
An Introspection Monitoring Library to Improve MPI
Communication Time
Emmanuel Jeannot (emmanuel.jeannot@inria.fr)

Inria, Univ. Bordeaux
Richard Sartori

ATOS

Research Article

Keywords: MPI, monitoring, communication optimization, HPC

Posted Date: July 29th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1886078/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1886078/v1
mailto:emmanuel.jeannot@inria.fr
https://doi.org/10.21203/rs.3.rs-1886078/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to

Improve MPI Communication Time

Emmanuel Jeannot
1,2*

and Richard Sartori
2,1

1*Inria, LaBRI, Univ. Bordeaux, Talence, France.
2ATOS, Echirolles, France.

*Corresponding author(s). E-mail(s): emmanuel.jeannot@inria.fr;
Contributing authors: richard.sartori@atos.net;

Abstract

In this paper we describe how to improve communication time of
MPI parallel applications with the use of a library that enables
to monitor MPI applications and allows for introspection (the pro-
gram itself can query the state of the monitoring system). Based
on previous work, this library is able to see how collective commu-
nications are decomposed into point-to-point messages. It also fea-
tures monitoring sessions that allow suspending and restarting the
monitoring, limiting it to specific portions of the code. Experiments
show that the monitoring overhead is very small and that the pro-
posed features allow for dynamic and efficient rank reordering enabling
up to 2-time reduction of communication parts of some program.

Keywords: MPI, monitoring, communication optimization, HPC

1 Introduction

To cope with application requirements in terms of speed, precision or memory,
the use of supercomputers has emerged as a dominant solution. To program
parallel applications onto distributed memory systems, MPI (Message Passing
Interface) is the de facto standard. MPI defines how distributed processes
exchange data through point-to-point messages as well as collective or one-
sided communications.

1

Springer Nature 2021 LATEX template

2 An Introspection Monitoring Library to Improve MPI Communication Time

Being able to write parallel applications whose performance is close to the
peak of the target machine is still a very difficult challenge. It requires to
design an efficient parallel algorithm, to optimize data structure, to cope with
load imbalance, etc. One of the main problems is the way data are exchanged,
and allocated. This is of tremendous importance for the overall application
performance as when an application (weakly) scales it spends more time in
communication. Hence, among all the difficulties, understanding how the pro-
cesses of the application communicate and coping with data locality is key. To
do so, it requires to be able to monitor the application behavior and take deci-
sion (at launch time or at runtime) on the process mapping, the communicator
composition, and the way communications are executed.

Monitoring MPI applications has been proposed in many tools [1] [2, 3].
However, these monitoring tools are designed for performance analysis, per-
formance debugging and post-morten analysis. Having a monitoring tool to
perform runtime optimization requires it to be able to perform introspection
during execution. This means that this tool should be able to query the state
of the monitoring during execution. In [4], a subset of the authors of this paper
proposed a low-level MPI monitoring component for Open MPI [5]. Such a
component is based on MPI Tool Information Interface which is a low-level
API of MPI to query performance variables of the MPI runtime systems. For
a given MPI Process, such interface is able to gather the number of messages
and the amount of data exchanged with other ranks. However, it is very low
level and requires a deep understanding of the MPI Tool Information Interface.
In this paper, the main contribution is that we leverage on this previous work
to provide a higher-level and more abstracted introspection library for MPI.
This new library enables the application to query its specific state through a
simple API during the execution. In particular the proposed library features
the notion of monitoring sessions which can be suspended and resumed for
monitoring only specific part of the code. Different sessions can overlap, mon-
itor specific types of communications (point-to-point, collective or one-sided)
and be attached to a specific communicator enabling a precise understanding
of the behavior of the application during the execution. It provides a C and
Fortran interface. Last, we monitor communication once a collective has been
decomposed into its point-to-point messages: this unique feature enables to
gather the affinity between processes.

The goal of this paper is to describe the proposed introspection library
and to show that thanks to it, it enables to optimize the communication time
of parallel MPI applications. We detail the notion of session, its usage and a
specific use-case (dynamic rank reordering). We provide extensive experiments
to compare it with hardware counters, assess its low overhead, and show how
to optimize communications through rank reordering.

