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Abstract

One of the equations describing incognito evolution, the nonlinear Zoomeron equation,
is studied in this work. In a variety of physical circumstances, including laser physics, fluid
dynamics and nonlinear optics, solitons with particular properties arise and the Zoomeron
equation is a single example of one such situation. The method of ϕ6-model expansion al-
lows for the explicit retrieval of a wide range of solution types, including kink-type solitons,
these solitons are also called topological solitons in the context of water waves, their velocity
does not depend on the wave amplitude, others are bright, singular, periodic, and combined
singular soliton solutions. The outcomes of this research may improve the Zoomeron equa-
tion’s nonlinear dynamical features. The method proposes a practical and effective approach
for solving a large class of nonlinear partial differential equations. Interesting graphs are
employed to explain and highlight the dynamical aspects of the results, all of the obtained
results are put into the Zoomeron equation to show the accuracy of the results.

Keywords: Zoomeron equation, the ϕ6-model expansion method, kink soliton, traveling
wave solution, Jacobi elliptic solutions.

1 Introduction

The study of surfaces in geometry [1–5] and a wide range of issues in mechanics are where partial
differential equations first appeared. Notable mathematicians from all over the world got actively
interested in the study of a wide range of issues brought on by partial differential equations in the
late 19th century. This study’s main motivation was the fact that partial differential equations
(PDEs) regularly appear in the mathematical analysis of a range of problems in science and
engineering and describe many fundamental natural principles [6]. It is now incredibly beneficial to
look for precise answers to the both nonlinear evolution equations and partial differential equations
NLEEs using a variety of techniques, and there are numerous effective techniques, such the inverse
scattering transform approach [7], the Homoclinic technique [8], the sinh-Gordon function method
[9], the generalized exponential rational function method [10], the auxiliary equation method [11],
An alternative method [12], the Bernoulli sub-equation function method [13,14], the sub-equation
analytical method [15], the modified sub-equation method [16], the auto-Bäcklund transformation
method [17] and so on.

This study focuses on the nonlinear evolutionary Zoomeron equation. The basic Zoomeron
equation was first developed by Calogero and Degasperis. When they investigated the one-
dimensional Schrodinger equation and an extension of the well-known KdV equation to depict
solitons that travel at different speeds and found a connection between their polarization effects
and speed, they made significant progress in 1976. Two types of solitons were produced as a
result, the first of which was an accelerated soliton that traveled from one side in the distant past
to the opposite side with the same speed in the distant future. The second was a trapped soliton
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that oscillated repeatedly in the direction around a fixed point in space. The first was called
Boomeron, while the second was called Trappon, which led to the derivation of the standard
Zoomeron equation. [18].

The Zoomeron model, one of the incognito evolution equations, has been investigated via
many direct methods. Among the significant ones are; Ghazala et al. used the modified auxiliary
equation and Generalized projective Riccati equation method [18] to obtain solitary wave, dark

peakon, bright and kink-type wave solution, the
(

G
′

G
, 1
G

)

−expansion approach [19] is utelized

by Elsayed et al. to retrieved new solitary wave solutions, Tanki et al. examined the classical
Lie point symmetries [20] of the model, four exact particular solutions are obtained including

rational and periodic solutions using the
(

Φ(ξ)
2

)

−expansion method [21] by Jalil et al., the Yan’s

sine-cosine method and Wazwaz’s sine-cosine method [22] are used by Hua to derive new exact
traveling wave solutions, the new extended direct algebraic method [23] is used to obtain new
analytical solutions by Wei et. al, the first integral method [24, 25], the hyperbolic trigonometric

and rational function solutions are retrieved via the
(

G
′

G

)

−expansion approach [26] by Reza,

the Lie point transformation method [27], Aminah used the sine-cosine function method [28] to
construct the trigonometric wave solutions, Higazy et al. implement the extended simple equation
method [29] to get solitary wave solutions, the Modified simple equation method and Exp-function
method [30] are used to obtain dark, trigonometric and hyperbolic soliton solutions. The Zoomeron
model is studied in this research using the newly developed ϕ6–model expansion method [31–34]),
which results in the restoration of optical solitary wave solutions.

The plan for this work is provided below. In Section 2, a presentation of the ϕ6-model expansion
method will be provided. The Zoomeron equation will be developed using the ϕ6-method in section
3 to provide novel traveling wave solutions to the equation. Additionally, the associated 3D, 2D,
and density graphs clearly illustrate the physical structure of the traveling wave solution. In part
4, the soliton solutions’ physical dynamics are examined, and in section 5, conclusions are reached.

2 Description of the method

According to [31–34], the steps involves for the ϕ6-model expansion technique are given as:
Step-1: Assuming the nonlinear evolution equation (NLEE) for Q = Q(x, y, t) is in the form.

