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Abstract
Land subsidence has caused huge economic losses in the Beijing plains (BP) since 1980s. Building land
subsidence prediction models that can predict the development of land subsidence is of great
signi�cance for improving the safety of cities and reducing economic losses in Eastern Beijing plains.
The pattern of evolution of land subsidence is affected by many factors including groundwater level in
different aquifers, thicknesses of compressible layers, and static and dynamic loads caused by urban
construction. First, we used the small baseline subset Interferometric Synthetic Aperture Radar (SBAS-
InSAR) technology on 47 ENVISAT ASAR images and 48 RADARSAT‐2 images and used Persistent
Scatterers Interferometric Aperture Radar (PS-InSAR) technology on 27 Sentinel-1 images to obtain the
land subsidence monitoring results from June 2003 to September 2018. Second, the accuracy of the
InSAR monitoring results were validated by using leveling benchmark land subsidence monitoring results.
Finally, we built land subsidence rate prediction models and land subsidence gradient prediction models
by combining land subsidence in�uencing factors and four machine learning methods including support
vector machine (SVM), Gradient Boosting Decision Tree (GBDT), Random forest (RF) and Extremely
Randomized Trees (ERT). The �ndings show: (1) The InSAR monitoring results revealed that the
maximum land subsidence rate reached − 110.7 mm/year, -144.4 mm/year and − 136.8 mm/year during
the 2003–2010, 2011–2015 and 2016–2018 periods, respectively. (2): The InSAR monitoring results
agreed well with the leveling benchmark monitoring results with the Pearson correlation coe�cients of
two monitoring results were 0.97, 0.96 and 0.95 during the 2003–2010, 2011–2015 and 2016–2018
periods, respectively. (3): We found that the land subsidence prediction based on ERT method is the
optimal model among four land subsidence prediction models and that the prediction performance of
land subsidence prediction model based on ERT method will be greatly improved when apply this
prediction model in sub study areas where the land subsidence mechanism is similar owning to the
similar hydrogeological parameters.

1. Introduction
With the loss of surface elevation, land subsidence has become one of the most common geological
disasters (Castellazzi et al. 2017; Galloway et al. 1998). Land subsidence, especially for uneven land
subsidence, could causes huge economic losses and damages infrastructure, including rupturing
underground pipelines and sinking foundations (Strozzi et al. 2017; Ng et al. 2012). By the end of 2018,
more than 150 countries around the world, including Italy (Samsonov al. 2014), China (Luo et al. 2019; Li
et al. 2020), Mexico (Castellazzi et al. 2016; Castellazzi et al. 2017), and United States (Galloway al.
1998), had recorded the occurrence of land subsidence. The cities experienced land subsidence in
Chinese mainland are mainly distributed in the North China Plain (NCP) (Zhu et al. 2015; Chen et al. 2016;
Chen et al. 2020), the Fenwei Basin (Wan Zhao et al. 2011; Qu et al. 2014) and the Yangtze River Delta
(Chen et al. 2003; Hu et al 2014; Ye et al. 2016). Among these areas, the middle and northern regions of
the NCP, where Beijing is located, occur most serious land subsidence (Li et al. 2020).
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As the capital city of China, Beijing is a megacity and rated as the world's �rst tier city (Alpha+) by the
globalization and World Cities Study Group and network (GAWC) in 2018. Beijing has a Gross Domestic
Product (GDP) of over USD 452 billon and total population of over 21 million by the end of 2018.
Domestic water and economic development consume a large amount of groundwater (Zhou et al. 2020),
which lead to the dramatic decrease of groundwater level and the consolidation of aquifer systems; then
causing serious land subsidence (Chen et al. 2020). Beijing Plain (BP) is prone to subsidence owing to
the existence of Quaternary loose sediments, especially for the Eastern Beijing Plain where the thickness
of Quaternary loose sediments exceed 100 meters and experienced serious land subsidence (Zuo et al.
2019; Li et al. 2020). The static and dynamic loads caused by urban construction have accelerated the
process of land subsidence development in the BP (Yang et al. 2018). Previous studies have shown that
the land subsidence in BP was mainly affected by groundwater level, the thickness of compressible
layers, and urban static and dynamic loads (Yang et al. 2018; Zhou et al. 2019; Li et al. 2020).

