[1] Ramaiyan S, Chandran R, Santhanam SKV (2017) Effect of cooling conditions on mechanical and microstructural behaviours of friction stir processed AZ31B Mg alloy. Mod Mech Eng 7:144-160. https://doi.org/10.4236/mme.2017.74010
[2] Li Y, Arthanari S, Guan Y (2019) Influence of laser surface melting on the properties of MB26 and AZ80 magnesium alloys. Surf Coat Tech 378:124964. https://doi.org/10.1016/j.surfcoat.2019.124964
[3] Iwaszko J, Strzelecka M (2016) Effect of cw-CO2 laser surface treatment on structure and properties of AZ91 magnesium alloy. Opt Laser Eng 81:63-69. https://doi.org/10.1016/j.optlaseng.2016.01.009
[4] Zeng C, Shen J, He C, Zhou M (2019) An ultrathin melted layer on magnesium alloy manufactured by low power laser. Mater Res Express 6/6. https://doi.org/10.1088/2053-1591/ab0cbe
[5] Xu J, Zhou J, Tan W, Huang S, Wang S, He W (2018) Study on laser surface melting of AZ31B magnesium alloy with different ultrasonic vibration amplitude. Corros Eng Sci Tech 53/1:73-79. http://dx.doi.org/10.1080/1478422X.2017.1398540
[6] Szafarska M, Iwaszko J, Kudła K, Łęgowik I (2013) Utilisation of high-energy heat sources in magnesium alloy surface layer treatment. Arch Metall Mater 58/2:619-624. https://doi.org/10.2478/amm-2013-0047
[7] Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK (1999) High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater 42/2:163-168. https://dx.doi.org/10.1016/S1359-6462(99)00329-2
[8] Mishra RS, Mahoney MW (2001) Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys. Mater Sci Forum. 357-359:507-514
[9] Thomas WM, Nicholas ED, Needham JC, Church MG, Templesmith P, Dawes CJ, 1991. Friction stir butt welding. International Patent Application No. PCT/GB92/02203, GB Patent Application No. 9125978.8
[10] Ai X, Yue Y (2018) Microstructure and mechanical properties of friction stir processed A356 cast Al under air cooling and water cooling. High Temp Mater Proc 37/7:693-699. https://doi.org/10.1515/htmp-2017-0036
[11] Vaira Vignesh R, Wang R (2018) Modelling of peak temperature during friction stir processing of magnesium alloy AZ91. IOP Conf Series: Mater Sci Eng 310:012019. https://doi.org/10.1088/1757-899X/310/1/012019
[12] Sajed M, Hossein Seyedkashi SM (2020) Multilayer friction stir plug welding: A novel solid-state method to repair cracks and voids in thick aluminum plates. CIRP J Manuf Sci Technol. 31:467-477. https://doi.org/10.1016/j.cirpj.2020.07.009
[13] Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater Sci Eng A 433:50-54. https://doi.org/10.1016/j.msea.2006.06.089
[14] Iwaszko J, Kudła K, Fila K (2018) Technological aspects of friction stir processing of AlZn5.5MgCu aluminum alloy. Bull Pol Ac: Tech. 66/5:713-719. https://doi.org/10.24425/12427
[15] Huang Y, Wang T, Guo W, Wan L, Lv S (2014) Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing. Mater Des 59:274-278. https://doi.org/10.1016/j.matdes.2014.02.067
[16] Luo XC, Zhang DT, Zhang WW, Qiu C, Chen DL (2018) Tensile properties of AZ61 magnesium alloy produced by multi-pass friction stir processing: Effect of sample orientation. Mater Sci Eng A 725:398-405. https://doi.org/10.1016/j.msea.2018.04.017
[17] Wang W, Han P, Peng P, Zhang T, Liu Q, Yuan S-N, Huang L-Y, Yu H-L, Qiao K, Wang K-S (2020) Friction stir processing of magnesium alloys: a review. Acta Metall Sin (Engl Lett) 33:43-57. https://doi.org/10.1007/s40195-019-00971-7
[18] Iwaszko J, Kudła K, Fila K, Strzelecka M (2016) The effect of friction stir processing (FSP) on the microstructure and properties of AM60 magnesium alloy. Arch Metall Mater 61/3:1209-1214. https://doi.org/10.1515/amm-2016-0254
[19] Venkateswarlu G, Devaraju D, Davidson MJ, Kotiveerachari B, Tagore GRN (2013) Effect of overlapping ratio on mechanical properties and formability of friction stir processed Mg AZ31B alloy. Mater Des 45:480-486. https://doi.org/10.1016/j.matdes.2012.08.031
[20] Lan FY, Chen HM, Guo WP, Zhang J, Jin YX (2017). Effects of friction stir processing on mechanical properties and damping capacities of AZ31 magnesium alloys. IOP Conf. Series: Materials Science and Engineering 230:012013. https://doi.org/10.1088/1757-899X/230/1/012013
[21] Singh H, Kumar P, Singh B (2016) Effect of under surface cooling on tensile strength of friction stir processed aluminium alloy 6082. Asian J Eng Appl Tech 5/1: 40-44.
[22] Patel V, Badheka V, Li W, Akkireddy S (2019) Hybrid friction stir processing with active cooling approach to enhance superplastic behavior of AA7075 aluminum alloy. Arch Civ Mech Eng 19/4:1368-1380. https://doi.org/10.1016/j.acme.2019.08.007
[23] Heidarpour A, Ahmadifard S, Rohani N (2018) FSP pass number and cooling effects on the microstructure and properties of AZ31. J Adv Mater Process 47-58.