This paper is organized as follows. Related work is presented in Section 2
and the background in Section 3. In Section 4 we describe in detail the
library. The dynamic rank reordering technique and algorithm are depicted in

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 3

Section 5. We present the experimental results in Section 6. We discuss issues
and problems in Section 7 and we give our concluding remarks in Section 8.

2 Related Work

Monitoring an MPI application can be achieved in many ways but in general
relies on intercepting the MPI API calls and delivering aggregated information.
We present here some examples of such tools.

PMPI is a customizable profiling layer that allows tools to intercept MPI
calls. Therefore, when a communication routine is called, keeping track of
the processes involved and the amount of data exchanged is possible. This
approach has drawbacks, however. First, managing MPI datatypes is awkward
and requires a conversion at each call. Also, PMPI cannot comprehend some
of the most critical data movements, because an MPI collective is eventually
implemented by point-to-point communications, and yet the participants in the
underlying data exchange pattern cannot be guessed without knowledge of the
collective algorithm implementation. A reduce operation is, for instance, often
implemented with an asymmetric tree of point-to-point sends/receives in which
every process has a different role (i.e., root, intermediary, and leaves). Known
examples of stand-alone libraries using PMPI are DUMPI [6] and mpiP [7].

EZtrace [1] is a tool for analyzing and monitoring MPI programs. These
tools launches the MPI executable and capture all point-to-point communi-
cation in a set of files. Each file corresponds to a process and describes its
communication behavior with the other processes. However, it only allows for
post-mortem and static analysis of the trace. It is not possible for the MPI
program to monitor itself and change its behavior at runtime according to
the communication pattern. Similarly to PMPI-based tools, this approach has
an API-level granularity, and is unconcerned with detailed information about
collective calls.

Another tool for analyzing and monitoring MPI programs is Score-P [2]. It
is based on different but partially redundant analyzers that have been gathered
within a single tool to allow both online and offline analysis. It uses Periscope
and TAU, live profiling tools that evaluates performances and tries to track
bottlenecks in both communication and memory accesses. Score-P relies also
on Scalasca [8] and Vampir [9] for post-mortem analysis of event traces, with
a graphical representation. Score-P relies on MPI wrappers and call-path pro-
files for online monitoring. Nevertheless, the application monitoring support
offered by these tools is kept outside of the library, which means access to the
implementation details and the communication pattern of collective operations
once decomposed is limited.

PERUSE [3] takes a different approach, in that it allows the application to
register callbacks that will be raised at critical moments in the point-to-point
request lifetime. This method provides an opportunity to gather information
on state-changes inside the MPI library and gain detailed insight on what type

Springer Nature 2021 LATEX template

4 An Introspection Monitoring Library to Improve MPI Communication Time

of data (i.e., point-to-point or collectives) is exchanged between processes, as
well as how and when. This technique has been used in [3, 10].

In [4], a subset of the authors of this paper proposed a low-level MPI
monitoring component for Open MPI [5]. This paper presented the design
and evaluation of a communication monitoring infrastructure developed in
the Open MPI software stack and able to expose a dynamically config-
urable level of detail about the application communication patterns. This
component combines the advantages of the MPI Tool Information Interface
interface to configure a flexible low-level implementation to provide efficient
and dynamically configurable message-passing monitoring capabilities. As it
is a component inside the Open MPI stack, it is able to decompose collec-
tive operations into their point-to-point expression: the monitoring component
is plugged into the stack once messages are buffered to be sent to another
MPI process. This is a strong advantage compared to all other approaches as
it provides a better view of the actual messages exchanged during a collec-
tive communication. Moreover, all types of communications supported by the
MPI-3 standard (including one-sided communications and I/O) are monitored.

In [11] the authors propose an introspection library for monitoring perfor-
mance data at the application level. In this aspect, it is more general than the
proposed approach. However, our approach is based on internal monitoring of
the MPI runtime providing more precise information in terms of exchanged
data In [12], the authors proposed an introspection library for a task-based run-
time system which is a different progralming model than the message passing
one of MPI.

3 Background

The proposed library is based on a monitoring interface [4]. As presented
above, this component was developed in Open MPI and used the MPI Tool
Information Interface.

