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Abstract

This papers derives finite sample results to assess the consistency of
Generalized Pareto regression trees introduced by Farkas et al. [2021]
as tools to perform extreme value regression for heavy-tailed distri-
butions. This procedure allows one to constitute clusters of similar
tail behaviors depending on the value of the covariates, based on a
recursive partition of the sample and simple model selection rules.
The results we provide are obtained from concentration inequalities,
and are valid for a finite sample size. A misspecification bias that
arises from the use of a “Peaks over Threshold” approach is also
taken into account. Moreover, the derived properties legitimate the
pruning strategies, that is the model selection rules, used to select
a proper tree that achieves a compromise between simplicity and
good fit. The methodology is illustrated through a simulation study,
and a real data application in insurance against natural disasters.

Keywords: Extreme value theory; Regression trees; Concentration
Inequalities; Generalized Pareto Distribution
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2 1 INTRODUCTION
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1 Introduction

Extreme value theory (EVT) is the branch of statistics which has been devel-
oped and broadly used to handle extreme events, such as extreme floods, heat
waves episodes or extreme financial losses [Katz et al., 2002, Embrechts et al.,
2013]. One of the key results behind the success of this approach was proved
by Balkema and de Haan [1974]: they show that the tail of the distribution
of a series of observations can be approximated by a parametric family of
distributions, namely Generalized Pareto (GP) distributions. This property
allows the statistician to find information from the largest observations of a
random sample to extrapolate the tail. This yields the so-called Peaks over
Threshold (PoT) method introduced by Smith [1984] which consists in fitting
a GP distribution to the excesses above some (high) suitably chosen thresh-
old. In a regression framework, the parameters of this GP distribution depend
on covariates reflecting the fact that different values of these covariates may
result in a different tail behavior of the response variable. In this paper, we
study the use of regression trees to perform GP regression on the excesses
for heavy-tailed distributions. This ensemble method, introduced by Breiman
et al. [1984], determines clusters of similar tail behaviors depending on the
value of the covariates, based on a recursive partition of the sample and sim-
ple model selection rules. In the present work, we provide theoretical results
and empirical evidence on the consistency of such a procedure and of these
selection rules. The result we provide are based on concentration inequalities,
in order to hold for finite sample sizes. The main difficulty stands in the mis-
specification of the model and on handling the fact that the distributions are
heavy tailed.

Tail regression is a challenging task. Several papers have been interested in
extreme quantile regression, to name a few, in 2005, Chernozhukov [2005] and,
Wang et al. [2012] derive extreme quantile estimators assuming a linear form
for the conditional quantile. Gardes and Stupfler [2019] and Velthoen et al.
[2019] use conditional intermediate-level quantiles to extrapolate above the
threshold and deduce estimators for extreme conditional quantiles. Another
approach is to model the parameters of the GP distribution of functions of
the covariates e.g. as local polynomials [Beirlant and Goegebeur, 2004] or
as generalized additive models [Chavez-Demoulin et al., 2015]. Very recently,
Velthoen et al. [2021] proposed to a gradient boosting procedure to estimate
conditional GP distribution. Let us note that the nonparametric approaches
rely on regularity assumptions on the way the tail of the distribution evolves
with the covariates (which are required to be continuous through the use of
kernel smoothing). A nice feature of the regression tree approach we consider
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in the present paper is its ability to handle several covariates which compo-
nents may be either discrete or continuous. Moreover, this method is adapted
to situations where the tail behavior is supposed to be significantly different
depending on the characteristics, as for example it is the case in an application
to cyber-insurance considered in a former paper [see Farkas et al., 2021].

Regression trees, introduced by Breiman et al. [1984] along with the CART
algorithm (for Clustering And Regression Trees), are flexible tools to per-
form a regression and clustering task simultaneously. They have been used
in various fields, including industry [González et al., 2015], geology [see e.g.
Rodriguez-Galiano et al., 2015], ecology [see e.g. De’ath and Fabricius, 2000],
claim reserving in insurance [Lopez et al., 2016]. Through the iterative split-
ting algorithm used in CART, nonlinearities are introduced in the way the
distribution is modeled, while furnishing an intelligible interpretation of the
final classification of response variables. The splitting criterion—used to iter-
atively separate observations into clusters of similar behaviors—depends on
the type of problems one is considering. While the standard CART algorithm
relies on mean-squared criterion to perform mean-regression, alternative loss
functions have been considered as in [Chaudhuri and Loh, 2002] for quantile
regression, or in [Su et al., 2004] who used a log-likelihood based loss. Loh
[2011, 2014] provide detailed descriptions of regression trees procedures and a
review of their variants. In this paper, building on the result of Balkema and
de Haan [1974] , we use a GP log-likelihood loss, as in [Farkas et al., 2021], to
perform extreme value regression.

The rest of the paper is organized as follows. In Section 2, we introduce
notations and describe the GP regression tree algorithm. Section 3 lists the
main results of this paper, that is deviation bounds for the regression tree
estimator for finite sample size, and consistency of the “pruning” (that is model
selection) strategy. Empirical results are gathered in Section 4, which provides
a simulation study, and a real data analysis in natural disaster insurance.
Detailed proofs of the technical results are shown in the Appendix.

2 Regression trees for extreme value analysis

This section describes the estimation method (GP regression trees) that we
consider in this paper, and which has already been introduced by Farkas et al.
[2021]. Some classical results in EVT are given in Section 2.1 to motivate the
GP approximation. Regression trees adapted to this context are described in
Section 2.2. A short discussion on the advantage of this technique compared
to competing approaches is developed in Section 2.3.

2.1 Extreme value theory and regression

Let us consider independent and identically distributed observations Y1, Y2, . . .
with an unknown survival function F (that is F (y) = P (Y1 > y)). A natu-
ral way to define extreme events is to consider the values of Yi which have
exceeded some high threshold u. The excesses above u are then defined as the
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variables Yi−u given that Yi > u. The asymptotic behavior of extreme events
is characterized by the distribution of the excesses which is given by

Fu(z) = P [Y1 − u > z | Y1 > u] =
F (u+ z)

F (u)
, z > 0 .

Pickands [1975] showed that, if F satisfies the following property

lim
t→∞

F (ty)

F (y)
= y−1/γ0 , ∀y > 0, (1)

with γ0 > 0, then

lim
u→∞

sup
z>0

|Fu(z)−Hσ0u,γ0
(z)| = 0 (2)

for some σ0u > 0 and Hσ0u,γ0
necessarily belongs to the Generalized Pareto

(GP) distributions family which distribution function is of the form

Hσ0u,γ0
(z) =

(
1 + γ0

z

σ0u

)−1/γ0

, z > 0,

where σ0u > 0 is a scale parameter and γ0 > 0 is a shape parameter, which
reflects the heaviness of the tail distribution. Especially, if γ0 ∈]0; 1[, the
expectation of Y1 is finite whereas if γ0 ≥ 1 the expectation of Y1 is infinite.
More details on these results can be found in e.g. [Coles, 2001, Beirlant et al.,
2004].

Remark 1 Note that the shape parameter γ of a Generalized Pareto distribution can
be negative. Here, we focus on the case γ > 0 which corresponds to the domain of
heavy-tailed distributions. The first technical reason is that we need some smoothness
on the GP log-likelihood to derive our non-asymptotic results. Then, the applications
we have in mind, as in Section 4, concern natural catastrophes which fail into the
domain of heavy tails distributions.

In practice, the so-called Peaks over Threshold (PoT) method is widely
used [see Davison and Smith, 1990, Coles, 2001]. It consists in choosing a high
threshold u and fitting a GP distribution on the excesses above that threshold
u. The estimation of the parameters σ0u and γ0 may be done by maximizing
the GP likelihood. The choice of the threshold u can be understood as a
compromise between bias and variance: the smaller the threshold, the less valid
the asymptotic approximation, leading to bias; on the other hand, a too high
threshold will generate few excesses to fit the model, leading to high variance.
The existing methods are mostly graphical, up to our knowledge, no automatic
data-driven selection procedure is available.
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In the present paper, we consider a regression framework, that is that
our goal to know the impact of some random covariates X on the tail of the
distribution of a response variable Y. The previous convergence results hold,
but for quantities σ0u, γ0 and u that may depend on X. More precisely, this
means that, if we assume that γ0(x) > 0 for all x (which is the assumption
that we will make throughout this paper), then (1) becomes

lim
t→∞

F (ty | x)
F (y | x) = y−1/γ0(x), ∀y > 0, (3)

where F (y | x) = P(Y ≥ y | X = x) [see Beirlant et al., 2004, and references
therein], and (2) becomes

lim
u(x)→∞

sup
z>0

|Fu(x)(z | x)−Hσ0u(x)(x),γ0(x)(z)| = 0. (4)

where Fu(x)(z | x) = P [Y − u(x) > z | Y > u(x),X = x].
Suppose that we observe (Yi,Xi)1≤i≤n a sample of (Y,X), where X belongs

to a compact set X . Following the PoT approach, the estimation of the function
γ0(X) and σ0(X) = σ0u(X) can typically be done by fitting a regression model
on the data points (Yi,Xi) such that Yi exceeds a proper threshold u(Xi).
More precisely, let us define

θ∗(x) = argmax
θ∈Θ

E[ϕ(Y − u(X), θ) | X = x, Y ≥ u(x)]

= argmax
θ∈Θ

E[ϕ(Y − u(X), θ)1Y≥u(X) | X = x], (5)

where θ = (σ, γ)τ (where aτ denotes the transpose of a vector a) and ϕ is the
GP log-likelihood function, that is

ϕ(z, θ) = − log(σ)−
(
1

γ
+ 1

)
log

(
1 +

γz

σ

)
.