[24] Patel V, Badheka V, Zala S, Patel S, Patel U, Patel SN (2016) Effects of various cooling techniques on grain refinement of aluminum 7075-T651 during friction stir processing. Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. Vol. 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis. Phoenix, Arizona, USA. V014T11A015. ASME. https://doi.org/10.1115/IMECE2016-66161
[25] Chai F, Zhang D, Li Y (2014) Effect of thermal history on microstructures and mechanical properties of AZ31 magnesium alloy prepared by friction stir processing. Mater 7:1573-1589. https://doi.org/10.3390/ma7031573
[26] Bocchi S, D’Urso G, Giardini C (2021) The effect of heat generated on mechanical properties of friction stir welded aluminum alloys. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-06462-9
[27] Ammouri AH, Kridli GT, Ayoub G, Hamade RF (2014) Investigating the effect of cryogenic pre-cooling on the friction stir processing of AZ31B. Proceedings of the World Congress on Engineering.
[28] Xu N, Bao Y (2016) Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling. Mater Sci Eng A 655:292-299. https://doi.org/10.1016/j.msea.2016.01.009
[29] Akbari M, Khalkhali A, Keshavarz SME, Sarikhani E (2018) The effect of in-process cooling conditions on temperature, force, wear resistance, microstructural, and mechanical properties of friction stir processed A356. J Mater Des Appl 232/5:429-437. https://doi.org/10.1177/1464420716630569
[30] Asadi P, Besharati Givi MK, Parvin N, Araei A, Taherishargh M, Tutunchilar S (2012) On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91. Int J Adv Manuf Technol 63:987-997. https://doi.org/10.1007/s00170-012-3971-0
[31] Feng X, Liu H, Babu S (2011) Effect of grain size refinement and precipitation reactions on strengthening in friction stir processed Al–Cu alloys. Scr Mater 65:1057-1060. https://doi.org/10.1016/j.scriptamat.2011.09.009
[32] Albakri AN, Mansoor B, Nassar H, Khraisheh MK (2012) Simulation of friction stir processing with internally cooled tool. Adv Mater Res 445:560-565. https://doi.org/10.4028/www.scientific.net/amr.445.560
[33] https://avia.com.pl/frezarki-cnc-i-konwencjonalne/fne-50/. Accesed 3.05.2021
[34] Moharami A (2020) High-temperature tribological properties of friction stir processed Al-30Mg2Si composite. Mater High Temp. https://doi.org/10.1080/09603409.2020.1785792
[35] Jalilvand MM, Mazaheri Y, Jahani AR (2020) Effect of FSP pass number on the tribological behavior of AZ31 magnesium alloy. J Stress Analysis 4/2:9-18. http://dx.doi.org/10.22084/jrstan.2020.19994.1107
[36] Xu SW, Kamado S, Matsumoto N, Honma T, Kojima Y (2009) Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation. Mater Sci Eng A 527:52-60. https://doi.org/10.1016/j.msea.2009.08.062
[37] Moharami A, Razaghian A, Babaei B, Ojo OO, Slapakova M (2020) Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg2Si composite. J Compos Mater. 1-23. https://doi.org/10.1177/0021998320925528
[38] Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd ed. Elsevier 219-224.
[39] Chan HM, Humphreys FJ (1984) The recrystallisation of aluminium-silicon alloys containing a bimodal particle distribution. Acta Metall. 32:235-243. https://doi.org/10.1016/0001-6160(84)90052-X
[40] Jin Z-Z, Cheng X-M, Zha M, Rong J, Zhang H, Wang J-G, Wang C, Li Z-G, Wang H-Y (2019) Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg–Al–Zn alloys during gradient hot rolling. J Mater Sci Technol 35:2017-2026. https://doi.org/10.1016/j.jmst.2019.05.017
[41] Moharami A, Razaghian A (2020) Corrosion behaviour of friction stir processed Al–Mg2Si composites. Mater Sci Technol. https://doi.org/10.1080/02670836.2020.1852515
[42] Moharrami A, Razaghian A, Paidar M, Slapakova M, Ojo OO, Taghiabadi R (2020) Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing. Mater Chem Phys 250:123066. https://doi.org/10.1016/j.matchemphys.2020.123066
[43] Li K, Liu X, Zhao Y (2019) Research status and prospect of friction stir processing technology. Coatings 9/2:129. https://doi.org/10.3390/coatings9020129
[44] Nandan R, Roy GG, Lienert TJ, DebRoy T (2006) Numerical modelling of 3D plastic plow and heat transfer during friction stir welding of stainless steel. Sci Technol Weld Joi 11/5:526-537. https://doi.org/10.1179/174329306X107692
[45] Luo X, Cao G, Zhang W, Qiu C, Zhang D (2017) Ductility improvement of an AZ61 magnesium alloy through two-pass submerged friction stir processing. Mater 10:253. https://doi.org/10.3390/ma10030253
[46] Sun HQ, Shi Y-N,. Zhang M-X (2008) Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer. Surf Coat Technol 202/13:2859-2864. https://doi.org/10.1016/j.surfcoat.2007.10.025
[47] Zhang YS, Han Z, Wang K, Lu K (2006) Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260:942-948. https://doi.org/10.1016/j.wear.2005.06.010
[48] Banijamali SM, Palizdar Y, Najafi S, Sheikhani A, Soltan Ali Nezhad M, Valizadeh Moghaddam P, Torkamani H (2020) Effect of Ce addition on the tribological behavior of ZK60 Mg‑alloy. Met Mater Int. https://doi.org/10.1007/s12540-020-00832-4
[49] Moharrami A, Razaghian A, Emamy M, Taghiabadi R (2019) Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20 wt% Mg2Si composite. J Tribol 141/12:122202. https://doi.org/10.1115/1.4044672