The Open MPI Project [5] is a comprehensive implementation of the MPI
3.1 standards [13] that was started in 2003, taking ideas from four earlier
institutionally-based MPI implementations. It is developed and maintained by
a consortium of academic, laboratory, and industry partners, and distributed
under a modified BSD open source license. It supports a wide variety of CPU
and network architectures that is used in the HPC systems. It is also the base
for a number of vendors commercial MPI offerings, including Mellanox, Cisco,
Fujitsu, Bull, and IBM. The Open MPI software is built on the Modular
Component Architecture (MCA) [14], which allows for compile or runtime
selection of the components used by the MPI library. This modularity enables
experiments with new designs, algorithms, and ideas to be explored, while
fully maintaining functionality and performance. In the context of this study,
we take advantage of this functionality to seamlessly interpose our profiling
components along with the highly optimized components provided by the stock
Open MPI version.

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 5

MPI Tool Information Interface, is an interface that has been added in
the MPI-3 standard [13]. It allows MPI developers, or third party, to offer
a portable interface to different tools. These tools may be used to monitor
applications, measure its performances, or profile it. MPI Tool Information
Interface is an interface that eases the addition of external functions to a MPI
library. It also allows the user to control and monitor given internal variables of
the runtime system. In [4], a component was developed within this interface to
precisely record the message exchanges between nodes during MPI applications
execution. This component is available within Open MPI since version 4.0.
The number of messages and the amount of data exchanged are recorded,
including or excluding internal communications (such as those generated by the
implementation of the collective algorithms). This component can be activated
at launch-time though --mca pml monitoring enable value on the mpirun

command line to set the monitoring mode where value can be:

0 monitoring (and component) is disabled.
1 monitoring is enabled, with no distinction between user issued and library
issued messages.
≥ 2 monitoring enabled, with a distinction between messages issued from the
library (internal) and messages issued from the user (external).

However, this component is extremely low level. It requires to manipulate low-
level features of the MPI Tool Information Interface and does not provide
high-level semantics such as sessions or easy ways to gather monitored results
from the different nodes.

Precise monitoring can be used to optimize process placement. Process
placement is an optimization strategy that takes into account the affinity of
processes (represented by a communication matrix) and the machine topology
to decrease the communication costs of an application [15]. Various algo-
rithms to compute such a process placement exist, one being TreeMatch [16]
(designed by a subset of the authors of this article). We can distinguish between
static process placement which is computed from traces of previous runs, and
dynamic placement, that can be implemented by rank reordering, computed
during the application execution (See experiments in Section 6).

4 Library Description

4.1 General Description

The main interest of the MPI Monitoring Library is to provide a higher-
level interface by allowing the user to simply monitor its code and access the
collected data. It mostly relies on low-level MPI Tool Information Interface
features, mainly performance variables, that remain hidden to the user.

The MPI Monitoring Library only defined one opaque datatype,
MPI M msid (which stands for Monitoring Session IDentifier), that can only
be used through the function of this library. They allow the user to create
and act on monitoring sessions attached to a given communicator. While the

Springer Nature 2021 LATEX template

6 An Introspection Monitoring Library to Improve MPI Communication Time

session is active, the number and size of the messages exchanged between pro-
cessors of the communicator are recorded and can later be obtained. Note
that it also records communications that do not go through the communica-
tor, as long as both processors belong to it. For example, a monitoring session
attached to the communicator that splits even and odd processors will record
all exchanges between processors 0 and 2, even if some communications use
the communicator MPI COMM WORLD.

All these functions are prefixed by MPI M and their name does not con-
tain any other capital letter, to respect the MPI convention. All functions
are thread-safe. However they are not interrupt-safe (due to non-interrupt-
safe MPI routines). They must be used in a proper environment that can be
set using init and finalize, and both must be called between MPI Init and
MPI Finalize as well. As other collective MPI routines, the MPI Monitoring
Library collective functions must be called by all processes of the given com-
municator. Note that init and finalize could be called multiple times as long
as their environment do not overlap, but it is simpler to call them along with
MPI Init and MPI Finalize.