From (4), θ∗(x) should be close to θ0(x) = (σ0(x), γ0(x))
τ for u(x) large

enough. Based on this idea, Beirlant and Goegebeur [2004] proposed a nonpara-
metric approximation of the loss function maximized by θ∗. This technique,
based on local polynomials, requires continuity of the covariates and some
smoothness assumptions on θ0. On the other hand, parametric methods
[Chavez-Demoulin et al., 2015, Beirlant and Goegebeur, 2003] have also been
proposed, but relying on a stronger assumption on the shape of θ0.

In the next section, we introduce a regression tree approach which is
adapted to both continuous and discrete variables, and that relies on few
assumptions (since the estimated regression function θ0 does not need to be
smooth).
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2.2 GPD regression trees

Regression Trees are a convenient tool to capture heterogeneous behaviors in
the data, [see Breiman et al., 1984] These models aim at constituting classes of
observations which have a relatively similar behavior in terms of the response
variable Y. These classes are defined by “rules”, which affect an observation to
one of these classes according to the values of its covariates X. These rules are
obtained from the data through the CART (Clustering And Regression Tree)
algorithm, and the non-linearity of the procedure allows for an adaptation to
the estimation of large classes of regression functions.

Fitting regression trees relies on a so-called “growing phase”, described
in our context in Section 2.2.1, which corresponds to the determination of
these splitting rules. Section 2.2.2 shows how an estimator of the regression
function θ0 can be deduced from such a tree. The “pruning step”, which can
be understood as a model selection procedure, is described in Section 2.2.3.

2.2.1 Growing step: construction of the maximal tree

The CART algorithm consists in determining iteratively a set of “rules”
x = (x(1), . . . , x(d)) → Rj(x) to split the data, aiming at optimizing some
objective function (also referred to as splitting criterion). In our case, we want
to approximate the criterion (5), that is we are searching for a regression func-

tion θ̂(X) among some class such that
∑n

i=1 ϕ(Yi − u(Xi), θ̂(Xi))1Yi≥u(Xi) is
maximal. To shorten the notation, let φ(Yi, θ) = ϕ(Yi − u(Xi), θ)1Yi≥u(Xi).

A set of rules (Rj)j∈J is a set of maps such that Rj(x) = 1 or 0 depending
on whether some conditions are satisfied by x, with Rj(x)Rj′(x) = 0 for j ̸= j′

and
∑

j Rj(x) = 1. In case of regression trees, these partitioning rules have a
particular structure, since they can be written, for quantitative covariates (the
case of x containing qualitative variables is described in Remark 2 below), as
Rj(x) = 1x1≤x<x2

for some x1 ∈ Rd and x2 ∈ Rd, with comparison symbols to
be understood as component-wise comparisons. In other terms, if d = 1, rules
can be identified as partitioning segments, if d = 2 they are rectangles (hyper-
rectangles in the general case). The determination of these rules from one step
to another can be represented as a binary tree, since each rule Rj at step k
generates two rules Rj1 and Rj2 (with Rj1(x) + Rj2(x) = 0 if Rj(x) = 0) at
step k + 1. The algorithm can be summarized as follows:
Step 1: R1(x) = 1 for all x, and n1 = 1 (corresponds to the root of the tree).
Step k+1: Let (R1, ...Rnk

) denote the rules obtained at step k. For j =
1, . . . , nk,

• if all observations such that Rj(Xi) = 1 have the same characteristics, then
keep rule j as it is no longer possible to segment the population;

• else, rule Rj is replaced by two new rules Rj1 and Rj2 determined in the
following way: for each component X(ℓ) of X = (X(1), . . . , X(d)), define the

best threshold x
(ℓ)
j⋆ to split the data, such that x

(ℓ)
j⋆ = argmaxx(ℓ) Φ(Rj , x

(ℓ)),
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with

Φ(Rj , x
(ℓ)) =

n∑

i=1

φ(Yi, θℓ−(Xi, Rj))1X
(ℓ)
i ≤x(ℓ)Rj(x)

+

n∑

i=1

φ(Yi, θℓ+(Xi, Rj))1X
(ℓ)
i >x(ℓ)Rj(x),

where

θ̂(Rj) = argmax
θ∈Θ

n∑

i=1

φ(Yi, θ)Rj(Xi),

θℓ−(x,Rj) = argmax
θ∈Θ

n∑

i=1

φ(Yi, θ)1X
(ℓ)
i ≤x

Rj(Xi),

θℓ+(x,Rj) = argmax
θ∈Θ

n∑

i=1

φ(Yi, θ)1X
(ℓ)
i >x

Rj(Xi).

Then, select the best component index to consider: ℓ̂ = argmaxℓ Φ(Rj , x
(ℓ)
j⋆ ).

Define the two new rules Rj1(x) = Rj(x)1
x(ℓ̂)≤x

(ℓ̂)
j⋆

, and Rj2(x) =

Rj(x)1
x(ℓ̂)>x

(ℓ̂)
j⋆

.

• Let nk+1 denote the new number of rules.

Stopping rule: stop if nk+1 = nk.

This algorithm has a binary tree structure. The list of rules (Rj)1≤j≤nk

are identified with the leaves of the tree at step k, and the number of leaves
of the tree is increasing from step k to step k + 1. The stopping rule can also
be slightly modified to ensure that there is a minimal number of points of the
original data in each leaf of the tree at each step.

Remark 2 In this version of the CART algorithm, all covariates are continuous or
{0, 1}−valued. For qualitative variables with more than two modalities, they must
be transformed into binary variables, or the algorithm must be slightly modified so
that the splitting step of each Rj should be done by finding the best partition into
two groups on the values of the modalities that minimizes the loss function. This can
be done by ordering the modalities with respect to the average value—or the median
value—of the response for observations associated with this modality.

2.2.2 From the tree to the parameter estimation

From a given set of rules R = (Rj)j=1,...,s, let Tj = {x : Rj(x) = 1}, the
jth leaf of the corresponding tree. The estimator θ̂ associated with a tree
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T = (Tℓ)ℓ=1,...,K (where K is the total number of leaves) is obtained as

θ̂(x) =

K∑

ℓ=1

θ̂(Rj)Rj(x) =

K∑

ℓ=1

θ̂ℓ1x∈Tℓ
.

The maximal tree is the Tmax obtained once the previous algorithm stops. It
corresponds to a trivial estimator ofm, since either the number of observations
in a leaf is one, or all observations in this leaf have the same characteristics x.

The pruning step, presented in the next section, consists in extracting from
the maximal tree a subtree that achieves a compromise between simplicity and
good fit.

2.2.3 Selection of a subtree: pruning step

For the pruning step, a standard way to proceed is to use a penalized approach
to select the appropriate subtree [see Breiman et al., 1984, Gey and Nedelec,
2005]. For a given tree TK with K leaves (Tℓ)ℓ=1,...,K , associated with the

corresponding estimator θ̂, the performance of this tree is measured through
the following criterion

1

kn

K∑

ℓ=1

n∑

i=1

φ(Yi − u, θ̂(Xi))1Xi∈Tℓ
− λK. (6)

For a given level of penalty λ, the selected tree is the one that maximizes
criterion (6), achieving a compromise between good fit and simplicity. To deter-
mine this optimal tree, it is not necessary to compute all the subtrees from
the maximal tree. It suffices to determine, for all K ≥ 0, the subtree TK which
maximizes the criterion (6) among all subtrees with K leaves, and then to
determine the final tree among a list of Kmax trees (where Kmax is the number
of leaves of the maximal tree). The trees TK are easy to determine, since TK is
obtained by removing one leaf to TK+1 in [see p.284–290 Breiman et al., 1984].

The penalization constant λ can be chosen using a test sample or k−fold
cross-validation. In the first case, data are split into two parts before making
the tree grow (a training data of size n and a test sample which is not used
in computing the tree). In the second case, the dataset is randomly split into
k parts which successively act as a training or a test sample [see e.g. Allen,
1974, Stone, 1974].

2.3 Comparison with competing approaches

Compared to competing approaches in extreme value regression, the advantage
of the procedure is to introduce discontinuities in the regression function while
parametric approaches suppose a form of linearity, [e.g. Beirlant and Goege-
beur, 2003]. The more flexible non-parametric approaches, as in [Beirlant and
Goegebeur, 2004], rely on smoothing techniques that require the covariates to
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be continuous. Chavez-Demoulin et al. [2015] propose a semi-parametric frame-
work to separate the continuous covariates from the discrete ones. Smoothing
splines are used to estimate non-parametrically the continuous part, while the
influence of discrete covariates is captured by a parametric function.

3 Main results

In this section, we show that the GP regression tree procedure defined in
Section 2.2 is consistent. Notations and assumptions used throughout this
section are listed in Section 3.1. We then state our first main results on the
consistency of a fixed tree with K leaves, by separating the stochastic part of
the error (Section 3.2) from the misspecification part (Section 3.3) caused by
the GP approximation. The consistency of the pruning methodology is studied
in Section 3.4.

