[1] I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films, J. Am. Chem. Soc. 128 (2006) 2385–2393.
[2] R.S. Selinsky, Q. Ding, M.S. Faber, J.C. Wright, S. Jin, Quantum dot nanoscale heterostructures for solar energy conversion, Chem. Soc. Rev. 42 (2013) 2963–2985.
[3] K. Kalyanasundaram, M. Gratzel, Themed issue: nanomaterials for energy conversion and storage, J. Mater. Chem. 22 (2012) 24190–24194.
[4] B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 90 (2006) 549–573.
[5] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitizedsolar cells, Nat. Mater. 4 (2005) 455–459.
[6] Tina X. Ding, Jacob H. Olshansky, Stephen R. Leone, A. Paul Alivisatos, Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species, J. Am. Chem. Soc. 137 (2015) 2021–2029.
[7] I. Ka, B. Gonfa, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation based synthesis of PbS-quantum dot-decorated one-dimensional nanostructures and their direct integration into highly efficient nanohybrid heterojunction-based solar cells, Adv. Funct. Mater. 24 (2014) 4042–4050.
[8] B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737–740.
[9] M. Gratzel, Photoelectrochemical cells, Nature 414 (2001) 338–344.
[10] M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry 164(2004) 3–14.
[11] P.E. De Jongh, D. Vanmaekelbergh, Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles, Physical Review Letters 77 (1996) 3427–3430.
[12] G. Schlichthorl, S.Y. Huang, J. Sprague, A.J. Frank, Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy, Journal of Physical Chemistry B 101 (1997) 8141–8155.
[13] T. Bessho, E. Yoneda, J.H. Yum, M. Guglielmi, L. Tavernelli, H. Lmai, U. Roth-lisberger, M.K. Nazeeruddin, M. Grätzel, New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications, Journal of the American Chemical Society 131 (2009) 5930–5934.
[14] P.G. Bomben, K.C.D. Robson, P.A. Sedach, C.P. Berlinguette, On the viability of cyclometalated Ru (II) complexes for light-harvesting applications, Inorganic Chemistry. 48 (2009) 9631–9643.
[15] P.G. Johansson, J.G. Rowley, A. Taheri, G.J. Meyer, S.P. Singh, A. Islam, L. Han, Long Wavelength Sensitization of TiO2 by Ru Diimine Compounds with Low-Lying π* Orbitals,Langmuir 27 (2011) 14522–14531.
[16] H.C. Zhao, J.P. Harney, Y.T. Huang, J.H. Yum, M.K. Nazeeruddin, M. Gratzel, M.K. Tsai,Evaluation of a ruthenium oxyquinolate architecture for dye-sensitized solar cells, J. Rochford, Inorganic Chemistry 51 (2012) 1–3.
[17] H. Jia, H. Xu, Y. Hu, Y. Tang, L. Zhang, TiO2@CdS core–shell nanorods films: fabrication and dramatically enhanced photoelectrochemical properties, Electrochemistry Communications 9 (2007) 354–360.
[18] H. Yin, T. Yamamoto, Y. Wada, S. Yanagida, Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater. Chem. Phys. 83 (2004) 66–70
[19] Hayder Hasan Ali, Majid R. Al-Bahrani, Synthesis of TiO2/Graphene Quantum Dots as Photoanode to Enhance Power Conversion Efficiency for Dye-Sensitized Solar Cells, International Journal of Advanced Science and Technology, 29(3), 11071 - 11081.
[20] V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T.Montini, D.Barreca, G. Balducci, Fornasiero, E. Tondello, M.Graziani, TiO2nanopowders doped with boron and nitrogen for photocatalytic applications, Chemical Physics. 339 (2007) 111–123
[21] J. C. Tristão, F. Magalhães, P. Corio, and M. T. C. Sansiviero, Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite, Journal of Photochemistry and Photobiology A: Chemistry. 181 (2006) 152–157.
[22] M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, Microwave Assisted Synthesis of Pure and Ag Doped SnO2 Quantum Dots as Novel Platform for High Photocatalytic Activity Performance, Journal of Cluster Science 30 (2019) 351-363
[23] M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method, Journal of the Iranian Chemical Society 15 (2018) 2789-2801
[24] R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum. 165(2019) 96-104
[25] R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: Design, fabrication and applications in electrochemical energy storage, Journal of Alloys and Compounds. 811 (2019) 152084
[26] R. BoopathiRaja, M. Parthibavarman, A Nishara Begum Design and fabrication of hierarchical heterostructure CuCo2O4@PPy based asymmetric device with ultra high capacitance and attractive cycling performance Materials Research Bulletin 126 (2020) 110817
[27] R. BoopathiRaja, M. Parthibavarman Desert rose like heterostructure of NiCo2O4/NF@ PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application Electrochimica Acta 346 (2020) 136270
[28] S. Biswas, M.F. Hossain, T. Takahashi, Fabrication of Grätzel solar cell with TiO2/CdS bilayered photoelectrode. Thin Solid Films. 517 (2008) 1284– 1288.