As a new quantitative microwave remote sensing technology, Interferometry synthetic aperture radar
(InSAR) could obtain land subsidence monitoring information with millimeter accuracy (Berardino et al.
2002). However, its application scope is limited by many factors, including atmospheric delay, spatial and
temporal decorrelation, topographic error and thermal noise. In order to solve those obvious de�ciencies
and expand the application scope of this technology, temporal sequential InSAR (TS-InSAR) technology
was proposed. As a typical TS-InSAR technology, Persistent Scatterers Interferometric Aperture Radar (PS-
InSAR) could detect points with stable backscattering characteristics as permanent scatterers (PSs) and
acquire land subsidence monitoring results with millimeter-scale accuracy (Ferretti et al. 2001). Previous
studies have shown that this technology has been widely used in the �eld of obtaining land subsidence
monitoring information (Thapaa et al. 2016). Small baseline subset InSAR (SBAS-InSAR) technology is
another expansion and improvement of InSAR technology. Relevant research has proved that this
technology can e�ciently obtain larger-scale regional land subsidence monitoring results with millimeter-
scale accuracy (Chen et al. 2019).

The traditional land subsidence prediction models can be divided into two categories, including physical
prediction model and mathematical prediction model. The physical prediction model simulates the
process of land subsidence by combining the in�uencing factors of land subsidence (Nie et al. 2015).
This model can explain the mechanism of land subsidence well and obtain reliable prediction results
(Zhu et al. 2020). However, physical prediction model need many hydrological parameters that are
di�cult to obtain, which greatly limits the scope of its application (Zhou et al. 2020). The mathematical
prediction model uses mathematical functions to express the statistical characteristics of historical land
subsidence (Zhou et al. 2020). The mathematical prediction model have a wider range of applications
than physical prediction model. However, mathematical prediction model has a poor prediction
performance when the dispersion of land subsidence value is large (Li et al. 2021). This phenomenon
should be attributed to the fact that the mathematical prediction model cannot explain the mechanism of
land subsidence. The land subsidence prediction model based on machine learning method can integrate
the advantages of the physical prediction model and mathematical prediction model and overcome the
shortcomings of the physical prediction model and mathematical prediction model. Previous studies
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have shown that the land subsidence prediction model based on machine learning method can obtain
reliable prediction results (Shi et al. 2020; Li et al. 2021).

This paper was organized as follows. First, we illustrated the geographical and geological conditions of
the study area in Section 2. In Section 3, we describe the InSAR technology and machine learning
methods in detail. Then, we obtain the land subsidence monitoring results and assess the accuracy of the
InSAR monitoring results by using leveling benchmarks in Section 4. We built the land subsidence rate
prediction models and land subsidence gradient prediction models by using machine learning methods in
Section 5. Finally, we introduced our conclusions in Section 6.

2. Study Area And Datasets

2.1 Study area
Beijing locates in the northwest fringe of NCP and expands from 115°24′ E to 117°34′ E and 39° 24′ N to
41° 03′N (Fig. 1). Geographically, Beijing can be divided into three geographical units, which namely
western mountains, northern mountains, and southeastern plains (Chen et al. 2015), respectively. Beijing
covers an area approximately 16,400 km2, of which plains areas and mountainous areas account for 38%
and 62% (Shi et al. 2020), respectively.

The BP lies in the southeast part Beijing city and has typical temperate continental monsoon climate.
With an annual average precipitation of 598 mm from 1949 to 2020, BP experienced severe uneven
distribution of precipitation across the year, of which 80% concentrated from June to September (Fig. 2).
Beijing has a total population of over 21 million and GDP of over USD 452 billon by the end of 2018.
Groundwater has been extracted extremely to meet the need of inhabitant survival and economic
development, which greatly exceeded its natural replenishment capacity (Gao et al.2018). Excessive
groundwater exploitation has led to obvious decline of the groundwater level in BP, which resulted in an
increase of effective stress, thus causing consolidation of aquifer systems and serious land subsidence
(Galloway et al. 1998; Chaussard et al. 2014).

BP is a typical piedmont alluvial-proluvial plain, which composed by loose sediments carried by Ji Canal,
Yongding River, Chaobai River, Daqing River, and Wenyu River (Shi et al. 2020). Different thickness of
Quaternary sediments have been deposited in BP during the long geological period, which provide
necessary geological conditions for land subsidence (Zhou et al. 2019). According to recharge conditions
of groundwater and characteristics of Quaternary loose sediments, the aquifer system in BP can be
divided into four groups, including a phreatic aquifer, a �rst con�ned aquifer, a second con�ned aquifer,
and a third con�ned aquifer. The hydrogeological parameters of each aquifer are listed in Table 1.

Previous studies have shown that BP has experienced serious land subsidence since the 1970s (Guo et
al. 2019). Five land subsidence funnels have appeared in the Beijing plain, including Shunyi-
Pinggezhuang land subsidence funnel,
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Shahe-Baxianzhuang land subsidence funnel, Laiguangying land subsidence funnel, Dongbalizhuang-
Dajiaoting land subsidence funnel and Yulong-Lixian land subsidence funnel. Dongbalizhuang-
Dajiaoting land subsidence funnel is the earliest and most typical among those land subsidence funnels
and shows a tendency to merge with Laiguangying land subsidence funnel. Based on those �ndings, the
Laiguangying–Dongbalizhuang–Dajiaoting (LDD) land subsidence funnel was selected as the study
area in this study.