H(Q,Qx, Qt, Qxx, Qxt, ...) = 0, (1)

here H is a polynomial of Q(x, t) which involves highest order partial derivatives and its nonlinear
terms.

Step-2: By using the wave transformation

Q(x, t) = Q(ζ), ζ = x+ cy − wt, (2)

where w represents wave speed and Eq.(1) can be converted into the nonlinear ordinary differential
equation shown below.

Ω(Q,Q
′

, QQ
′

, Q
′′

, ...) = 0, (3)

where the derivatives with respect to ζ are shown by prime. Step-3: Suppose that the formal
solution to Eq.(3) exists:

Q (ζ) =
2M
∑

j=0

αiA
j(ζ), (4)

M can be gotten using the balancing rule, αj(j = 0, 1, 2, . . . ,M) are to be determined constants
and A(ζ) satisfies the auxiliary NLODE;
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A′2(ζ) = h0 + h2A
2(ζ) + h4A

4(ζ) + h6A
6(ζ), (5)

A
′′

(ζ) = h2A(ζ) + 2h4A
3(ζ) + 3h6A

5(ζ),

here hj(j = 0, 2, 4, 6) are real constants that will be found later.
Step-4: It is known that the solution to Eq.(5) is given as;

U(ζ) =
P (ζ)

√

fP 2(ζ) + g
, (6)

P (ζ) is the Jacobi elliptic equation solution, provided that 0 < fP 2(ζ) + g

P ′2(ζ) = l0 + l2P
2(ζ) + l4P

4(ζ), (7)

where lj(j = 0, 2, 4) are unknown constants to be determined, g and f are given by

f =
h4(l2 − h2)

(l2 − h2)2 + 3l0l4 − 2l2(l2 − h2)
, (8)

g =
3l0h4

(l2 − h2)2 + 3l0l4 − 2l2(l2 − h2)
,

under the restricted condition

h2
4(l2 − h2)[9l0l4 − (l2 − h2)(2l2 + h2)] + 3h6[−l22 + h2

2 + 3l0l4]
2 = 0. (9)

Step-5: The Jacobi elliptic solutions of Eq.(7) can be calculated when 0 < m < 1, the exact
solutions of Eq.(1) can be derived by substituting Eq.(6) and Eq.(7) into Eq.(4).

Function m → 1 m → 0 Function m → 1 k → 0
sn(ζ,m) tanh(ζ) sin(ζ) ds(ζ,m) csch(ζ) csc(ζ)
cn(ζ,m) sech(ζ) cos(ζ) sc(ζ,m) sinh(ζ) tan(ζ)
dn(ζ,m) sech(ζ) 1 sd(ζ,m) sinh(ζ) sin(ζ)
ns(ζ,m) coth(ζ) csc(ζ) nc(ζ,m) cosh(ζ) sec(ζ)
cs(ζ,m) csch(ζ) cot(ζ) cd(ζ,m) 1 cos(ζ)

3 Application of the proposed method to the Zoomeron

equation

The ϕ6-model expansion method, which was explained in Part 3, will be used in this section to
retrieve the exact solitary wave solutions of the nonlinear Zoomeron equation.

(

Qxy

Q

)

tt

−

(

Qxy

Q

)

xx

+ 2
(

Q2
)

xt
= 0, (10)

where the amplitude of the pertinent wave mode is Q and Q = Q(x, y, t). Eq.(10) is reduced to
the following ODE using the traveling wave transformation Q(x, y, t) = Q(ζ) = Q(x+ cy − wt):

c
(

w2 − 1
)

Q
′′

− 2wQ3 − rQ = 0. (11)

where a constant for integration is r, M = 1 is obtained from the balance principle between Q
′′

and Q3; as a result, the solution form can be expressed as

P (ζ) = α0 + α1A(ζ) + α2A
2(ζ), (12)

where α0, α1 and α2 are constants to be determined.
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We obtain the following algebraic equations by substituting Eq.(12) along with Eq.(5) into
Eq.(11) and setting the coefficients of all powers of Aj(ζ), j = 0, 1, . . . , 6 to be equal to zero

A0(ζ) : −rα0 − 2wα3
0 − 2ch0α2 + 2cw2h0α2 = 0,

A1(ζ) : −rα1 − ch2α1 + cw2h2α1 − 6wα2
0α1 = 0,

A2(ζ) : −6wα0α
2
1 − rα2 − 4ch2α2 + 4cw2h2α2 − 6wα2

0α2 = 0,
A3(ζ) : −2ch4α1 + 2cw2h4α1 − 2wα3

1 − 12wα0α1α2 = 0,
A4(ζ) : −6ch4α2 + 6cw2h4α2 − 6wα2

1α2 − 6wα0α
2
2 = 0,

A5(ζ) : −3ch6α1 + 3cw2h6α1 − 6wα1α
2
2 = 0,

A6(ζ) : −8ch6α2 + 8cw2h6α2 − 2wα3
2 = 0.