3.1 Notations

Let us recall that the PoT approach consists in considering observations such
that Yi ≥ u(Xi). Below, we will restrain ourselves to the case where u(x) = u.
Our results easily extend to the case where u(x) =

∑m
j=1 uj1x∈Xj , where

(Xj)1≤j≤m are subsets of the space of covariates. Another possible extension
would be to assume that u(x) = f(β,x) for some parameter β and f a known
function. Nevertheless, a choice of such a particular threshold function seems
hard to justify. Hence, we restrain ourselves to the simplest case.

Moreover, the result we provide holds uniformly for u ∈ [umin, umax] to
cover adaptive choice of this parameter. Conditions on umin and umax are given
in Assumption 1.

Assumption 1 If n denote the number of observations, let kn be an intermediate
sequence, that is kn → ∞ and kn/n → 0, as n → ∞. Then, let kn/n denote the
average proportion of Y larger than umin, that is P(Y ≥ umin) = knn

−1. Moreover,
assume that

P(Y ≥ umax) =
u0kn
n

,

for some constant u0 ≥ 1.

Here, kn will denote the average number (up to some constant) of observa-
tions on which the model is fitted. It is hence related to the rate of convergence
of the procedure. The following assumption introduces conditions on this rate
kn and on the space of parameters.

Assumption 2 We assume the parameter space to be Θ = S × Γ where

• S = [σmin, σn], with σn = O(na1), with a1 > 0,
• Γ is a compact set [γmin, γmax], with γmin > 0.
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Moreover, assume that kn = O(na2), with a2 > 0, and that the number of leaves of
the maximal tree Kmax satisfies Kmax ≤ κkn, with κ > 0.

Next, let us introduce some notations regarding the trees. Consider a tree
T (u) with K leaves denoted Tℓ, ℓ = 1, . . . ,K. Introducing the (normalized)
contribution of the log-likelihood to the ℓth leaf, say

Lℓ
n(θ, u) =

1

kn

n∑

i=1

ϕ(Yi − u, θ)1Yi>u1Xi∈Tℓ
,

let
θ̂ℓ(u) = argmax

θ
Lℓ
n(θ, u),

the estimated value of the parameter in the leaf Tℓ. This estimator is expected
to be close to

θ∗ℓ (u) = argmax
θ
Lℓ(θ, u),

introducing Lℓ(θ, u) = knn
−1E[Lℓ

n(θ, u)]. We denote by T ∗(u | T ) the tree
with same leaves as T, but with parameters θ∗ℓ (u). This quantity is not exactly
our target: ideally, we would like to estimate

θ0,ℓ(u) = (σ0(Tℓ, u), γ0(Tℓ)),

such that
lim
t→∞

sup
z>0

|F t(z | Tℓ)−Hσ0(Tℓ,t),γ0(Tℓ)(z)| = 0, (7)

where F t(z | Tℓ) = P(Y − t ≥ z | X ∈ Tℓ, Y ≥ t). We denote T0(u | T ) the tree
with same leaves as T but with parameters θ0,ℓ(u).

If θ = (θℓ)ℓ=1,...,K denotes the set of parameters of a tree with K leaves
(Tℓ)ℓ=1,...,K , we will denote θ(x) the function defined by

θ(x) =

K∑

ℓ=1

θℓ1x∈Tℓ
.

We will first focus on the difference T (u) and T ∗(u | T ) in Section 3.2, which
is the stochastic part of the error. On the other hand, the difference between
T ∗(u | T ) and T0(u | T ) (and ultimately the difference between θ̂(x) and θ0(x))
is studied in Section 3.3 and can be understood as a misspecification term,
caused by the fact that the excesses above the threshold are not exactly GP
distributed.

For ℓ = 1, . . . ,K, let ∇θL
ℓ(θ, u) denote the gradient of Lℓ(θ, u), denoting

∇θL
ℓ(θ, u) = E

(
gθ,ℓ(Yi − u)
hθ,ℓ(Yi − u)

1Xi∈Tℓ
1Yi>u

)
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with, for z > 0,

gθ(z) = ∂σϕ(z, θ) =

(
− 1

σ
+

(
1 +

1

γ

)
γz

σ2(1 + γz
σ )

)
,

hθ(z) = ∂γϕ(z, θ) =

(
− 1

γ2
log

(
1 +

γz

σ

)
+

(
1 +

1

γ

)
z

σ + γz

)
.

To handle the stochastic part, we shall add a few assumptions. We first need
a domination condition on the class of the derivatives of the functions y →
ϕ(y − u, θ). These derivatives are uniformly bounded by

Φ(y) = C(1 + log(1 + wy)),

where C is a constant (not depending on n), and w = γmax/σmin.

Assumption 3 Assume that, for some ρ0 > 0,

mρ0 = E [exp(ρ0Φ(Y ))] <∞.

In fact, this assumption is automatically satisfied if Assumption 2 holds:
since γ(x) ≥ γmin > 0, E[Y1/γ−ε] <∞, for any ε > 0.

Additionally, we need some regularity assumptions on the criterion Lℓ.

Assumption 4 Let

Mℓ
θ1,θ2,θ3,θ4(u) = E

[(
∂σgθ1(Y − u) ∂γgθ2(Y − u)
∂σhθ3(Y − u) ∂γhθ4(Y − u)

)
1Y≥u | X ∈ Tℓ

]
.

Assume that there exists a constant C1 > 0 such that

inf
a,b∈R

inf
θ1,θ2,θ3,θ4∈Θ

inf
u∈[umin,umax]

inf
ℓ=,...,K

∣∣∣∣M
ℓ
θ1,θ2,θ3,θ4(u)

(
a
b

)∣∣∣∣ ≥ C1 max(|a|, |b|).

The condition on the infimum can be relaxed: Assumption 4 comes natu-
rally in using a Taylor expansion. Hence, the infimum with respect of θ1, . . . , θ4
can be restricted to θ2 to θ3 belonging to a small neighborhood of θ1 (and not
to the whole set Θ).

3.2 Deviation bounds for our estimator

In this section, we study the consistency of a fitted tree T (u), a subtree of the
maximal tree Tmax(u), with K leaves (Tℓ)ℓ=1,...,K . For this first result, K is
fixed. Selection results for K are provided in Theorem 3. The leaves of T are
supposed to be fixed sets, as it is classically assumed to derive consistency of
regression trees, [see e.g. Chaudhuri, 2000, Chaudhuri and Loh, 2002]. The tree

T is identified by its leaves (Tℓ)ℓ=1,...,K and the list of parameter values θ̂ℓ(u)

associated with each leaf Tℓ. Considering a leaf Tℓ, θ̂ℓ(u) should ideally be close
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to its limit value θ∗ℓ (u). Hence, we introduce the “oracle” tree T ∗(u | T ) which
is defined by the same subdivision (Tℓ)ℓ=1,...,K as T, but differs via the value
of the parameters in each leaf (which is taken as θ∗ℓ (u) for leaf ℓ. We denote
θ∗(x) the regression function associated with T ∗(u | T ).

To compare T (u) and T ∗(u | T ), the first step is to define a distance
between trees. Let us define ∥(a, b)∥∞ = max(|a|, |b|), and for two trees T and
S, with associated regression function θ(x) and s(x) respectively,

∥T − S∥2 =

(∫
∥θ(x)− s(x)∥2∞dP(x)

)1/2

.

The main result of this section is a deviation bound for ∥T (u)− T ∗(u | T )∥2,
which is Theorem 1 below.

Theorem 1 Under Assumptions 1 to 4, and let β > 0 such that βa2 ≥ 10/ρ0 (with
ρ0 defined in Assumption 3) and for t ≥ c1K(log kn)k

−1
n , with c1 > 0,

P

(

sup
umin≤u≤umax

∥T (u)− T ∗(u | T )∥22 ≥ t

)

≤ 2

(

exp

(
− C1knt
Kβ2(log kn)2

)
+ exp

(

− C2knt1/2
K1/2β log kn

))

+
C3K

k
5/2
n t3/2

,

where C1, C2 and C3 are positive constants.

The proof of Theorem 1 is postponed to the appendix section (Section
A.3). The exponential terms on the right-hand side come from concentration
inequalities proved by Einmahl et al. [2005], while the polynomially decreasing
term is related to the fact that the log-likelihood is an unbounded quantity,
but that can still controlled when considering its expectation.

As a by-product, we obtain the following Corollary 5 (by integration of the
bound of Theorem 1).

Corollary 5

E

[

sup
umin≤u≤umax

∥T (u)− T ∗(u | T )∥22
]

≤ C4
Kβ2(log kn)

2

kn
.

From Corollary 5, one can see that the L2−norm of the stochastic part of

the error, E
[
supumin≤u≤umax

∥T (u)− T ∗(u | T )∥22
]1/2

, is proportional to K1/2,
and, as expected, increases with the complexity of the tree. On the other

hand, the error decreases almost at rate k
1/2
n (up to some logarithmic factor),

which is the convergence rate of standard estimators used to estimate the tail
parameter in absence of covariates.

The proof is again postponed to the appendix (Section A.4).
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3.3 Misspecification bias

For X = x, the ultimate goal is to estimate the tail index parameter θ0(x) =
(σ0u(x), γ0(x)), introduced in (4), by maximization of the GP likelihood, and
from the fact that the true function θ0(x) is not necessarily piecewise constant
as θ∗(x). The difference between θ0(x) and θ∗(x) can be understood as a
misspecification term due to the fact that the observations above the threshold
are not exactly distributed according to a GP distribution. This bias term can
be controlled under second order conditions which are standard in Extreme
Value Analysis.