 

 
Table 1

Hydrogeological parameters of each aquifer in Beijing Plain (BP).
Aquifer Buried depth of roof Geological age of strata

The phreatic aquifer 20–40 m Holocene

The �rst con�ned aquifer 80–100 m Late Pleistocene

The second con�ned aquifer 100–180 m Middle Pleistocene

The third con�ned aquifer 200–300 m Lower Pleistocene

2.2 Datasets
In this study, three radar images sets, including ENVISAT ASAR (EA), RADARSAT-2 (R2) and Sentinel-1
(S1) were used to obtain land subsidence monitoring results. EA images set contained 47 descending
radar images collected from June 2003 to August 2010. R2 images set contained 48 descending radar
images obtained from November 2010 to November 2015. S1 images set contained 27 ascending radar
images acquired from January 2016 to September 2018. Detailed image parameters for EA images set,
R2 images set and S1 images set are listed in Supplementary Table S1, Supplementary Table S2 and
Supplementary Table S3, respectively. The EA satellite, R2 satellite and S1 satellite all operate in the 5.6
cm C‐band. However, those three satellites have different revisiting time and incident angles. The detailed
parameters of each images set are listed in Table 2. Shuttle Radar Topography Mission Digital Elevation
Model (SRTM DEM) with a 90 m resolution were used to remove the topographic phase in interferograms.
SRTM DEM data supplied by the Shuttle Radar Topography Mission covers more than 80% of the land
area of the world (detailed information can be found at http://dds.cr.usgs.gov/srtm/).

Forty-nine leveling benchmarks—17, 20 and 20 leveling benchmarks which measured precise land
subsidence monitoring results during the 2003–2010, 2013–2015 and 2016–2018 periods, respectively—
were used to assess the accuracy of the InSAR monitoring results. Their locations can been found in
Fig. 1a. The groundwater level in different aquifers during three different periods were used to present the
degree of groundwater extraction; the lower the groundwater level indicates more severity of groundwater
exploitation. The thickness of Quaternary loose sediments was used to present the strength of
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Quaternary sedimentation; the greater the thickness of Quaternary sediments, the more conducive to the
development of land subsidence. Building loads were used to present static load information and subway
lines, expressways, and urban roads were used to present the dynamic load information.

 

 
Table 2

Detailed parameters of each images set
Parameters ENVISAT ASAR (EA) RADARSAT-2 (R2) Sentinel-1 (S1)

Polarization VV VV VV

Orbit direction Descending Descending Ascending

Spatial
resolution (m)

30 30 30

Revisiting time
(Day)

35 24 12

Incident angle (°) 22.9 27.6 34

Image number 47 48 27

Image
acquisition time

June 2003 to
August 2010

November 2010 to
November 2015

January 2016 to
September 2018

3. Methodology And Dataset
Figure 3 displays the �owchart of this study. Firstly, we used the SBAS-InSAR method on EA images set
and R2 images set to obtain the land subsidence information during the 2003–2010 and 2013–2015
periods; at the same time, we used PS‐InSAR method on S1 images set to obtain the land subsidence
information during the 2016–2018 period. Secondly, the accuracy of InSAR land subsidence monitoring
results was assess by using the leveling benchmark monitoring results. Thirdly, we chose machine
learning methods to build the land subsidence rate prediction models and land subsidence gradient
prediction models.

3.1 InSAR Methodology

3.1.1 Persistent Scatterers Interferometric Aperture Radar
(PS-InSAR) technology
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PS-InSAR technology was proposed �rstly in 2000 to eliminate the problem of low correlation of
interference phase caused by atmospheric delay, orbit error, terrain error and other factors which greatly
limit the application range of InSAR technology (Ferretti et al. 2000a, Ferretti et al. 2000b). Permanent
Scatterers (PS) points can maintain stable backscattering characteristics for a long time (Ferretti et al.
2001). These points correspond to urban roads, buildings and exposed rocks in the wild. PS-InSAR
technology has been widely used in the �eld of land subsidence monitoring and has obtained credible
results (Shi et al. 2020).