Within the environment, the user can manage monitoring sessions using
either start, suspend, continue or reset. It allows the user to precisely
define the portion of the code to watch. The unique initial start put the
session in its ”active” state, and must match a final suspend. The monitoring
session can be put in a ”suspended” state using suspend, and later be put
back in the ”active” state using continue. The code is only watched while the
session is in the ”active” state. The function reset can be used on a session
in the ”suspended” state to put the data it contains back to zero. Note that
if the session is in the ”suspended” (resp. ”active”) state, suspend (resp.
continue) cannot be called again. Another important feature is that sessions
are completely independent and hence different sessions can overlap similar
part of the code if necessary.

It is left to the user to properly use free on each started monitoring session
to avoid memory leak. The recorded data can be copied into the user’s buffers
through get data, allgather data and rootgather data.

The function get data will copy the data specific to the process that called
it into a buffer of this process. Even if it seems to be a function that could be
called by only one process, it must be called by all that belong to the commu-
nicator of the session. However, parameters can vary among processes, and the
special value MPI M DATA IGNORE can be used to get rid of the unwanted
data. The function allgather data is equivalent to a call to get data followed
with a call to MPI Allgather, such that all processes receive the collected
data from all processes as a 2D matrix represented by a 1D array in row major
format. The function rootgather data act similarly, but it takes an addi-
tional parameter, root, and only the process whose rank is root will receive
the data.

It is left to the user to give large enough buffers to store the recorded
data. The minimal required size can be obtained with the function get info.

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 7

The user can also use flush and rootflush to directly save the data in a
file. Those functions act similarly to get data and rootgather data, but
they need a proper filename instead of buffers. All functions meant to obtain
data require a flag argument to specify which of kind of communication the
data is wanted (point-to-point, collective, one-sided or any combination of
the previous options). Note that some collective MPI routines might generate
point-to-point zero-length messages.

As accessing the data uses collective MPI routines that the user does not
want to record along with dynamic memory allocation, the data can only be
accessed while the session is in the ”suspended” state and not already freed.
Note that data is stored using arrays of unsigned long int, and therefore a code
with a lot of communications may cause overflows.

4.2 Usage

To properly use monitoring sessions, one should call MPI M init right after
MPI Init and MPI M finalize right before MPI Finalize to set a proper
environment. Then, create a different MPI M msid variable, automatically
allocated, for each monitoring session wanted, in a scope that contains both
the code to monitor and where the data need to be used. These sessions are
completely independent from one another, therefore monitored portions of the
code can overlap. Start the recording with MPI M start and stop it with
MPI M suspend. If one wants to interrupt the monitoring session and then
restart it, he can use MPI M suspend and MPI M continue, in this order.
Once the monitoring is done, data can be obtained through multiple functions,
it depends on how the data will be used. Sessions can be freed when the data
they contain is no longer needed. A simple example will follow in Listing 2.

4.3 Complete API

For the sake of comprehensiveness, we provide here the complete function
list as well as the different constant that can be used. The MPI Monitoring
Library comes with an interface that allows its usage within a Fortran code.
The datatype MPI M msid is replaced by the type integer, and each function
possesses an additional parameter which is used to transmit the return value.

MPI M init
Set the monitoring environment

void

MPI M finalize
Finalizes the monitoring environment

void

Springer Nature 2021 LATEX template

8 An Introspection Monitoring Library to Improve MPI Communication Time

MPI M start
Creates and starts a monitoring session

MPI Comm
comm

communicator of the session.
The count and size of messages
passing between any processes
included in this communicator
will be recorded, even if the
communicator used in the
transmission is not this one

MPI M msid *
msid

(output
parameter)

session identifier (cannot be set
to MPI M ALL MSID)

MPI M suspend
Suspends a monitoring session (make data

available)
MPI M msid

msid
session identifier (can be set to

MPI M ALL MSID)

MPI M continue
Restarts a suspended monitoring session

MPI M msid
msid

session identifier (can be set to
MPI M ALL MSID)

MPI M reset
Resets monitored data of a suspended monitoring

session
MPI M msid

msid
session identifier (can be set to

MPI M ALL MSID)

MPI M free
Frees a suspended monitoring session (data no

longer available)
MPI M msid

msid
session identifier (can be set to

MPI M ALL MSID)