Indeed, recall that assuming that the underlying distribution F (· | x) satis-
fies Condition (3) guarantees that asymptotically the associate excesses above
the threshold u are GP distributed. For finite samples, the excesses are thus
not exactly GP distributed which introduces some bias term. In order to con-
trol this bias term, a second-order condition is needed, that is a condition to
control the rate of convergence in Condition (3). There exist numerous ways
to express this second-order condition. Here, we consider the same condition
as Condition C.6 in [Beirlant and Goegebeur, 2004]. First, Condition (3) can
be translated into

F (y | x) = y−1/γ0(x)η(y | x) , ∀y > 0, (8)

where η is a slow-varying function, that is η(ty | x)/η(t | x) → 1 as t → ∞,
for all y > 0.

Assumption 6 Assume that for all x, there exist a constant c and a function ψ
such that

η(ty | x)/η(t | x) = 1 + cψ(t)

∫ t

1
vρ−1dv + o(ψ(t))

as t→ ∞ for each y > 0 with ψ(t) > 0 and ψ(t) → 0 as t→ ∞ and ρ ≤ 0.

Let us note that we could also consider the case of c, ψ and ρ depending on
x, and then assume some uniform bound over x of these quantities. We chose
this more restrictive formulation to simplify the notations.

The next result guarantees that the bias term tends to 0 as u→ ∞.

Proposition 2 There exists a constant c and a function ψ such that ψ(u) > 0 and
ψ(u) → 0 as u→ ∞, and such that, for X = x,

∥θ0(x)− θ∗(x)∥∞ ≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u))) ,

where C2(u) is a constant depending on u, γmin and γmax.

3.4 Consistency of the pruning step

The previous results cover the case of a tree with fixed number of leaves K. In
practice, the question is to select the proper subtree of Tmax(u), the maximal
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tree obtained once the previous step of the CART procedure has stopped, with
some “optimal” number of leaves, which is the objective of the pruning step
described in Section 2.2.3.

As seen in Corollary 5, the stochastic part of the error put to the square
increases proportionally to K. This is closely related to the natural inflation
of the log-likelihood (which is locally quadratic) when the number of leaves
increases, justifying a penalty proportional to K, as in [Breiman et al., 1984,
Gey and Nedelec, 2005]. The aim of Theorem 3 is to corroborate this choice.

First of all, for a decomposition (T K
ℓ )ℓ=1,...,K of K leaves, let us define

TK(u) the tree with parameters θ̂Kℓ (u) estimated with the CART procedure,
T ∗
K(u) the tree with parameters

θ∗Kℓ (u) = argmax
θ∈Θ

E

[
ϕ(Y − u, θ)1Y >u1Xi∈T K

ℓ

]
,

and x → θ∗K(x) =
∑K

ℓ=1 θ
∗K
ℓ (u)1x∈T K

ℓ
the corresponding regression function.

Moreover, let

K0(u) = arg max
K=1,...,Kmax

E
[
ϕ(Y − u, θ∗K(X))1Y >u

]
.

In words, T ∗(u) = T ∗
K0(u)

(u) is the subtree of Tmax(u) that achieves the closest

proximity to x → θ∗K(x) in the sense that it maximizes the expectation of the
(pseudo)-log-likelihood.

Second of all, we denote, as explained in (6), the selected number of leaves

K̂(u) = arg max
K=1,...,Kmax

{
1

kn

K∑

ℓ=1

n∑

i=1

ϕ(Yi − u, θ̂K(Xi))1Yi>u1Xi∈Tℓ
− αK

}
,

and T̂ (u) = TK̂(u)(u) the corresponding selected tree.

Define the log-likelihood Ln(TK , u) associated with a tree TK(u) with K

leaves (T K
ℓ )ℓ=1,...,K with parameters θ̂K(u) =

(
θ̂Kℓ (u)

)
ℓ=1,...,K

Ln(TK , u) =

K∑

ℓ=1

Lℓ
n(θ̂

K
ℓ , u) .

Then L(TK , u) = E[Ln(TK , u)]. Finally, for two trees T and S, ∆Ln(T, S) =
Ln(T, u)− Ln(S, u) and similarly, ∆L(T, S) = L(T, u)− L(S, u).

The following Theorem 3 shows that the pruning methodology selects a
tree T̂ (u) which approximately achieves the same rate as TK0

(u), even if K0(u)
is unknown, provided that the penalty constant λ belongs to some reasonable
interval.
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Theorem 3 Let D = infu infK<K0(u) ∆L(T
∗(u), T ∗

K(u)) and suppose that there
exists a constant c2 > 0 such that the penalization constant λ satisfies

c2{log kn}1/2k−1/2
n ≤ λ ≤ D− 2c2{log(kn)}1/2k−1/2

n ,

assuming that the right-hand side is positive. Then, for all u ∈ [umin, umax],

E

[
∥T̂ (u)− T ∗(u)∥22

]
≤ C5K0(u)(log kn)

2

kn
,

where C5 is a constant depending on T ∗(u).

The proof is given in Section A.6.

4 Simulation study and real data analysis

This section is devoted to the illustration of the GP regression procedure on
simulated data (Section 4.1) and on a real dataset (Section 4.2). We focus
on the estimation of the tail index function, since it is the most informative
parameter to describe the tail of the distribution.

4.1 Simulations

In this section, we assess the performance of the GP regression procedure
on simulated data and compare it with the competing approach proposed by
Chavez-Demoulin et al. [2015]. We first describe the simulation framework and
then discuss the experiments results.

We consider the following regression framework: X is a one-dimensional
variable uniformly distributed on [0, 1], and the response variable Y , condition-
ally on X = x, is distributed according to a Burr distribution of parameters
(σ, γ0(x)) which survival function is given by

F (y | x) = 1

1 + (y/σ)
1/γ0(x)

,

with σ > 0 and γ0(x) for all x. Note that F (· | x) satisfies the property (3).
We consider two cases: (i) γ0(x) as a step-wise function and (ii) γ0(x) as

smooth function. In both cases, the scale parameter σ was fixed equal to 1.

(i) step-wise function:

In this case, the function γ0 is taken as

γ0(x) =





0.5 if 0 ≤ x < 0.25

1 if 0.25 ≤ x < 0.75

1.5 if 0.75 ≤ x ≤ 1.
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(ii) smooth function:

In this case, the function γ0 is taken as, for x ∈ [0, 1],

γ0(x) = 1 +
tanh(10(x− 1/4))

4
+

tanh(10(x− 3/4))

4
.

We simulate 1 000 replications for different sizes of the observation sample
(n =1000, 2500, 5000, 10 000 and 25 000) according to the described framework
for both cases (i) and (ii). For each sample, we consider the excesses above the
0.90-empirical quantile, which corresponds to kn =100, 250, 500, 1 000 and
2 500. For each simulated sample, we compute the regression tree procedure
(CART), and the method based on generalized additive model (GAM) pro-

posed by Chavez-Demoulin et al. [2015]. Next we compute
∫ 1

0
(γ̂(x)−γ0(x))2dx

for each estimator. The empirical mean squared error is then obtained by aver-
aging these errors over the 1 000 replications. Results are shown in Table 1.
The boxplots of the empirical quadratic errors are shown in the supplementary
material (Section A).

Table 1 Empirical mean squared errors for the GP regression tree procedure (GP
CART), and the GAM model for different sample sizes for a) the step-wise case and b) the
smooth case.

kn 100 250 500 1 000 2 500
GP CART 0.290 0.129 0.107 0.080 0.050

GAM 0.313 0.196 0.122 0.081 0.048
a)

kn 100 250 500 1 000 2 500
GP CART 0.227 0.108 0.079 0.059 0.043

GAM 0.233 0.144 0.068 0.034 0.016
b)

Let us note that the GAM approach is not designed to capture non-smooth
functions like in the step-wise case. Nevertheless, we see that this technique
manages to fit relatively correctly even in this case when the sample size is
large. For kn = 1 000 and 2 500, the results of the GAM approach are similar
or even slightly better than the regression tree method. On the other hand, we
observe that regression trees lead to a better fit for small sample sizes, even in
the smooth case where it is not designed to take into account the regularity of
γ0(x).

4.2 Prediction of the cost of flooding events in France

In order to improve the knowledge and the management of natural catastro-
phes, the French Federation of Insurance (FFA) is interested in the prediction
of the cost of such events, especially of the most severe ones, shortly after
their occurrence. These catastrophic events present some heterogeneity in their
intensity depending on their characteristics, such as the affected meteorologi-
cal region or the number of individual houses in flood risk area. The prediction
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of their cost thus becomes a challenging task. In this section, we illustrate how
the GP regression tree procedure can be used to gain further insight in this
heterogeneity. The ability of the procedure to design classes of events that are
more homogeneous (in view of analyzing the tail of their distribution) is an
appealing property in view of operation applications in insurance.