The phase caused by deformation can be separated from the following equation according to the
imaging geometric relationship of PS InSAR technology:

1
where  is differential interferometric phase of two SAR images, is the deformation phase in
line-of-sight (LOS) direction, is the residual topographic phase, is the phase affected by
orbit inaccuracy, is the atmospheric delay phase,  is the thermal noise of radar system.
After remove other phases,  can be obtained; then the surface deformation rate along the
LOS direction can be calculated. Considering that the deformation along horizontal in BP can be ignored
(Zhou et al. 2019), land subsidence rate can be estimated by using the following equation:

2
where V is land subsidence rate (deformation rate in the vertical ), is the deformation rate in LOS
direction and is incidence angle of the S1 radar sensor.

In this study, we applied PS-InSAR technology which has been integrated in SARProz software on S1
images set to obtain the land subsidence monitoring results. According to the principle of minimizing the
sum of temporal baseline, spatial baseline and Doppler centers frequency, the image collected in July
2017 was selected as master image. The main image and other slave images form 26 interferograms.
Supplementary Fig. 1 shows the network of the spatial and temporal baselines for S1 images set. The
points which amplitude stability coe�cient greater than 0.7 were selected as PS points.

3.1.2 Small baseline subset Interferometric Synthetic
Aperture Radar (SBAS-InSAR) technology
SBAS-InSAR technology was proposed �rstly in 2002 (Berardinoet al. 2002). SBAS-InSAR technology
form interferograms by setting temporal baseline threshold and spatial baseline threshold to further
eliminate the he in�uence of temporal and spatial decoherence and atmospheric noise, and obtain more
accurate surface deformation information. This technology divides SAR images which spatial baseline is
less than the setting threshold into one group, called a subset. According to the setting threshold, all SAR

ϕ=φdeformation + φtopographic + φorbit + φatmospheric + φnoise

ϕ φdeformation

φtopographic φorbit

φatmospheric φnoise

φdeformation

V =
VLOS

cos θ

VLOS
θ
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images are divided into several subsets; SAR images within the same subsets can be form
interferograms, and different subsets are connected by common SAR images.

The phase caused by surface deformation can be obtain after remove other phases from interferograms.
Previous study have shown that the deformation along horizontal in BP can be ignored (Zhou et al.
2019). Based on the above �ndings, the land subsidence rate can be estimated by using the Eq. (2).

In this study, SBAS-InSAR technology which has been integrated in GAMMA software were used on EA
images set to and R2 images set obtain the land subsidence monitoring results. We generated 267
interferograms for EA images set when temporal baseline threshold and perpendicular baseline threshold
were set as 500 days and 500 m, respectively. We generated 163 interferograms for R2 images set when
temporal baseline threshold and perpendicular baseline threshold were set as 500 days and 500 m,
respectively. Supplementary Fig. 2 shows the network of the spatial and temporal baselines for the EA
images set and R2 images set.

3.2 Machine learning methods
Machine learning is an interdisciplinary covering many �elds including probability theory, statistics,
pattern recognition, approximation theory and arti�cial intelligence. Machine learning methods simulate
the process of human thinking and learning by using computers. Machine learning has experienced four
stages of development since it was proposed in the 1950s. Machine learning methods have been used in
analyzing of land subsidence in�uencing factors (Zhou et al. 2019, Li et al. 2020) and building land
subsidence prediction model (Shi et al. 2020). In this study, we used SVM method, GBDT method, RF
method and ERT method to build land subsidence rate prediction models and land subsidence gradient
prediction models. These four algorithms have been programmed in Python. The results of those four
prediction models were cross-validated.

3.1.1 Support vector machine
SVM is a machine learning method based on statistics theory. The core of this algorithm is to �nd the
segmentation hyperplane that can correctly divide the training set and has the largest geometric distance
(Vapnik et al. 1998). SVM is a supervised learning method, which has been widely used in statistical
classi�cation, regression analysis and pattern recognition (Qin et al. 2005, Sun et al. 2002). Owing to
excellent classi�cation performance and strong generalization ability, SVM has been widely used in
machine learning cases. However, SVM also has some disadvantages, such as low e�ciency when used
in large size training sample and sensitive to missing data.

3.1.2 Gradient Boosting Decision Tree
GBDT is a effective supervised machine learning method which has been widely used in regression
analysis and prediction model cases (Friedman al. 2001). This algorithm obtain the optimal prediction
model by adjusting the weight of the basis learner to obtain the minimum value of the loss function. This
algorithm were composed by decision tree and gradient boosting. The decision tree method is used to
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determine the location of the optimal segmentation by iterative training. Gradient boosting was used to
reduce the error of current model in each iteration. The optimal GBDT model can be obtain when the
value of the loss function reaches its minimum.