(13)

the following solutions can be obtained after solving the above resulting system :

α0 = 0, α2 = 0, r = c
(

−1 + w2
)

h2, (14)

h4 =
wα2

1

c (−1 + w2)
, h6 = 0.

the following exact solutions of Eq.(10) can be derived with the help of Eqs.(6), (12) and (14)
along with the Jacobi elliptic functions in the above table

1. If l0 = 1, l2 = −(1 +m2), l4 = m2, 0 < m < 1, then P (ζ) = sn(ζ,m) or P (ζ) = cd(ζ,m),
and we have

Q
1,0

(x, t) = α1





sn(ζ,m)
√

f (sn(ζ,m))
2
+ g



 , (15)

or

Q
1,1

(x, t) = α1





cd(ζ,m)
√

f (cd(ζ,m))
2
+ g



 , (16)

such that 0 < b, ζ = cy − tw + x, and f and g in Eq. (8) are given by

f =
α2
1w

(

h2 +m2 + 1
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g = −
3α2

1w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

under the restriction condition

α4
1w

2
(

−h2 −m2 − 1
) (

9m2 −
(

−h2 −m2 − 1
) (

h2 + 2
(

−m2 − 1
)))

c2 (w2 − 1)
2 = 0.

If m → 1, then the kink soliton is obtained

Q
1,2

(x, t) =
α1 tanh(ζ)

√

−
α2

1
w((h2+2) tanh2(ζ)−3)

c(h2

2
−1)(w2−1)

, (17)

such that
α4
1w

2 (−h2 − 2) (9− (−h2 − 2) (h2 − 4))

c2 (w2 − 1)
2 = 0.
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Figure 1: The numerical simulations corresponding to |Q1,2| given by Eq.(17), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 0.1, h2 =
0.03, c = 0.7, w = 0.85, y = 1, z = 1.

If m → 0, then the periodic solution is obtained

Q
1,3

(x, t) =
α1 sin(ζ)

√

−
α2

1
w(sin2(ζ)+h2 sin2(ζ)−3)

c(h2

2
−1)(w2−1)

, (18)

such that
α4
1w

2 (−h2 − 1) (− (−h2 − 1) (h2 − 2))

c2 (w2 − 1)
2 = 0.
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Figure 2: The numerical simulations corresponding to |Q1,3| given by Eq.(18), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 0.4, h2 =
0.8, c = 0.15, w = 0.03, y = 1, z = 1.

2. If l0 = 1−m2, l2 = 2m2 − 1, l4 = −m2, 0 < m < 1, then P (ζ) = cn(ζ,m) therefore

Q
2,1

(x, t) = α1





cn(ζ,m)
√

f (cn(ζ,m))
2
+ g



 , (19)

where f and g are determined by

f =
α2
1w

(

h2 − 2m2 + 1
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g =
3α2

1

(

m2 − 1
)

w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

under the constraint condition

α4
1w

2
(

−h2 + 2m2 − 1
) (

−
(

−h2 + 2m2 − 1
) (

h2 + 2
(

2m2 − 1
))

− 9
(

1−m2
)

m2
)

c2 (w2 − 1)
2 = 0

If m → 1, then the bright soliton is retrieved

Q2,2 (x, t) =
α1sech(ζ)

√

−
α2

1
wsech2(ζ)

c(h2+1)(w2−1)

(20)

provided that
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α4
1w

2 (1− h2) (− (1− h2) (h2 + 2))

c2 (w2 − 1)
2 = 0.

If m → 0, then the periodic solution is obtained

Q
2,3

(x, t) =
α1 cos(ζ)

√

−
α2

1
w(cos2(ζ)+h2 cos2(ζ)−3)

c(h2

2
−1)(w2−1)

, (21)

such that
α4
1w

2 (−h2 − 1) (− (−h2 − 1) (h2 − 2))

c2 (w2 − 1)
2 = 0.

(a) |Q2,3|
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Q
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Figure 3: The numerical simulations corresponding to |Q2,3| given by Eq.(21), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 0.3, h2 =
1.1, c = −0.5, w = 0.2, y = 1, z = 1.

3. If l0 = m2 − 1, l2 = 2−m2, l4 = −1, 0 < m < 1, then P (ζ) = dn(ζ,m) which gives

Q
3,1

(x, t) = α1





dn(ζ,m)
√

f (dn(ζ,m))
2
+ g



 , (22)

where f and g are determined by

f =
α2
1w

(

h2 +m2 − 2
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g = −
3α2

1

(

m2 − 1
)

w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

7



under the restriction condition

α4
1w

2
(

−h2 −m2 + 2
) (

−
(

−h2 −m2 + 2
) (

h2 + 2
(

2−m2
))

− 9
(

m2 − 1
))

c2 (w2 − 1)
2 = 0

If m → 1, then the solitary solution is obtained

Q3,2 (x, t) =
α1sech(ζ)

√

−
α2

1
wsech2(ζ)

c(h2+1)(w2−1)

, (23)

provided that

α4
1w

2 (1− h2) (− (1− h2) (h2 + 2))

c2 (w2 − 1)
2 = 0.