The database we consider was obtained through a partnership with the
FFA, in particular with one of its dedicated technical body, the association of
French insurance undertaking for natural risk knowledge and reduction (Mis-
sion Risques Naturels, MRN). It consists of all 3 100 flooding events that have
been granted the status of natural catastrophe in France from 1999 to 2019
(let us note that the status ”natural catastrophe” is a French specificity, with
some legal consequences when an event receives this label [see Charpentier
et al., 2021, MRN, 2016]).This database is fed by 13 contributors including
the major French insurance companies, allowing this database to cover 70% of
French non-life insurance market. The database gathers information regarding
each flooding event (its cost, the meteorological region, the season, the num-
ber of affected hydrological regions, the number of individual houses and the
number of professional business premises in flood-risk area). Note that, since
the purpose of this database is the fast prediction of the cost of a flooding
event (as soon as possible after its occurrence), the variables that are registered
correspond to quantities that are available before the event, or soon after it.

The variable of interest, the total cost of a flooding event, is highly volatile.
Indeed, it ranges between 0 and 394 376 000 euros with an empirical variance
equal to 1.77e + 14. Figure 1 shows the average of the costs of the 10% most
onerous flooding events within each meteorological region. This highlights the
heterogeneity of the severity of the most severe events. Furthermore, the top
ten most onerous events represent 43% of the total cost of this database and
the top hundred 80%.

Now, let us recall that our goal is to understand the heterogeneity of the
total cost of the most severe flooding events, that is of extreme flooding events.
As explained in Section 2.1, the definition of extreme events consists in choos-
ing a threshold u, which should be chosen as a bias-variance trade-off. We
chose a value of u = 100 000 based practical considerations and validated by
sensitivity analyses (shown in the supplementary material, Section B). This
yields 1 100 extreme events, that is for which the cost is larger than u.

The GP regression tree was performed on the database corresponding to
the flooding events extracted from the original database for which the total
cost is larger than u (=100 000 euros). The variables of this database and their
characteristics are summarized in Table 2. Again, it can be noticed that the
cost, the variable of interest, is highly volatile.

The tree obtained from GP regression procedure is shown in Figure 2 (the
quantile-quantile plots of the GP fit in each leaf are shown in the supplemen-
tary material, Section C). The tree is composed of 6 leaves, with three splits
according to only 3 covariates: the number of individual houses, the number
of professional business premises in flood-risk area and the number of affected
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Fig. 1 Cartography of the cost of flooding events in France from 1999 to 2019. For each
meteorological region, the average of the costs of the 10% more onerous events is shown.
The lighter red color suggesting a small cost while a darker color suggests a large cost.

Table 2 List of quantitative and categorical variables in the database and their
characteristics. For the quantitative variables, Table a) shows the minimum, the first
quartile, the median, the mean, the third quartile and the maximum, and for the
categorical variables, Table b) the number of observations per category.

Variable Min 1st Q Median Mean 3rd Q Max
Cost (in euros) 100 005 183 901 390 761 4 949 576 1 339 936 394 376 166
Number of affected
hydrological regions

1 3 5 6.53 8 35

Number of individual
houses in flood risk area

0 48 504 141 512 345 826 415 488 5 705 590

Number of professional
business premises in
flood risk area

0 17 525 54 921 168 950 185 772 2 431 039

a)

Variable Category Number of observations

Meteorological regions

Center 89
North West 111

North 166
North-East 99

East 135
South 281
West 49

South West 158

Seasons

Spring 358
Summer 336
Autumn 251
Winter 143

b)

meteorological regions. This seems reasonable since the first two covariates rep-
resent the exposure to floods, but also the population density of the affected
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area and the third one the extent of the flood. In each leaf, are given the shape
and scale parameters. The worst case scenario corresponds to the leaf on the
far right, with a shape parameter equal to 1 and containing 9% of all flooding
events. This leaf corresponds to events for which more than 9 meteorologi-
cal regions are affected and more than 597 518 professional business premises
are in flood-risk area. The least severe case corresponds to the third leaf from
the left, with a shape parameter equal to 0.24 and containing only 3% of the
events. Table 3 presents for each leaf the empirical median and mean of the
costs and the theoretical median and mean of the corresponding GP distribu-
tion. Let us recall that for a GP distribution with a scale parameter σ and
a shape parameter γ, the theoretical median is given by σ(2γ − 1)/γ and the
empirical mean by σ/(1− γ) for γ < 1 and ∞ for γ ≥ 1. First of all, for every
leaf, the median is much smaller than the mean suggesting that we are indeed
dealing with extreme events. Then, the empirical and theoretical medians are
of the same order for each leaf while the empirical and theoretical (when it
exits) means are only comparable for the leaves 3 and 5 for which the shape
parameter is significantly different from 1.

<	9	 ≥	9	

<	597	518	 ≥	597	518	

15% 9%4%

Number	of	individual	houses	in	

flood	risk	area

≥	370	050<	370	050

<	12	 ≥	12	

<	30	968	 ≥	30	968	

0.91	

1.08

3%36% 33%

Number	of	individual	houses	in	

flood	risk	area

Number	of	professional	business	

in	flood	risk	area

Number	of	affected	hydrological	

regions

Number	of	affected	hydrological	

regions

0.97	

2.79

0.24	

13.82

0.99	

5.29
0.29	

43.46

1.00	

91.50

Fig. 2 GP regression tree obtained for flooding events. For each leaf, the value of the shape
parameter γ (first line) and the scale parameter σ at 10−5 (second line) are given. Percentage
of observations affected to each leaf is mentioned.

Leaf Shape parameter Empirical Median Theoretical Median Empirical Mean Theoretical Mean

1 0.91 207 044 104 793 711 740 1 366 968
2 0.97 364 513 276 879 1 325 493 13 168 585
3 0.24 900 945 1 045 203 1 929 512 1 938 357
4 0.99 578 437 529 377 3 868 125 807 158 756
5 0.29 2 974 918 3 339 911 6 086 955 6 245 812
6 1.00 9 980 686 9 152 030 37 335 807 ∞

Table 3 Empirical median and mean, and theoretical median and mean for each leaf (in
euros).
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5 Conclusion

In this paper, we investigated the consistency of Generalized Pareto regression
trees, applied to extreme value regression. The results that we derive are non-
asymptotic, and allow to justify the consistency of the pruning methodology
used to select a proper subtree. Let us note that the conditions under which
our results hold are relatively weak, in the sense that they hold even if the tail
index γ is arbitrary close to zero (the special case γ = 0 is excluded) or large.
Moreover, no regularity assumptions on the target parameters is required, due
to the flexibility of the regression tree procedure.

Through the simulation study and the real data analysis, we investigated
the practical performances of the methodology. The regression tree approach
can be applied in various situations, and still provides interpretability of the
results. On the other hand, regression trees may be unstable, since quite sen-
sitive to some changes on the data that have been used to fit them. Hence,
this work is a first step into the direction of studying other relied methodolo-
gies, like random forests [see for example Breiman et al., 1984] in this field of
extreme value regression.

A Proofs

In this Section, we present in details the proof of the results presented through-
out the paper. Concentration inequalities required to obtain the results are
presented in Section A.1. These inequalities are used to obtain deviation
bounds in Section A.2, which are the key ingredients of the proof of Theorem 1
(Section A.3), Corollary 5 (Section A.4), and Theorem 3 (Section A.6). Section
B shows some results on covering numbers that are required to control the com-
plexity of some classes of functions considered in the proofs. Some technical
lemmas are gathered in Section C.

A.1 Concentration inequalities

The proofs of the main results are mostly based on concentration inequali-
ties. The following inequality was proved initially Talagrand [1994], [see also
Einmahl et al., 2005].

Proposition 4 Let (Vi)1≤i≤n denote i.i.d. replications of a random vector V, and
let (εi)1≤i≤n denote a vector of i.i.d. Rademacher variables (that is, P(εi = −1) =
P(εi = 1) = 1/2) independent from (Vi)1≤i≤n. Let F be a pointwise measurable class
of functions bounded by a finite constant M0. Then, for all t,

P

(

sup
φ∈F

∥∥∥∥∥

n∑

i=1

{φ(Vi)− E[φ(V)]}
∥∥∥∥∥
∞

> A1

{

E

[

sup
φ∈F

∥∥∥∥∥

n∑

i=1

φ(Vi)εi

∥∥∥∥∥
∞

]

+ t

})

≤ 2

{
exp

(
−A2t

2

nvF

)
+ exp

(
−A2t

M0

)}
,

with vF = supφ∈F Var(∥φ(V)∥∞), and where A1 and A2 are universal constants.
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The difficulty in using Proposition 4 comes from the need to control the
symmetrized quantity E

[
supφ∈F

∥∥∑n
i=1 φ(Vi)εi

∥∥] . Proposition 5 is due to
Einmahl et al. [2005] and allows this control via some assumptions on the
considered class of functions F.

We first need to introduce some notations regarding covering numbers of
a class of functions. More details can be found for example in [van der Vaart,
1998, Chapter 2.6]. Let us consider a class of functions F with envelope Φ
(which means that for (almost) all v, f ∈ F, f(v) ≤ Φ(v)). Then, for any
probability measure Q, introduce N(ε,F,Q) the minimum number of L2(Q)
balls of radius ε to cover the class F. Then, define

NΦ(ε,F) = sup
Q:Q(Φ2)<∞

N(ε(Q(Φ2)1/2),F,Q).

Proposition 5 Let F be a point-wise measurable class of functions bounded by M0

with envelope Φ such that, for some constants A3, α ≥ 1, and 0 ≤ √
v ≤M0, we have

(i) NΦ(ε,F) ≤ A3ε
−α, for 0 < ε < 1,

(ii) supφ∈F E
[
φ(V)2

]
≤ v,

(iii) M0 ≤ 1
4α1/2

√
nv/ log(A4M0/

√
v), with A4 = max(e,A

1/α
3 ).