3.1.3 Random Forest
RF is one of most representative algorithm of Bagging in ensemble learning (Breiman al. 1996, Breiman
et al. 2001). To improve the accuracy and generalization performance of the whole model, RF obtain the
�nal model result by combining multiple learners and taking the mean value of the combined learners. RF
has the many advantages, including high accuracy, processing the training set with high-dimensional
features without dimensionality reduction, evaluating the importance of each feature, and insensitive to
loss values. RF also has the many disadvantages including large computational burden in feature
collection, taking more time in model training, prone to �tting and poor interpretation.

3.1.4 Extremely Randomized Trees
ERT algorithm is an e�cient supervised machine learning method expanded from RF algorithm. The ERT
model could get more credible than RF mode by using all sample sets in training process. ERT model has
stronger robustness owing to its base learner has more representative when compared with RF model.
ERT model could obtain a better prediction model and a wider range of applications owing to this
algorithm can overcome effectively some shortcomings existing in RF model. ERT model is an e�cient
and concise method, especially for large datasets which need more time to train the all of sample sets, to
get a credible model.

4 Results And Discussion

4.1 Land subsidence monitoring results measured by InSAR
method during three time periods
Based on the InSAR land subsidence monitoring results, we obtain three land subsidence rate maps of BP
during the 2003–2010, 2011–2015 and 2016–2018 periods. Figure 4 shows that land subsidence rate
varied greatly in BP and uneven land subsidence was obvious in BP. The areas where have experienced
severe land subsidence mainly located in the east part of Chaoyang District, the northwest part of
Tongzhou District, the middle and the south part of Changping District, the west part of Shunyi District
and the south part of Daxing District. A total of 272264 pixels were detected in BP from 2003 to 2010,
with a density of 50 pixel/km2. The maximum land subsidence rate was − 110.7 mm/year during this
period. A total of 290197 pixels were detected in BP from 2010 to 2015, with a density of 46 pixel/km2.
The maximum land subsidence rate reached − 144.4 mm/year during this period. A total of 531087 pixels
were detected in BP from 2016 to 2018, with a density of 83 pixel/km2. The maximum land subsidence
rate was − 136.8 mm/year during this period.
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We divide the land subsidence rate maps in the three periods into �ve categories to better study the
evolution law of land subsidence in BP. Figure 5 and Tables 3, 4 and 5 shows the classi�cation results.
Table 3 shows that the area with land subsidence rate varied from − 150 to -120 mm/year, -120 to -90
mm/year, -90 to -60 mm/year, -60 to -30 mm/year and − 30 to 15 mm/year account for 0%, 0.3%, 2.6%,
12.2% and 84.9%, respectively. Table 4 shows that the area with land subsidence rate varied from − 150
to -120 mm/year, -120 to -90 mm/year, -90 to -60 mm/year, -60 to -30 mm/year and − 30 to 15 mm/year
account for 0.2%, 1.6%, 3.1%, 11.3% and 83.8%, respectively. Table 5 shows that the area with land
subsidence rate varied from − 150 to -120 mm/year, -120 to -90 mm/year, -90 to -60 mm/year, -60 to -30
mm/year and − 30 to 15 mm/year account for 0.2%, 1.2%, 1.1%, 9.4% and 88.1%, respectively. We found
that the area with land subsidence rate varied from − 150 to -120 mm/year, -120 to -90 mm/year and − 90
to -60 mm/year has increased and that the area with land subsidence rate varied from − 60 to -30
mm/year and − 30 to 15mm/year has reduced by comparing Table 3 and Table 4. Those �ndings indicate
that the development of land subsidence in BP showed an accelerate trend from 2010 to 2015.We found
that the area with land subsidence rate varied from − 120 to -90 mm/year, -90 to -60 mm/year and − 60 to
-30 mm/year has reduced and that the area with land subsidence rate varied from − 30 to 15mm/year
has increased by comparing Table 4 and Table 5. Those �ndings indicate that the development of land
subsidence in BP showed a slowing trend from 2016 to 2018.

Figure 6 shows that land subsidence has experienced a rapid development stage in BP from 2003 to
2018 and the spatial discrepancy of land subsidence has increased gradually. By the end of 2018, the
maximum cumulative land subsidence in BP has reached 1716.3 mm; at the same time, the area with
cumulative land subsidence exceed 300 mm has reached 1524.9 km2, accounting for 23.8% of the total
area of the BP. Several land subsidence funnels have formed in BP. LDD subsidence funnels has
experienced the most serious land subsidence among them. Therefore, we selected LDD land subsidence
funnel as the study area and build land subsidence rate prediction models and land subsidence gradient
prediction models for LDD land subsidence funnel by using four machine learning methods.