If m → 0, then the rational solution is obtained

Q
3,3

(x, t) =
α1

√

−
α2

1
w

c(h2−1)(w2−1)

, (24)

such that

α4
1w

2 (2− h2) (9− (2− h2) (h2 + 4))

c2 (w2 − 1)
2 = 0.

4. If l0 = m2, l2 = −
(

1 +m2
)

, l4 = 1, 0 < m < 1, then P (ζ) = ns(ζ,m) or P (ζ) = dc(ζ,m)
then

Q
4,0

(x, t) = α1





ns(ζ,m)
√

f (ns(ζ,m))
2
+ g



 , (25)

or

Q
4,1

(x, t) = α1





dc(ζ,m)
√

f (dc(ζ,m))
2
+ g



 , (26)

where f and g are given by

f =
α2
1w

(

h2 +m2 + 1
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g = −
3α2

1m
2w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

under the constraint condition

α4
1w

2
(

−h2 −m2 − 1
) (

9m2 −
(

−h2 −m2 − 1
) (

h2 + 2
(

−m2 − 1
)))

c2 (w2 − 1)
2 = 0.

If m → 1, then the dark singular solution is obtained

Q4,2 (x, t) =
α1 coth(ζ)

√

−
α2

1
w((h2+2)csch2(ζ)+h2−1)

c(h2

2
−1)(w2−1)

(27)

such that
α4
1w

2 (−h2 − 2) (9− (−h2 − 2) (h2 − 4))

c2 (w2 − 1)
2 = 0
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Figure 4: The numerical simulations corresponding to |Q4,2| given by Eq.(27), for m = 1 ; (a) is
the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = −1.01, h2 =
1.0001, c = 0.25, w = 0.007, y = 1, z = 1.

If m → 0, then the periodic solution is obtained

Q
4,3

(x, t) =
α1 csc(ζ)

√

−
α2

1
w csc2(ζ)

c(h2−1)(w2−1)

, (28)

such that
α4
1w

2 (−h2 − 1) (− (−h2 − 1) (h2 − 2))

c2 (w2 − 1)
2 = 0.

5. If l0 = −m2, l2 = 2m2 − 1, l4 = 1−m2, 0 < m < 1, then P (ζ) = nc(ζ,m) and we have

Q
5,1

(x, t) = α1





nc(ζ,m)
√

f (nc(ζ,m))
2
+ g



 , (29)

where f and g are given by

f =
α2
1w

(

h2 − 2m2 + 1
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g =
3α2

1m
2w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

under the constraint condition

h2
4

(

−1 + 2m2 − h2

) [(

−2 +m2 + h2

) (

1 +m2 + h2

)]

= 0.
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If m → 1, then the singular solitary wave solution is obtained

Q
5,2

(x, t) =
α1 cosh(ζ)

√

α2

1
w(cosh2(ζ)−h2 cosh2(ζ)−3)

c(h2

2
−1)(w2−1)

, (30)

such that
α4
1w

2 (1− h2) (− (1− h2) (h2 + 2))

c2 (w2 − 1)
2 = 0.

(a) |Q5,2|
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Q
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(c) |Q5,2|

Figure 5: The numerical simulations corresponding to |Q5,2| given by Eq.(30), for m = 1 ; (a) is
the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = −0.2, h2 =
1.08, c = 0.5, w = 0.65, y = 1, z = 1.

If m → 0, then the periodic solution is obtained

Q
5,3

(x, t) =
α1 sec(ζ)

√

−
α2

1
w sec2(ζ)

c(h2−1)(w2−1)

, (31)

such that
α4
1w

2 (−h2 − 1) (− (−h2 − 1) (h2 − 2))

c2 (w2 − 1)
2 = 0.

6. If l0 = −1, l2 = 2−m2, l4 = −
(

1−m2
)

, 0 < m < 1, then P (ζ) = nd(ζ,m) and we have

Q
6
(x, t) = α1





nd(ζ,m)
√

f (nd(ζ,m))
2
+ g



 , (32)

where f and g are given by
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f =
α2
1w

(

h2 +m2 − 2
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g =
3α2

1w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

under the constraint condition

α4
1w

2
(

−h2 −m2 + 2
) (

−
(

−h2 −m2 + 2
) (

h2 + 2
(

2−m2
))

− 9
(

m2 − 1
))

c2 (w2 − 1)
2 = 0.