Then, for some absolute constant A5,

E

[

sup
φ∈F

∥∥∥∥∥

n∑

i=1

φ(Vi)εi

∥∥∥∥∥

]

≤ A5

√
αnv log(A4M0/

√
v).

A.2 Deviation results

We first introduce some notations that will be used throughout Sections A.2
to B. In the following, fθ is a function indexed by θ = (σ, γ)τ denoting either
ϕ(·, θ) or gθ = ∂σϕ(·, θ), or hθ = ∂γϕ(·, θ). Let us note that the functions
y 7→ gθ(y − u) and y 7→ hθ(y − u) are uniformly bounded (eventually up
to some multiplication by a constant) by Φ(y) = log(1 + wy), where w =
γmax/σmin (see Assumption 3). On the other hand, y 7→ ϕ(y−u, θ) is bounded
by log σn +Φ(y) = O(log(kn)) + Φ(y). We consider in the following a class of
functions F defined as

F = {y 7→ fθ(y − u)1y≥u1x∈Tℓ
, θ ∈ Θ, u ∈ [umin; umax], ℓ = 1, ...,K} . (9)

Next, recall that for ℓ = 1, . . . ,K

Lℓ
n(θ, u) =

1

kn

n∑

i=1

ϕ(Yi − u, θ)1Yi>u1Xi∈Tℓ
,

is the (normalized) GP log-likelihood in the leaf ℓ of the tree T (u) =
(Tℓ)ℓ=1,...,K . The key results behind Theorems 1 and 3 relies on studying the
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deviation of the processes

Wℓ
0(θ, u) = Lℓ

n(θ, u)− Lℓ(θ, u),

Wℓ
1(θ, u) = ∇θL

ℓ
n(θ, u)−∇θL

ℓ(θ, u),

indexed by θ, u and ℓ.
We study these deviations by decomposing Wℓ

i (θ, u), for i = 0, 1, (which is
a sum of i.i.d. observations) into two sums:

• the first one gathers observations smaller than some bound (more precisely,
such that Φ(Yi) ≤ Mn), which is considered in Theorem 6. Since these
observations are bounded (even if this bound in fact depends on n and can
tend to infinity when n grows), we can apply a concentration inequality such
as the one of Section A.1;

• in the second one, we consider the observations larger than this bound, and
control them through the fact that the function Φ is assumed to have a finite
exponential moment (see Assumption 3).

Corollary 7, which provides deviation bounds for estimation errors in the
leaves of the tree, is then a direct consequence.

Theorem 6 Let Mn = β log kn, with β > 0 and

Z(Mn) = sup
f∈F

| 1
kn

n∑

i=1

(
f(Yi)1Φ(Yi)≤Mn

− E

[
f(Yi)1Φ(Yi)≤Mn

])
|

Then, under Assumptions 1, 2 and 4,

P (Z(Mn) ≥ t) ≤ 2

(
exp

(
−C1knt

2

M2
n

)
+ exp

(
−C2knt

Mn

))
, (10)

for t ≥ c1(log kn)
1/2k

−1/2
n .

Proof Let us stress that supf∈F ∥f(y)1Φ(y)≤Mn
∥∞ ≤Mn. From Proposition 4,

P

(

Z(Mn) ≥ A1

{

E

[

sup
f∈F

1

kn
|
n∑

i=1

f(Yi)1Φ(Yi)≤Mn
εi|
]

+ t

})

(11)

≤ 2

(
exp

(
−A2k

2
nt

2

nvF

)
+ exp

(
−A2knt

Mn

))
.

From Lemma 10, vF ≤ M2
nknn

−1, which shows that the first exponential term on
the right-hand side of (11) is smaller than

exp

(
−A2knt

2

M2
n

)
. (12)

We can now apply Proposition 5 (combined with Lemma 9) to this class of functions
with v =M2

nknn
−1 and M0 =Mn. Hence,

E

[

sup
f∈F

1

kn
|
n∑

i=1

f(Yi)1Φ(Yi)≤Mn
εi|
]

≤ A6

kn

√
nvsn = A6

s
1/2
n

k
1/2
n

,
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where A′
6 > 0 and sn = log(σαnK

4(d+1)(d+2)n/kn) (α > 0 being defined in Lemma 9).
From Assumption 2, we see that sn = O(log(kn)) (let us recall that K is necessarily

less than n). Whence, if c1 = 2A1A
′
6, for t ≥ c1 {log (kn)}1/2 k−1/2

n ,

P (Z(Mn) ≥ t) ≤ P

(

Z(Mn) ≥ A1

{

E

[

sup
f∈F

1

kn
|
n∑

i=1

f(Yi)1Φ(Yi)≤Mn
εi|
]

+
t

2A1

})

.

Equation (10) follows from (11) and (12) with C1 = A2A
−2
1 /4 and C2 = A2A

−1
1 /2.

□

Theorem 7 Define

Z(Mn) = sup
f∈F

| 1
kn

n∑

i=1

(
f(Yi)1Φ(Yi)>Mn

)
− E

[
f(Yi)1Φ(Yi)>Mn

]
|.

Then, under Assumptions 1, 2 and 3, for Mn = β log kn = βa2 log n and βa2 ≥
10/ρ0, and t ≥ c2k

−1/2
n ,

P
(
Z(Mn) ≥ t

)
≤ C3

k
5/2
n t3

. (13)

Proof Let β′ = βa2. Z(Mn) is upper-bounded by

1

kn

n∑

i=1

{
Φ(Yi)1Φ(Yi)≥Mn

1Yi≥umin
+ E

[
Φ(Y )1Φ(Y )≥Mn

1Y≥umin

]}
.

A bound for E1,n = E

[
Φ(Y )1Φ(Y )≥Mn

1Y≥umin

]
is obtained from Lemma 11,

and nE1,n/kn ≤ e1k
−1/2
n if β′ ≥ 2/ρ0.

Next, from Markov inequality,

t3P

(
1

kn

n∑

i=1

Φ(Yi)1Φ(Yi)≥Mn
1Yi≥umin

≥ t

)

≤ nE3,n

k3n
+
n(n− 1)E2,nE1,n

k3n

+
n(n− 1)(n− 2)E3

1,n

k3n
.

From Lemma 11, we get

nE3,n

k3n
≤ e3n

−(ρ0β
′/4−1/2)

k
5/2
n

,

n(n− 1)E2,nE1,n

k3n
≤ e2e1n

−(ρ0β
′/2−3/2)

k
5/2
n

,

n(n− 1)(n− 2)E3
1,n

k3n
≤ e

3
1n

−(ρ0β
′/4−5/2)

k
5/2
n

.

Each of these terms is bounded by max(e3, e2e1, e
3
1)k

−5/2
n for β′ ≥ 10/ρ0. Thus, for

t ≥ 2e1k
−1/2
n and β′ ≥ 10/ρ0,

P
(
Zn ≥ t

)
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≤ P

(
1

kn

n∑

i=1

Φ(Yi)1Φ(Yi)≥Mn
1Yi≥umin

≥ t

2

)

+ P

(
E

[
Φ(Y )1Φ(Y )≥Mn

1Y≥umin

]
≥ t

2

)

≤ 8max(e3, e2c1, e
3
1)

t3k
5/2
n

□

We now apply these results to deduce deviation bounds on the estimators
θ̂ℓ in the leaves of the tree.

Corollary 7 Under the assumptions of Theorem 6 and 7 and Assumption 4, for

t ≥ c3(log kn)
1/2k

−1/2
n ,

P



 sup
ℓ=1,...,K,

umin≤u≤umax

∥θ̂ℓ(u)− θ∗ℓ (u)∥∞ ≥ t



 ≤ 2

(
exp

(
− C4knt

2

β2(log kn)2

)
+ exp

(
− C5knt

β log kn

))

+
C6

k
5/2
n t3

.

Proof For 1 ≤ ℓ ≤ K and umin ≤ u ≤ umax, write θ = (s, γ)τ and θ∗ℓ (u) =

(s∗ℓ (u), γ
∗
ℓ (u))

τ , and let mu,ℓ(θ) = ∇θL
ℓ(θ, u). From a Taylor expansion,

mu,ℓ(θ) = E

[(
∂sgs̃1,γ(Y − u) ∂γgs,γ̃1

(Y − u)
∂shs̃2,γ(Y − u) ∂γhs,γ̃2

(Y − u)

)
1X∈Tℓ

1Y≥u

]
(θ − θ∗ℓ (u))

τ ,

for some parameters γ̃j (resp. s̃j) between γ and γ∗ℓ (u) (resp. s and s∗ℓ (u)). From
Assumption 4, we get, for all ℓ = 1, . . . ,K,

n

kn
∥mu,ℓ(θ)∥∞ ≥ C1∥θ − θ∗ℓ (u)∥∞.

Hence, for all ℓ = 1, . . . ,K,

P

(
∥θ̂ℓ(u)− θ∗ℓ (u)∥∞ ≥ t

)
≤ P

(
n

kn
∥mu,ℓ(θ̂)∥∞ ≥ C1t

)
.