 
Table 3

Classi�cation results of land subsidence rate map from June 2003 to August 2010
2003–2010 Land subsidence rete (mm/year) Number of detected pixels Proportion (%)

NO 1 -150 ~ -120 0 0

NO 2 -120 ~ -90 1580 0.3

NO 3 -90 ~ -60 9095 2.6

NO 4 -60 ~ -30 36764 12.2

NO 5 -30 ~ 15 224825 84.9
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Table 4

Classi�cation results of land subsidence rate map from November 2010 to November 2015
2010–2015 Land subsidence rete (mm/year) Number of detected pixels Proportion (%)

NO 1 -150 ~ -120 613 0.2

NO 2 -120 ~ -90 3580 1.6

NO 3 -90 ~ -60 10240 3.1

NO 4 -60 ~ -30 38330 11.3

NO 5 -30 ~ 15 237434 83.8

 

 
Table 5

Classi�cation results of land subsidence rate map from January 2016 to September 2018
2016–2018 Land subsidence rete (mm/year) Number of detected pixels Proportion (%)

NO 1 -150 ~ -120 932 0.2

NO 2 -120 ~ -90 4587 1.2

NO 3 -90 ~ -60 13624 1.1

NO 4 -60 ~ -30 91330 9.4

NO 5 -30 ~ 15 420614 88.1

4.2 Accuracy veri�cation of InSAR land subsidence
monitoring results
A total of 49 leveling benchmarks were used to verify the reliability of InSAR land subsidence monitoring
results. We selected leveling benchmarks as datum points and extracted the InSAR monitoring points
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within 200m of each benchmark. We compared land subsidence monitoring rate of each benchmark with
average land subsidence rate of the extracted points during three time periods. Figure 7 shows that the
Pearson correlation coe�cient between two land subsidence monitoring results during the 2003–2010,
2011–2015 and 2016–2018 periods were 0.97, 0.96 and 0.95, respectively. In order to further verify the
accuracy of InSAR land subsidence results, we counted the maximum error, minimum error and root
mean square error (RMSE) between the two land subsidence monitoring results. Table 6 present that the
RMSE of two land subsidence monitoring results were less than 10 mm/year in three time periods. Those
�ndings indicated that InSAR land subsidence monitoring results have high accuracy, which provides
reliability for subsequent research.

 
Table 6

Comparison of the InSAR land subsidence monitoring resulst and leveling benchmark monitoring results
in three time periods.

Time
period

Maximum error
(mm/year)

Minimum error
(mm/year)

Root mean square error
(mm/year)

2003–
2010

-11.4 0.8 5.9

2011–
2015

15.2 0.7 6.9

2016–
2018

14.7 0.7 5.2

4.3 Land subsidence rate prediction models based on
machine learning methods
In this study, 54636 pixels detected by the InSAR technology were selected as research data to build land
subsidence rate prediction models by using four machine learning methods including SVM method,
GBDT method, RF method and ERT method. Among these data, 70% are selected as training data and the
remaining 30% are selected as veri�cation data. Firstly, four land subsidence rate prediction models were
built by using four machine learning methods. Secondly, the optimal land subsidence rate prediction
model was choose by comparing the accuracy and RSME of the four models; at the same time, the study
area was divided into 7 sub study areas according to hydrogeological parameters (Luo al. 2019). Figure 8
shows the classi�cation results of the study area. Table 7 shows the hydrogeological parameters of 7
sub study areas. Finally, the land subsidence rate prediction models was built for each sub study area by
using the optimal land subsidence rate prediction model.
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Table 7

Hydrogeological parameters of 7 sub study areas.
Sub study area Thickness of compressible layer (m) Permeability coe�cient (m/day) Aquifer

A 220–230 < 20

B 170–190 < 20

C 150–180 < 20

D 170–190 20–50

E 110–130 20–50 ,

F 110–130 < 20 ,

G 110–130 < 20

,  present the second con�ned aquifer and the third con�ned aquifer, respectively.

4.3.1 Comparison of land subsidence rate prediction
models based on machine learning methods
We selected the land subsidence rate during the 2011–2015 period as the dependent variable, while
groundwater level in the phreatic aquifer, groundwater level in the �rst con�ned aquifer, groundwater level
in the second con�ned aquifer, groundwater level in the third con�ned aquifer, the thickness of
compressible layers and additional stress engendered from static and dynamic loads in same time period
and land subsidence rate during the 2003–2010 period were the explanatory variables. We built four land
subsidence rate prediction models by using SVM method, GBDT method, RF method and ERT method,
respectively. Figure 9 shows the results of four land subsidence rate prediction models during the 2011–
2015. We found that the land subsidence rate prediction model based on ERT method has the highest
accuracy and the lowest RSME among those four prediction models.

