe, J. A., van Pittius, N. C. G., Warren, R. M. & Van Helden, P. D. Novel cause of tuberculosis in meerkats, South Africa. Emerging infectious diseases 19, 2004 (2013).
28. Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Life history responses of meerkats to seasonal changes in extreme environments. Science 363, 631–635 (2019).
29. Van de Ven, T. M., Fuller, A. & Clutton‐Brock, T. H. Effects of climate change on pup growth and survival in a cooperative mammal, the meerkat. Functional Ecology 34, 194–202 (2020).
30. Müller-Klein, N. et al. Two decades of tuberculosis surveillance reveal disease spread, high levels of exposure and mortality, and marked variation in disease progression in wild meerkats. (2022).
31. Pattinson, N. B. et al. Collapse of Breeding Success in Desert-Dwelling Hornbills Evident Within a Single Decade. Frontiers in Ecology and Evolution 434 (2022).
32. Groenewoud, F. & Clutton‐Brock, T. Meerkat helpers buffer the detrimental effects of adverse environmental conditions on fecundity, growth and survival. Journal of Animal Ecology 90, 641–652 (2021).
33. Drewe, J. A., Eames, K. T. D., Madden, J. R. & Pearce, G. P. Integrating contact network structure into tuberculosis epidemiology in meerkats in South Africa: Implications for control. Preventive Veterinary Medicine 101, 113–120 (2011).
34. Donadio, J. et al. Characterizing Tuberculosis progression in wild meerkats (Suricata suricatta) from fecal samples and clinical signs. The Journal of Wildlife Diseases 58, 309–321 (2022).
35. Patterson, S. J. et al. Combining analytical approaches and multiple sources of information to improve interpretation of diagnostic test results for tuberculosis in wild meerkats. Animals 11, 3453 (2021).
36. Clutton-Brock, T. H. & Manser, M. Meerkats: cooperative breeding in the Kalahari. Cooperative breeding in vertebrates 294, 317 (2016).
37. Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M. B. & Sommer, S. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nature communications 12, 1–12 (2021).
38. Risely, A. et al. Gut microbiota repeatability is contingent on temporal scale and age in wild meerkats. (2022).
39. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581–583 (2016).
40. Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).
41. Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res 45, e23 (2017).
42. Thorley, J. et al. Sex‐independent senescence in a cooperatively breeding mammal. Journal of Animal Ecology 89, 1080–1093 (2020).
43. Hong, B.-Y. et al. Microbiome changes during tuberculosis and antituberculous therapy. Clinical microbiology reviews 29, 915–926 (2016).
44. Dumas, A. et al. The host microbiota contributes to early protection against lung colonization by Mycobacterium tuberculosis. Frontiers in Immunology 9, 2656 (2018).
45. Sarkar, A. et al. Microbial transmission in animal social networks and the social microbiome. Nature ecology & evolution 4, 1020–1035 (2020).
46. Alavi, S. et al. Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell 181, 1533-1546. e13 (2020).
47. Halsch, C. A. et al. Insects and recent climate change. Proceedings of the national academy of sciences 118, e2002543117 (2021).
48. Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences 113, 10376–10381 (2016).
49. Johnson, C. A. et al. Coevolutionary transitions from antagonism to mutualism explained by the Co-Opted Antagonist Hypothesis. Nature communications 12, 1–11 (2021).
50. Lambert, M. R., Brans, K. I., Des Roches, S., Donihue, C. M. & Diamond, S. E. Adaptive evolution in cities: progress and misconceptions. Trends in Ecology & Evolution 36, 239–257 (2021).
51. Blekhman, R. et al. Common methods for fecal sample storage in field studies yield consistent signatures of individual identity in microbiome sequencing data. Scientific reports 6, 1–5 (2016).
52. Shen, W., Wu, D., Qiu, W. & Yi, X. Evaluation of freeze-drying for quantification of the microbiome and metabolome in neonatal faecal samples. Medicine in Microecology 8, 100044 (2021).
53. Bensch, H. M., Tolf, C., Waldenström, J., Lundin, D. & Zöttl, M. Freeze-drying can replace cold-chains for transport and storage of fecal microbiome samples. PeerJ 10, e13095 (2022).
54. Wu, Y. et al. Lyophilization is suitable for storage and shipment of fresh tissue samples without altering RNA and protein levels stored at room temperature. Amino Acids 43, 1383–1388 (2012).
55. Mareninov, S. et al. Lyophilized brain tumor specimens can be used for histologic, nucleic acid, and protein analyses after 1 year of room temperature storage. Journal of neuro-oncology 113, 365–373 (2013).
56. Molnar, A. et al. Lyophilization and homogenization of biological samples improves reproducibility and reduces standard deviation in molecular biology techniques. Amino acids 53, 917–928 (2021).
57. Menke, S., Gillingham, M. A., Wilhelm, K. & Sommer, S. Home-made cost effective preservation buffer is a better alternative to commercial preservation methods for microbiome research. Frontiers in microbiology 8, 102 (2017).
58. Hardwick, S. A., Deveson, I. W. & Mercer, T. R. Reference standards for next-generation sequencing. Nature Reviews Genetics 18, 473 (2017).
59. Lin, Y., Gifford, S., Ducklow, H., Schofield, O. & Cassar, N. Towards quantitative microbiome community profiling using internal standards. Applied and environmental microbiology 85, (2019).
60. Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. (2018).
61. Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal 11, 2639–2643 (2017).
62. Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic acids research 35, 7188–7196 (2007).
63. Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. Msystems 3, (2018).
64. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).
65. Agafonkin, V. & Thieurmel, B. suncalc: Compute sun position, sunlight phases, moon position, and lunar phase. R package version 0.3. (2017).
66. Peschel, S., Müller, C. L., von Mutius, E., Boulesteix, A.-L. & Depner, M. NetCoMi: network construction and comparison for microbiome data in R. Briefings in bioinformatics 22, bbaa290 (2021).
67. Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-17. (2022).
68. Risely, A., Wilhelm, K., Clutton-Brock, T. H., Manser, M. & Sommer, S. Data and code for: Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats, Suricata suricatta. Version 1.0. Zenodo (2021) doi:10.5281/zenodo.5337076.