Since for all ℓ = 1, . . . ,K, ∇θL
ℓ
n(θ̂) = 0, Wℓ

1(θ̂(u), u) = − n
kn
mu,ℓ(θ̂). Hence,

P



 sup
ℓ=1,...,K,

umin≤u≤umax

∥θ̂ℓ(u)− θ∗l (u)∥∞ ≥ t



 ≤ P



 sup
ℓ=1,...,K,

umin≤u≤umax

∥Wℓ
1(θ̂(u), u)∥∞ ≥ C1t



 ,

and the right-hand side is bounded by

P

(
Z(Mn) ≥ C1t

2

)
+ P

(
Z(Mn) ≥ C1t

2

)
.

The result follows from Theorem 6 and 7. □
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A.3 Proof of Theorem 1

The proof of Theorem 1 then consists in gathering the results on the leaves
obtained in Corollary 7. Let umin ≤ u ≤ umax,

∥T (u)− T ∗(u | T )∥22 ≤
K∑

ℓ=1

∥θ̂ℓ(u)− θ∗ℓ (u)∥2∞ ≤ K sup
ℓ=1,...,K

∥θ̂ℓ(u)− θ∗ℓ (u)∥2∞.

Hence

P

(
sup

umin≤u≤umax

∥T (u)− T ∗(u | T )∥22 ≥ t

)

≤ P


 sup

ℓ=1,...,K,
umin≤u≤umax

∥θ̂ℓ(u)− θ∗ℓ (u)∥∞ ≥ t1/2K−1/2


 .

The results follows from Corollary 7, and from the assumption onK ≤ Kmax =
O(k3n).

A.4 Proof of Corollary 5

Write

E

[
sup

umin≤u≤umax

∥T (u)− T ∗(u | T )∥22
]
=

∫ ∞

0

P( sup
umin≤u≤umax

∥T (u)−T ∗(u | T )∥22 ≥ t)dt.

Let tn = c1K(log kn)k
−1
n , then

∫ ∞

0

P( sup
umin≤u≤umax

∥T (u)− T ∗(u | T )∥22 ≥ t)dt

≤ tn +

∫ ∞

tn

P( sup
umin≤u≤umax

∥T (u)− T ∗(u | T )∥22 ≥ t)dt.

We now use Theorem 1 to bound the integral on the right-hand side. Since∫∞

0
exp(−at)dt = 1

a ,
∫∞

0
exp(−a1/2t1/2)dt = 2

a , and
∫∞

1
t−3/2dt = 2, we get

E

[
sup

umin≤u≤umax

∥T (u)− T ∗(u | T )∥22
]
≤ tn +

2Kβ2(log kn)
2

C1kn
+

4Kβ2(log kn)
2

C2
2kn

+
2C3K
k
5/2
n

≤ c1K log kn
kn

+
2Kβ2(log kn)

2

C1kn
+
4Kβ2(log kn)

2

C2
2kn

+
2C3K
k
5/2
n
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≤ C4K(log kn)
2

kn
.

A.5 Proof of Proposition 2

Let x fixed, then,

∥θ∗(x)− θ0(x)∥∞ = ∥
Kmax∑

ℓ=1

(θ∗ℓ − θ0(x))1x∈Tℓ
∥∞ ≤

Kmax∑

ℓ=1

∥θ∗ℓ − θ0(x)∥∞1x∈Tℓ
.

Now, from Taylor expansion, for ℓ = 1, . . . ,K, conditionally on X ∈ Tℓ,

∇θL
ℓ(θ0(x), u) = ∇θL

ℓ(θ∗ℓ , u) +∇2
θL

ℓ(θ̃ℓ)(θ0(x)− θ∗ℓ )
τ

= E

[(
∂σgσ̃1,γ(Y − u) ∂γgσ,γ̃1(Y − u)
∂σhσ̃2,γ(Y − u) ∂γhσ,γ̃2(Y − u)

)
1Y≥u | X ∈ Tℓ

]
(θ0(x)− θ∗ℓ )

τ

for some parameters γ̃j (resp. σ̃j) between γ0(x) and γ
∗
ℓ (resp. σ0(x) and σ

∗
ℓ ).

Thus, under Assumption 4,

∥θ0(x)− θ∗ℓ ∥∞ ≤ 1

C1
∥∇θL

ℓ(θ0(x), u)∥∞

≤ 1

C1

kn
n

max
(
|E

[
gθ0(x)(Z) | X ∈ Tℓ

]
|,E

[
hθ0(x)(Z) | X ∈ Tℓ

])
,

where Z is a random variable distributed according to the distribution Fu

defined in Section 2.1 with σ0(x) = uγ0(x) and with

E
[
gθ0(x)(Z) | X ∈ Tℓ

]
= − 1

uγ0(x)
+

1

u2γ0(x)

(
1 +

1

γ0(x)

)
E

[
Z

1 + Z/u
| X ∈ Tℓ

]

E
[
hθ0(x)(Z) | X ∈ Tℓ

]
= − 1

γ0(x)2
E [log(1 + Z/u) | X ∈ Tℓ]

+
1

uγ0(x)

(
1 +

1

γ0(x)

)
E

[
Z

1 + Z/u
| X ∈ Tℓ

]
.

Under Assumption 6, we have

Fu(z) =
(
1 +

z

u

)−1/γ0(x)
{
1 + cψ(u)

∫ 1+z/u

1

vρ−1dv + o(ψ(u))

}
.

E

[
Z

1 + Z/u
| X ∈ Tℓ

]
=

∫ u

0

Fu

(
t

1− t/u

)
dt

=
u

1 + 1/γ0(x)

(
1 +

cψ(u)

1 + 1/γ0(x)− ρ
+ o(ψ(u))

)
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≤ u (1 + cγ0(x)ψ(u) + o(ψ(u)))

and then

E [log(1 + Z/u) | X ∈ Tℓ] =
∫ u

0

P
[
Z ≥ u(et − 1) | X ∈ Tℓ

]
dt

= γ0(x)

(
1 +

cψ(u)

1/γ0(x)− ρ
+ o(ψ(u))

)

≤ γ0(x) (1 + cγ0(x)ψ(x)(u) + o(ψ(u))) .

Consequently,

|E
[
gθ0(x)(Z) | X ∈ Tℓ

]
| ≤ 1

γmin

(
1 +

1

u

(
1 +

1

γmin

))
(1 + cγ0(x)ψ(u) + o(ψ(u)))

and

|E
[
hθ0(x)(Z) | X = x

]
| ≤ 1

γmin

(
1 +

1

γmin
+
γmax

γmin

)
(1 + cγ0(x)ψ(u) + o(ψ(u))) .

Hence,

∥θ0(x)− θ∗ℓ ∥∞ ≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u))) ,

where C2(u) =
1
C1

1
γmin

max
(
1 + 1

u + 1
uγmin

, 1 + 1
γmin

+ γmax

γmin

)
.

Finally,

∥θ∗(x)− θ0(x)∥∞ ≤
Kmax∑

ℓ=1

∥θ∗ℓ − θ0(x)∥∞1x∈Tℓ

≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u)))

Kmax∑

ℓ=1

1x∈Tℓ

≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u))) .

A.6 Proof of Theorem 3

The following lemma will be needed to prove Theorem 3.

Lemma 8 Let D = infu infK<K0(u) ∆L(T
∗(u), T ∗

K(u)) and u ∈ [umin, umax] fixed.
Suppose that there exists a constant c2 > 0 such that the penalization constant λ
satisfies

c2{log kn}1/2k−1/2
n ≤ λ ≤ (D− 2c2{log(kn)}1/2k−1/2

n )k−1
n ,
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then, for K > K0(u),

P(K̂(u) = K) ≤ 2

(
exp

(
−C1knλ

2(K −K0(u))
2

β2(log kn)2

)
+ exp

(
−C2knλ(K −K0(u)))

β log kn

))

+
C3

k
5/2
n λ3(K −K0(u))3

,

and, for K < K0(u),

P(K̂(u) = K) ≤ 4 exp

(
−C1kn{D− λ(K0(u)−K)}2

β2(log kn)2

)

+4 exp

(
−C2kn{D− λ(K0(u)−K)}

β log kn

)

+
2C3

k
5/2
n {D− λ(K0(u)−K)}3

.

Proof Let u ∈ [umin, umax] fixed. If K̂(u) = K, this means that

∆Ln(TK(u), TK0(u)(u)) := Ln(TK , u)− Ln(TK0(u), u) > λ(K −K0(u)).

Decompose

∆Ln(TK(u), TK0
(u)) = {Ln(TK , u)− Ln(T

∗
K , u)}+ {Ln(T

∗
K , u)− Ln(T

∗, u)}
+{Ln(T

∗, u)− Ln(TK0(u), u)}.
Since Ln(T

∗, u)− Ln(TK0(u), u) < 0,

∆Ln(TK(u), TK0(u)(u)) ≤ {Ln(TK , u)− Ln(T
∗
K , u)}+ {Ln(T

∗
K , u)− Ln(T

∗, u)}.
For K > K0(u), T

∗
K(u) = T ∗(u), hence,

P(K̂(u) = K) ≤ P
(
∆Ln(TK(u), T ∗

K(u)) > λ(K −K0(u))
)

≤ P
(
|∆Ln(TK(u), T ∗

K(u))−∆L(TK(u), T ∗
K(u))| > λ(K −K0(u))

)
.