We selected the land subsidence rate during the 2016–2018 period as the dependent variable, while
groundwater level in the phreatic aquifer, groundwater level in the �rst con�ned aquifer, groundwater level
in the second con�ned aquifer, groundwater level in the third con�ned aquifer, the thickness of
compressible layers and additional stress engendered from static and dynamic loads in same time period
and land subsidence rate during the 2011–2015 period were the explanatory variables. We built four land
subsidence rate prediction models by using SVM method, GBDT method, RF method and ERT method,
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respectively. Figure 10 shows the results of four land subsidence rate prediction models during the 2016–
2018. We also found that the land subsidence rate prediction model based on ERT method has the
highest accuracy and the lowest RSME among those four prediction models. Based on the above
�ndings, we choose the land subsidence rate prediction model based on ERT model as the optimal land
subsidence prediction model in this study.

4.3.2 Land subsidence rate prediction models based on ERT
method in sub study areas.
We built land subsidence rate prediction models by using ERT method during the 2011–2015 and 2016–
2018 periods in 7 sub study areas. The parameter settings in this section are the same as those in
Section 4.3.1. Figure 11 and Fig. 12 show the results of land subsidence rate prediction models based on
ERT method in 7 sub study areas during the 2011–2015 and 2016–2018 periods, respectively. We found
that the accuracy of the land subsidence rate prediction model based on ERT mothed in each sub study
area increased and the RSME has decreased when compared with land subsidence rate prediction model
based on ERT method applied on the whole study area, except for the sub study area labeled B. This is
mainly due to the similar hydrogeological conditions in each sub study area.

4.4 Land subsidence gradient prediction models based on
machine learning methods
In this study, we also selected 54636 pixels detected by the InSAR technology as research data to build
land subsidence gradient prediction models by using four machine learning methods including SVM
method, GBDT method, RF method and ERT method. Of these data, 70% are selected as training data and
the remaining 30% are selected as veri�cation data. Firstly, four land subsidence gradient prediction
models were built by using four machine learning methods. Secondly, the optimal land subsidence
gradient prediction model was choose by comparing the accuracy and RSME of the four models. Finally,
the land subsidence gradient prediction models was built for each sub study area by using the optimal
land subsidence gradient prediction model.

4.4.1 Comparison of land subsidence gradient prediction
models based on machine learning methods
We selected the land subsidence gradient during the 2011–2015 period as the dependent variable, while
groundwater level gradient in the phreatic aquifer, groundwater level gradient in the �rst con�ned aquifer,
groundwater level gradient in the second con�ned aquifer, groundwater level gradient in the third con�ned
aquifer, the gradient of thickness of compressible layers and the gradient of additional stress in same
time period and land subsidence gradient during the 2003–2010 period were the explanatory variables.
Four land subsidence gradient prediction models were built by using SVM method, GBDT method, RF
method and ERT method, respectively. Figure 13 shows the results of four land subsidence gradient
prediction models during the 2011–2015. We found that the land subsidence gradient prediction model
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based on ERT method has the highest accuracy and the lowest RSME among those four prediction
models.

We selected the land subsidence gradient during the 2016–2018 period as the dependent variable, while
groundwater level gradient in the phreatic aquifer, groundwater level gradient in the �rst con�ned aquifer,
groundwater level gradient in the second con�ned aquifer, groundwater level gradient in the third con�ned
aquifer, the gradient of thickness of compressible layers and the gradient of additional stress in same
time period and land subsidence gradient during the 2011–2015 period were the explanatory variables.
Four land subsidence gradient prediction models were built by using SVM method, GBDT method, RF
method and ERT method, respectively. Figure 14 shows the results of four land subsidence gradient
prediction models during the 2016–2018. We also found that the land subsidence gradient prediction
model based on ERT method has the highest accuracy and the lowest RSME among those four prediction
models. Based on the above �ndings, we choose the land subsidence gradient prediction model based on
ERT model as the optimal land subsidence prediction model in this study.

4.4.2 Land subsidence gradient prediction models based on
ERT method in sub study areas.
We built land subsidence gradient prediction models by using ERT method during the 2011–2015 and
2016–2018 periods in 7 sub study areas. The parameter settings in this section are the same as those in
Section 4.4.1. Figure 15 and Fig. 16 show the results of land subsidence gradient prediction models
based on ERT method in 7 sub study areas during the 2011–2015 and 2016–2018 periods, respectively.
We found that the accuracy of the land subsidence gradient prediction model based on ERT mothed in
each sub study area increased and the RSME has decreased when compared with land subsidence
gradient prediction model based on ERT method applied on the whole study area, except for the sub
study area labeled B. This is mainly due to the similar hydrogeological conditions in each sub study area.