7. If l0 = 1, l2 = 2−m2, l4 = 1−m2,0 < m < 1, then P (ζ) = sc(ζ,m), and we have

Q
7,1

(x, t) = α1





sc(ζ,m)
√

f (sc(ζ,m))
2
+ g



 , (33)

where f and g are given by

f =
α2
1w

(

h2 +m2 − 2
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g = −
3α2

1w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

under the constraint condition

α4
1w

2
(

−h2 −m2 + 2
) (

9
(

1−m2
)

−
(

−h2 −m2 + 2
) (

h2 + 2
(

2−m2
)))

c2 (w2 − 1)
2 = 0.

If m → 1, then the kink soliton solution is obtained

Q
7,2

(x, t) =
α1 sinh(ζ)

√

α2

1
w(sinh2(ζ)−h2 sinh2(ζ)+3)

c(h2

2
−1)(w2−1)

, (34)

such that
α4
1w

2 (1− h2) (− (1− h2) (h2 + 2))

c2 (w2 − 1)
2 .
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Figure 6: The numerical simulations corresponding to |Q7,2| given by Eq.(34), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 0.5, h2 =
0.24, c = 0.01, w = 0.6, y = 1, z = 1.

If m → 0, then the periodic wave solution is obtained

Q
7,3

(x, t) =
α1 tan(ζ)

√

α2

1
w(3−(h2−2) tan2(ζ))

c(h2

2
−1)(w2−1)

, (35)

such that

α4
1w

2 (2− h2) (9− (2− h2) (h2 + 4))

c2 (w2 − 1)
2 .

8. If l0 = 1, l2 = 2m2 − 1, l4 = −m2
(

1−m2
)

, 0 < m < 1, then P (ζ) = sd(ζ,m) and we have

Q
8
(x, t) = α1





sd(ζ,m)
√

f (sd(ζ,m))
2
+ g



 , (36)

where f and g are given by

f =
α2
1w

(

h2 − 2m2 + 1
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g = −
3α2

1w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

12



under the constraint condition

α4
1w

2
(

−h2 + 2m2 − 1
) (

−
(

−h2 + 2m2 − 1
) (

h2 + 2
(

2m2 − 1
))

− 9
(

1−m2
)

m2
)

c2 (w2 − 1)
2 = 0.

9. If l0 = 1−m2, l2 = 2−m2, l4 = 1, 0 < m < 1, then P (ζ) = cs(ζ,m) and we have

Q
9,1

(x, t) = α1





cs(ζ,m)
√

f (cs(ζ,m))
2
+ g



 , (37)

where f and g are given by

f =
α2
1w

(

h2 +m2 − 2
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g =
3α2

1

(

m2 − 1
)

w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

under the constraint condition

α4
1w

2
(

−h2 −m2 + 2
) (

9
(

1−m2
)

−
(

−h2 −m2 + 2
) (

h2 + 2
(

2−m2
)))

c2 (w2 − 1)
2 = 0.

If m → 1, then the singular soliton solution is obtained

Q9,2 (x, t) =
α1csch(ζ)

√

−
α2

1
wcsch2(ζ)

c(h2+1)(w2−1)

, (38)

such that
α4
1w

2 (1− h2) (− (1− h2) (h2 + 2))

c2 (w2 − 1)
2 = 0.

If m → 0, then the periodic wave solution is obtained

Q
9,3

(x, t) =
α1 cot(ζ)

√

α2

1
w(2 cot2(ζ)−h2 cot2(ζ)+3)

c(h2

2
−1)(w2−1)

, (39)

such that
α4
1w

2 (2− h2) (9− (2− h2) (h2 + 4))

c2 (w2 − 1)
2 = 0.

10. If l0 = −m2
(

1−m2
)

, l2 = 2m2− 1, l4 = 1, 0 < m < 1, then P (ζ) = ds(ζ,m) and we have

Q
10
(x, t) = α1





ds(ζ,m)
√

f (ds(ζ,m))
2
+ g



 , (40)

where f and g are given by

f =
α2
1w

(

h2 − 2m2 + 1
)

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

g = −
3α2

1m
2
(

m2 − 1
)

w

c (w2 − 1) (−h2
2 +m4 −m2 + 1)

,

13
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Figure 7: The numerical simulations corresponding to |Q9,3| given by Eq.(39), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 3.5, h2 =
2.6, c = 12.8, w = 1.3, y = 1, z = 1.

under the constraint condition

α4
1w

2
(

−h2 + 2m2 − 1
) (

−
(

−h2 + 2m2 − 1
) (

h2 + 2
(

2m2 − 1
))

− 9
(

1−m2
)

m2
)

c2 (w2 − 1)
2 = 0.