For K > K0(u), a bound is then obtained from Theorems 6 and 7 if λ(K−K0(u)) ≥
c1{log(kn)}1/2k−1/2

n , that is λ ≥ c1{log kn}1/2k−1/2
n .

Now, for K < K0(u),

∆Ln(T
∗
K(u), T ∗(u)) ≤ |∆Ln(T

∗
K(u), T ∗(u))−∆L(T ∗

K(u), T ∗(u))|+∆L(T ∗
K(u), T ∗(u))

≤ |∆Ln(T
∗(u), T ∗

K(u))−∆L(T ∗(u), T ∗
K(u))| −D(K0(u),K).

where D = infK<K0(u),u∈[umin,umax] D(K0(u),K), Hence,

P(K̂(u) = K)

≤ P

(
∆Ln(TK(u), T ∗

K(u)) ≥ D− λ(K0(u)−K)

2

)

+P

(
|∆Ln(T

∗(u), T ∗
K(u))−∆L(T ∗(u), T ∗

K(u))| ≥ D− λ(K0(u)−K)

2

)

≤ P

(
|∆Ln(TK(u), T ∗

K(u))−∆L(TK(u), T ∗
K(u))| ≥ D− λ(K0(u)−K)

2

)

+P

(
|∆Ln(T

∗(u), T ∗
K(u))−∆L(T ∗(u), T ∗

K(u))| ≥ D− λ(K0(u)−K)

2

)
.
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These two probabilities can be bounded using Theorems 6 and 7 provided that, for
all K < K0(u),

D− λ(K0(u)−K)

2
≥ c1{log(kn)}1/2k−1/2

n ,

that is,

λ ≤ D− 2c1{log(kn)}1/2k−1/2
n .

□

We are now ready to prove Theorem 3. Let u ∈ [umin, umax] fixed.

E

[
∥T̂ (u)− T ∗(u)∥22

]
=

Kmax∑

K=1

E

[
∥TK(u)− T ∗(u)∥221K̂(u)=K

]

≤ E
[
∥TK0(u)(u)− T ∗(u)∥22

]
+

Kmax∑

K=1,K ̸=K0(u)

KP(K̂(u) = K)

+

Kmax∑

K=1,K ̸=K0(u)

E

[
∥TK(u)− T ∗(u)∥221∥TK(u)−T∗(u)∥2

2>K1K̂(u)=K

]

≤ E
[
∥TK0(u)(u)− T ∗(u)∥22

]
+

K0(u)−1∑

K=1

KP(K̂(u) = K)

+

Kmax∑

K=K0(u)+1

KP(K̂(u) = K)

+2

Kmax∑

K=1,K ̸=K0(u)

E

[
∥TK(u)− T ∗

K(u)∥221∥TK(u)−T∗(u)∥2
2>K

]

+2

Kmax∑

K=1,K ̸=K0(u)

P(K̂(u) = K)∥T ∗(u)− T ∗
K(u)∥22.

Firstly, from Theorem 1,

E

[
∥TK(u)− T ∗

K(u)∥221∥TK(u)−T∗(u)∥2
2>K

]

= KP
(
∥TK(u)− T ∗

K(u)∥22 > K
)
+

∫ ∞

K

P
(
∥TK(u)− T ∗

K(u)∥22 > t
)
dt

≤ 2K

(
1 +

β2(log kn)
2

C1kn

)
exp

(
− C1kn
β2(log kn)2

)

+2K

(
1 +

2β(log kn)

C2kn
+

2β2(log kn)
2

C2
2k

2
n

)
exp

(
− C2kn
β(log kn)

)
+

2C3K1/2

k
5/2
n

.
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Secondly, recall that

∥T ∗
K(u)−T ∗(u)∥22 =

∫
∥θK∗(x)−θ∗(x)∥2∞dP(x) ≤ Kmax

Kmax∑

ℓ=1

∥µ(Tℓ)θK∗
ℓ −θ∗ℓ ∥2∞ ,

where µ(Tℓ) = P(X ∈ Tℓ). Following the same idea as in the proof of
Proposition 2, from Taylor’s expansion, under Assumptions 4 and 6,

∥θK∗
ℓ − θ∗ℓ ∥2∞ ≤ C2

2(u)
k2n
n2

(1 + cγmaxψ(u) + o(ψ(u)))
2
.

Hence,

∥T ∗
K(u)− T ∗(u)∥22 ≤ C2

2(u)
k2n
n2

(1 + cγmaxψ(u) + o(ψ(u)))2
Kmax∑

ℓ=1

1x∈Tℓ

≤ C3(u)
k2n
n2

.

Finally,

E

[
∥T̂ (u)− T ∗(u)∥22

]
≤ C5K0(u)(log kn)

2

kn
,

for some constant C5. .

B Covering numbers

Lemma 9 Following the notations of the proof of Theorem 6, the class of functions
F satisfies

NΦ(ε,F) ≤
C4K

4(d+1)(d+2)∥Φ∥α1
2 σαn

εα
,

for some constants C4 > 0 and α > 0 (not depending on n nor K).

Proof Let

gθ(z) = − 1

σ
+

(
1

γ
+ 1

)
γz

σ2(1 + zγ
σ )

,

hθ(z) = − 1

γ2
log
(
1 +

zγ

σ

)
+

(
1
γ + 1

)
z

σ + zγ
,

for z > 0. For θ and θ′ in S ×Γ, we have (from a straightforward Taylor expansion),

|gθ(y − u)− gθ′(y − u)| ≤ C|γ − γ′|+ C′|σ − σ′|,
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for some constants C and C′. More precisely, one can take

C =
6

γ2minσmin
,

C′ =
1

σ2min

(
1 + 3

{
1 +

1

γmin

})
.

Next, observe that

|gθ′(y − u)− gθ′(y − u′)| ≤ C′′|u− u′|,
where C′′ = 4γ2max/[γminσ

3]. Which leads to

|gθ(y − u)− gθ′(y − u′)| ≤ Cg max(∥θ − θ′∥∞, |u− u′|),
for some constant Cg > 0. Similarly,

|hθ(y − u)− hθ′(y − u)| ≤ C1(4 + log(1 + wy))|γ − γ′|+ C2|σ − σ′|,
Next,

|hθ′(y − u)− hθ′(y − u′)| ≤ C7|u− u′|,
where C7 = 5/(γminσmin), leading to, for some Ch > 0,

|hθ(y − u)− hθ′(y − u′)| ≤ Ch max(∥θ − θ′∥∞, |u− u′|).
On the other hand,

|ϕ(y − u, θ)− ϕ(y − u, θ′)| ≤ 1

γ2min

(2 + log(1 + wy))|γ − γ′|+ 3

γminσmin
|σ − σ′|,

and

|ϕ(y − u, θ′)− ϕ(y − u′, θ′)| ≤ 1

σmin
|u− u′|.

Define F1 = {gθ(· − u) : θ ∈ S × Γ, u ∈ [umin, umax]}, F2 = {hθ(· − u) : θ ∈
S × Γ, u ∈ [umin, umax]}, and F3 = {ϕ(· − u, θ) : θ ∈ S × Γ, u ∈ [umin, umax]}. From
[van der Vaart, 1998, Example 19.7], we get, for i = 1, ..., 3,

N(ε,Fi) ≤ Fi∥Φ∥α1
2 σα1

n ε−α1 ,

for some α > 0 and constants Fi.
On the other hand, let

F4 = {x 7→ 1x∈Tℓ
: ℓ = 1, . . . ,K} ,

and
F5 = {y 7→ 1y>u : u ∈ U} .

From Lemma 4 in [Lopez et al., 2016], we have N(ε,F4) ≤ mkKα2ε−α2 , where
α2 = 4(d + 1)(d + 2), and where k is the number of discrete components taking at
most m modalities. On the other hand, from Example 19.6 in [van der Vaart, 1998],
N(ε,F5) ≤ 2ε−2.

From [Einmahl et al., 2005, Lemma A.1], we get, for i = 1, . . . , 3,

N(ε,FiF4F5) ≤
4mkKα2 max(Cg, Ch)∥Φ∥α1

2 σα1
n

εα1+α2+α3
.

Multiplying FiF4F5 by a single indicator function 1Φ(Yi)≤Mn
does not change the

covering number, and the result follows. □



32 C TECHNICAL LEMMAS

C Technical Lemmas

Lemma 10 With vF defined in Proposition 4,

vF ≤ M2
nkn
n

.

Proof We have

vF ≤ E

[
Φ(Y )21Y≥umin

1Φ(Y )≤Mn

]

≤ M2
nP(Y ≥ umin) =

M2
nkn
n

.

□

Lemma 11 Define, for j = 1, 2, 3,

Ej,n = E

[
Φ(Y )j1Φ(Y )≥Mn

1Y≥umin

]
.

Under the assumptions of Theorem 7,

Ej,n ≤ ejk
1/2
n

n1/2nρ0βa2/4
.

Proof Applying twice Cauchy-Schwarz inequality leads to

Ej,n ≤ P(Y ≥ umin)
1/2

E[Φ(Y )2j1Φ(Y )≥Mn
]1/2 ≤ k

1/2
n

n1/2
E[Φ(Y )4j ]1/4P(Φ(Y ) ≥Mn)

1/4.

Next, from Chernoff inequality,

P(Φ(Y ) ≥Mn) ≤ exp(−ρ0Mn)E[exp(ρ0Φ(Y ))] ≤ mρ0

nρ0βa2
.
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