5 Conclusion
In this research, we obtained the land subsidence monitoring results from June 2003 to September 2018
covering Beijing Plain by using SBAS-InSAR method on 47 EA images and 48 R2 images and using PS‐
InSAR method on 27 S1 images; at the same time, we assess the accuracy of InSAR land subsidence
monitoring results. Based on the land subsidence monitoring results, we analyzed the evolution law of
land subsidence in Beijing Plain. Land subsidence rate prediction models and land subsidence gradient
models in LDD land subsidence funnel were built by using machine learning methods. The following
conclusions can be derived:

1. The Beijing plain experienced serious land subsidence from 2003 to 2018, with maximum
cumulative land subsidence reached 1716.3 mm and maximum land subsidence rate reached − 
110.7 mm/year, -144.4 mm/year and − 136.8 mm/year during the 2003–2010, 2011–2015 and
2016–2018 periods, respectively. The area with the most serious subsidence occurs in the east part
of Chaoyang District and the northwest part of Tongzhou District, where LDD land subsidence funnel



Page 16/36

located. The InSAR land subsidence monitoring results agree well with the that of leveling
benchmark, and the Pearson correlation coe�cient between two land subsidence monitoring results
all greater than 0.95 during three study period.

2. With highest accuracy and the lowest RSME, the land subsidence rate prediction model based on
ERT method was the optimal prediction model among four land subsidence rate prediction models
based on SVM method, SVM method, GBDT method, RF method and ERT method. The accuracy of
the land subsidence rate prediction model based on ERT method during the 2011–2015 and 2016–
2018 periods was 94% and 93.7%, respectively. Because the land subsidence mechanism is similar
in areas with similar hydrogeological parameters, the land subsidence rate prediction models in the
sub study area have better prediction performance when compared with the performance of land
subsidence rate prediction model based on ERT method applied to the whole study area.

3. We found that land subsidence gradient prediction model based on ERT method was the optimal
prediction model among four land subsidence gradient prediction models. The prediction
performance of land subsidence gradient prediction model will be greatly improved when land
subsidence gradient prediction model based on ERT method was applied to sub study areas with
similar hydrological parameters. This �nding provides a new method for land subsidence gradient
prediction.
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Figure 1

Geographical conditions of the study area. (a): shows the coverage of Radarsat-2, ENVISAT-ASAR and
Sentinel-1 and distribution of leveling benchmarks, which were used to compare the deformation results
derived by Interferometric Synthetic Aperture Radar (InSAR) technology. (b): shows the location of Beijing.
(c): shows the location of study area (the Laiguangying–Dongbalizhuang–Dajiaoting (LDD) land
subsidence funnel). (ArcGIS)
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Figure 2

Precipitation in Beijing Plain (BP). (a): shows annual average precipitation in BP from 1949 to 2020. (b):
shows average monthly precipitation in BP from 1949 to 2020. (Origin 2016)
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Figure 3

The �owchart of this study. (Visio2013)
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Figure 4

Land subsidence rate maps of BP in three time periods. (a): shows the land subsidence rate map from
June 2003 to August 2010. (b): shows the land subsidence rate map from November 2010 to November
2015. (c): shows the land subsidence rate map from January 2016 to September 2018. (ArcGIS)
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Figure 5

Classi�cation results of subsidence rate maps of BP in time periods. (a): June 2003 to August 2010. (b):
November 2010 to November 2015. (c): January 2016 to September 2018. (ArcGIS)
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Figure 6

Cumulative land subsidence map of BP from 2003 to 2018 (ArcGIS)
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Figure 7

Comparison of the InSAR land subsidence monitoring results and leveling benchmark monitoring results
in three time periods. (a): shows the comparison result during the 2003–2010 period. (b): shows the
comparison result during the 2011–2015 period. (c): shows the comparison result during the 2016–2018
period. (Origin 2016)
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Figure 8

Classi�cation results of the study area. (ArcGIS)
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Figure 9

Four land subsidence rate prediction models during the 2011–2015. (Python)
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Figure 10

Four land subsidence rate prediction models during the 2016–2018. (Python)
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Figure 11

Results of land subsidence rate prediction models based on ERT method in 7 sub study areas during the
2011–2015 period. (Python)



Page 31/36

Figure 12

Results of land subsidence rate prediction models based on ERT method in 7 sub study areas during the
2016–2018 period. (Python)
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Figure 13

Four land subsidence gradient prediction models during the 2011–2015. (Python)
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Figure 14

Four land subsidence gradient prediction models during the 2016–2018. (Python)
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Figure 15

Results of land subsidence gradient prediction models based on ERT method in 7 sub study areas during
the 2011–2015 period. (Python)
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Figure 16

Results of land subsidence gradient prediction models based on ERT method in 7 sub study areas during
the 2016–2018 period. (Python)
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