11. If l0 = 1−m2

4 , l2 = 1+m2

2 , l4 = 1−m2

4 , 0 < m < 1, then P (ζ) = nc(ζ,m) ± sc(ζ,m) or

P (ζ) = cn(ζ,m)
1±sn(ζ,m) and we have

Q
11,0

(x, t) = α1





nc(ζ,m)± sc(ζ,m)
√

f (nc(ζ,m)± sc(ζ,m))
2
+ g



 , (41)

or

Q
11,1

(x, t) = α1









cn(ζ,m)
1±sn(ζ,m)

√

f
(

cn(ζ,m)
1±sn(ζ,m)

)2

+ g









, (42)

where f and g are given by
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f = −
8α2

1w
(

−2h2 +m2 + 1
)

c (w2 − 1) (−16h2
2 +m4 + 14m2 + 1)

,

g =
12α2

1

(

m2 − 1
)

w

c (w2 − 1) (−16h2
2 +m4 + 14m2 + 1)

,

under the constraint condition

α4
1w

2
(

1
2

(

m2 + 1
)

− h2

)

(

9
16

(

1−m2
)2

−
(

1
2

(

m2 + 1
)

− h2

) (

h2 +m2 + 1
)

)

c2 (w2 − 1)
2 = 0.

If m → 1, then the combined singular soliton solution is obtained

Q
11,2

(x, t) =
α1(sinh(ζ) + cosh(ζ))
√

−
α2

1
w(sinh(ζ)+cosh(ζ))2

c(h2+1)(w2−1)

, (43)

such that
α4
1w

2 (1− h2) (− (1− h2) (h2 + 2))

c2 (w2 − 1)
2 = 0.

If m → 0, then the combined periodic wave solutions

Q
11,3

(x, t) =
α1(tan(ζ) + sec(ζ))

2

√

α2

1
w(sin(ζ)+4h2(sin(ζ)+1)−5)

c(16h2

2
−1)(w2−1)(sin(ζ)−1)

, (44)

or

Q
11,4

(x, t) =
α1 cos(ζ)

2(sin(ζ) + 1)

√

α2

1
w(3(sin(ζ)+1)2+2 cos2(ζ)−4h2 cos2(ζ))

c(16h2

2
−1)(w2−1)(sin(ζ)+1)2

, (45)

are obtained, such that

α4
1w

2
(

1
2 − h2

) (

9
16 −

(

1
2 − h2

)

(h2 + 1)
)

c2 (w2 − 1)
2 = 0.
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Figure 8: The numerical simulations corresponding to |Q11,4| given by Eq.(45), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 0.5, h2 =
−0.005, c = 0.1, w = 0.9, y = 1, z = 1.

12. If l0 =
−(1−m2)

2

4 , l2 = 1+m2

2 , l4 = −1
4 , 0 < m < 1, then P (ζ) = mcn(ζ,m)± dn(ζ,m) and

we have

Q
12,1

(x, t) = α1





mcn(ζ,m)± dn(ζ,m)
√

f (mcn(ζ,m)± dn(ζ,m))
2
+ g



 , (46)

where f and g are given by

f = −
8α2

1w
(

−2h2 +m2 + 1
)

c (w2 − 1) (−16h2
2 +m4 + 14m2 + 1)

,

g =
12α2

1

(

m2 − 1
)2

w

c (w2 − 1) (−16h2
2 +m4 + 14m2 + 1)

,

under the constraint condition

α4
1w

2
(

1
2

(

m2 + 1
)

− h2

)

(

9
16

(

1−m2
)2

−
(

1
2

(

m2 + 1
)

− h2

) (

h2 +m2 + 1
)

)

c2 (w2 − 1)
2 = 0.

If m → 1, then the bright soliton solution is obtained

Q12,2 (x, t) =
α1sech(ζ)

√

−
α2

1
wsech2(ζ)

c(h2+1)(w2−1)

(47)
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such that
α4
1w

2 (1− h2) (− (1− h2) (h2 + 2))

c2 (w2 − 1)
2 = 0.

If m → 0, then the periodic wave solution is obtainedr

Q
12,3

(x, t) =
α1 cos(ζ)

2

√

α2

1
w(cos(2ζ)−4h2 cos2(ζ)−2)

c(16h2

2
−1)(w2−1)

, (48)

such that
α4
1w

2
(

1
2 − h2

) (

9
16 −

(

1
2 − h2

)

(h2 + 1)
)

c2 (w2 − 1)
2 = 0.
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Figure 9: The numerical simulations corresponding to |Q12,3| given by Eq.(48), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 0.01, h2 =
0.8, c = 4.6, w = 0.6, y = 1, z = 1.

13. If l0 = 1
4 , l2 = 1−2m2

2 , l4 = 1
4 , 0 < m < 1, then P (ζ) = sn(ζ,m)

1±cn(ζ,m) and we have

Q
13,1

(x, t) = α1









sn(ζ,m)
1±cn(ζ,m)

√

f
(

sn(ζ,m)
1±cn(ζ,m)

)2

+ g









, (49)

where f and g are given by
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f =
8α2

1w
(

2h2 + 2m2 − 1
)

c (w2 − 1) (−16h2
2 + 16m4 − 16m2 + 1)

,

g = −
12α2

1w

c (w2 − 1) (−16h2
2 + 16m4 − 16m2 + 1)

,

under the constraint condition

α4
1w

2
(

1
2

(

1− 2m2
)

− h2

) (

9
16 −

(

1
2

(

1− 2m2
)

− h2

) (

h2 − 2m2 + 1
))

c2 (w2 − 1)
2 = 0.

If m → 1, then the kink soliton solution is obtained

Q
13,2

(x, t) =
α1 tanh

(

ζ
2

)

2

√

α2

1
w(cosh(ζ)−4h2(cosh(ζ)−1)+5)

c(16h2

2
−1)(w2−1)(cosh(ζ)+1)

, (50)

such that
α4
1w

2
(

−h2 −
1
2

) (

9
16 −

(

−h2 −
1
2

)

(h2 − 1)
)

c2 (w2 − 1)
2 = 0.
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Figure 10: The numerical simulations corresponding to |Q13,2| given by Eq.(50), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 2.5, h2 =
−0.015, c = 1.6, w = 0.889, y = 1, z = 1.

If m → 0, then the combined periodic wave solution is obtained

Q
13,3

(x, t) =
α1 tan

(

ζ
2

)

2

√

α2

1
w(cos(ζ)+4h2(cos(ζ)−1)+5)

c(16h2

2
−1)(w2−1)(cos(ζ)+1)

, (51)

18



such that
α4
1w

2
(

1
2 − h2

) (

9
16 −

(

1
2 − h2

)

(h2 + 1)
)

c2 (w2 − 1)
2 = 0.
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Figure 11: The numerical simulations corresponding to |Q13,3| given by Eq.(51), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 0.01, h2 =
−8.25, c = 1.6, w = 2.8, y = 1, z = 1.

14. If l0 = 1
4 , l2 = 1+m2

2 , l4 =
(1−m2)

2

4 , 0 < m < 1, then P (ζ) = sn(ζ,m)
cn(ζ,m)±dn(ζ,m) and we have

Q
14,1

(x, t) = α1









sn(ζ,m)
cn(ζ,m)±dn(ζ,m)

√

f
(

sn(ζ,m)
cn(ζ,m)±dn(ζ,m)

)2

+ g









, (52)

where f and g are given by

f = −
8α2

1w
(

−2h2 +m2 + 1
)

c (w2 − 1) (−16h2
2 +m4 + 14m2 + 1)

,

g = −
12α2

1w

c (w2 − 1) (−16h2
2 +m4 + 14m2 + 1)

,

under the constraint condition

α4
1w

2
(

1
2

(

m2 + 1
)

− h2

)

(

9
16

(

1−m2
)2

−
(

1
2

(

m2 + 1
)

− h2

) (

h2 +m2 + 1
)

)

c2 (w2 − 1)
2 = 0.
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If m → 1, then the kink soliton solution is obtained

Q
14,2

(x, t) =
α1 sinh(ζ)

√

α2

1
w(sinh2(ζ)−h2 sinh2(ζ)+3)

c(h2

2
−1)(w2−1)

, (53)

such that
α4
1w

2 (1− h2) (− (1− h2) (h2 + 2))

c2 (w2 − 1)
2 = 0.
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Figure 12: The numerical simulations corresponding to |Q14,2| given by Eq.(53), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 0.01, h2 =
−2.25, c = 1.2, w = 1.2, y = 1, z = 1.

If m → 0, then the periodic wave is obtained

Q
14,3

(x, t) =
α1 tan

(

ζ
2

)

2

√

α2

1
w(cos(ζ)+4h2(cos(ζ)−1)+5)

c(16h2

2
−1)(w2−1)(cos(ζ)+1)

, (54)

such that
α4
1w

2
(

1
2 − h2

) (

9
16 −

(

1
2 − h2

)

(h2 + 1)
)

c2 (w2 − 1)
2 = 0.
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Figure 13: The numerical simulations corresponding to |Q14,3| given by Eq.(54), for m = 1 ; (a)
is the 3D graphic, (b) is the 2D-contour graphic while (c) is the 2D graphic for α1 = 0.01, h2 =
−2.25, c = 1.2, w = 1.2, y = 1, z = 1.

4 Physical interpretation and discussion of the obtained re-

sults

The plots of three-dimensional surfaces represent the moving patterns of the derived solutions.
Some graphs, density plots and contours make it simple to see variations in 3D surface images.
Contoured and density graphs are therefore plotted in accordance with every 3D form. Figure [1]
shows an absolute 3D depiction of the kink soliton solution to Eq.(17) for the set of parameter
values α1 = 0.1, h2 = 0.03, c = 0.7, w = 0.85, y = 1 and z = 1, these solitons are also called
topological solitons in the context of water waves, their velocity does not depend on the wave
amplitude. For the selected set of values α1 = 0.4, h2 = 0.8, c = 0.15, w = 0.03, y = 1, z = 1
and α1 = 0.3, h2 = 1.1, c = −0.5, w = 0.2, y = 1, z = 1 for Eq.(18)and Eq.(21), the periodic
soliton solutions are obtained in Figure [2] and Figure [3] respectively. Figure [4] represents the
3D soliton solution graph of Eq.(27) for the parameters α1 = −1.01, h2 = 1.0001, c = 0.25, w =
0.007, y = 1, z = 1. Figure [5] shows the 3D soliton solution graph of Eq.(30) for the parameters
α1 = −0.2, h2 = 1.08, c = 0.5, w = 0.65, y = 1, z = 1. Figure [6] shows the graph of kink
soliton soliton of Eq.(34) for the parameters α1 = 0.5, h2 = 0.24, c = 0.01, w = 0.6, y = 1, z = 1.
Figure [7] represents the 3D of a different periodic soliton solution of Eq.(39) for the parameters
α1 = 3.5, h2 = 2.6, c = 12.8, w = 1.3, y = 1, z = 1. Figure [8] and Figure [9] show the 3Ds of the
combined periodic and periodic solutions of Eq.(45) for the parameters α1 = 0.5, h2 = −0.005, c =
0.1, w = 0.9, y = 1, z = 1 and Eq.(48) for the parameters α1 = 0.01, h2 = 0.8, c = 4.6, w =
0.6, y = 1, z = 1 respectively, while the Figure [10] shows the 3D of the kink soliton solution of
Eq.(50) for the parameters α1 = 2.5, h2 = −0.015, c = 1.6, w = 0.889, y = 1, z = 1. Figure [11]
shows the 3D of the periodic solution of Eq.(51) for the parameters α1 = 0.01, h2 = −8.25, c =
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1.6, w = 2.8, y = 1, z = 1. Figure [12] shows the 3D of the kink soliton solution of Eq.(53) for the
parameters α1 = 0.01, h2 = −2.25, c = 1.2, w = 1.2, y = 1, z = 1. Figure [13] represents the 3D of
the combined periodic solution of Eq.(54) for the parameters α1 = 0.01, h2 = −2.25, c = 1.2, w =
1.2, y = 1, z = 1.

Our goal is to show the significance of the constructed outcomes and the paper’s achievements.
We are able to reach our desired goal by comparing our findings to those that have lately been
published [18–30]. The following techniques have been used by researchers to retrieve solitons to
the proposed nonlinear Zoomeron equation, Ghazala et al. used the modified auxiliary equation
and Generalized projective Riccati equation method [18] to obtain solitary wave, dark peakon,

bright and kink-type wave solution, the
(

G
′

G
, 1
G

)

−expansion approach [19] is utelized by Elsayed

et al. to retrieved new solitary wave solutions, Tanki et al. examined the classical Lie point
symmetries [20] of the model, four exact particular solutions are obtained including rational and

periodic solutions using the
(

Φ(ξ)
2

)

−expansion method [21] by Jalil et al., the Yan’s sine-cosine

method and Wazwaz’s sine-cosine method [22] are used by Hua to derive new exact traveling
wave solutions, the new extended direct algebraic method [23] is used to obtain new analytical
solutions by Wei et. al, the first integral method [24,25], the hyperbolic trigonometric and rational

function solutions are retrieved via the
(

G
′

G

)

−expansion approach [26] by Reza, the Lie point

transformation method [27], Aminah used the sine-cosine function method [28] to construct the
trigonometric wave solutions, Higazy et al. implement the extended simple equation method [29]
to get solitary wave solutions, the Modified simple equation method and Exp-function method [30]
are used to obtain dark, trigonometric and hyperbolic soliton solutions. Trying to compare our
results to those found in [18–30] reveals that nearly all of our answers are entirely distinct from
theirs; nevertheless, by using certain unique values for the previously mentioned parameters, we
can identify some solutions that are comparable to our solutions. The graphical presentation of
the solution obtained by Ghazala et al. [18] in Figure [9] and our result illustrated in Figure [11]
look the same and also the solution derived by Kamruzzaman et al. [30] in Eq.(3.12) using the
Modified simple equation method and Eq.(50) are almost the same but, our result is the general
form of their result.

5 Conclusion

The nonlinear evolution Zoomeron equation is investigated in this work. Using the ϕ6-model
expansion approach, bright, kink, periodic, combined periodic and combined singular soliton solu-
tions are explicitly retrieved. Singular soliton solutions are also regarded favorably. The graphics
in Figures 1 − 13 soliton solutions at any given time, which is important in the transmission of
energy from one location to another. It is the internal dynamics of the traveling wave for various
parameter values. We may conclude that the traveling wave behavior alters for different values of
each. It is envisaged that the results presented in this study will help to improve the Zoomeron
equation’s nonlinear dynamical characteristics. The method proposes a practical and effective way
for obtaining precise solutions to a wide variety of nonlinear partial differential equations.
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