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 9

MPI M get info
Accessor to information about the monitoring

session
MPI M msid

msid
session identifier

int *
provided
(output

parameter)

provided level of thread support
(can be set to

MPI INT IGNORE)

int *
array size
(output

parameter)

size of the arrays msg counts

and msg sizes (see
MPI M get data) ; size of one

dimension of the square
matrices matrix counts and

matrix sizes (see
MPI M allgather data and

MPI M rootgather data) (can
be set MPI INT IGNORE)

MPI M get data
Accessor to the aggregated data in the monitoring

session
MPI M msid

msid
session identifier

unsigned long *
msg counts

(output parmeter)

number of messages sent by
this process to others in the
communicator of the session

(can be set to
MPI M DATA IGNORE,
otherwise, user must ensure

that their sizes are appropriate
(see MPI M get info))

unsigned long *
msg sizes

(output parmeter)

amount of bytes sent by this
process to others in the

communicator of the session
(can be set to

MPI M DATA IGNORE,
otherwise, user must ensure

that their sizes are appropriate
(see MPI M get info))

int
flags

specify the type of monitored
data that will be returned. It
must be a bitwise combination
of the flags described below

Springer Nature 2021 LATEX template

10 An Introspection Monitoring Library to Improve MPI Communication Time

MPI M allgather data
Accessor to all aggregated data from all processes
MPI M msid

msid
session identifier

unsigned long *
matrix counts

(output parmeter)

number of messages sent
through the communicator of

the session (2D matrix
represented by 1D array, row

major. Can be set to
MPI M DATA IGNORE,
otherwise, user must ensure

that their sizes are appropriate
(see MPI M get info))

unsigned long *
matrix sizes

(output parmeter)

amount of bytes sent through
the communicator of the session
(2D matrix represented by 1D
array, row major. Can be set to

MPI M DATA IGNORE
otherwise, user must ensure

that their sizes are appropriate
(see MPI M get info))

int
flags

specify the type of monitored
data that will be returned. It
must be a bitwise combination
of the flags described below

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 11

MPI M rootgather data
Similar to MPI M allgather data except that only

some processes will receive data
MPI M msid

msid
session identifier

int
root

rank of the processes (in the
communicator of the session)

which will receive data

unsigned long *
matrix counts

(output parmeter)

number of messages sent
through the communicator of
the session (only processes

whose rank is root must have
valid receive buffers, others can

pass NULL)

unsigned long *
matrix sizes

(output parmeter)

amount of bytes sent through
the communicator of the session
(only processes whose rank is
root must have valid receive

buffers, others can pass NULL)

int
flags

specify the type of monitored
data that will be returned. It
must be a bitwise combination
of the flags described below

MPI M flush
Each process flushes its aggregated data during

the monitoring session
MPI M msid

msid
session identifier

char *
filename

path & base name of the files
which will be created or

truncated (path has to exist.
The full names of the files will
be filename.[rank].prof where

[rank] is the rank of the process
in the communicator of the

session)

int
flags

specify the type of monitored
data that will be returned. It
must be a bitwise combination
of the flags described below

Springer Nature 2021 LATEX template

12 An Introspection Monitoring Library to Improve MPI Communication Time

MPI M rootflush
One process flushes all the aggregated data during

the monitoring session
MPI M msid

msid
session identifier

int
root

rank of the process (in the
communicator of the session)

which will flush the data (2 files
will be created by process

whose rank is root)

char *
filename

path & base name of the files
which will be created or

truncated (path has to exist.
The full names of the files will
be filename counts.[rank].prof
and filename sizes.[rank].prof
where [rank] is the rank of the

process in
MPI COMM WORLD)

int
flags

specify the type of monitored
data that will be returned. It
must be a bitwise combination
of the flags described below

All these functions return an error value. On success, it is MPI SUCCESS.
On failure, it will be one of the following constant:

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 13

Name Description

MPI M
INTERNAL FAIL

an internal error occured
(malloc or some system call

failed)
MPI M

MPIT FAIL
an MPI or MPI T function

failed
MPI M

MISSING INIT
no call to MPI M init has

been done
MPI M

SESSION STILL
ACTIVE

at least one session has not
been suspended

MPI M
SESSION NOT
SUSPENDED

the session has not been
suspended

MPI M
INVALID MSID

the given MPI M msid does
not refer to an active session,

is NULL, or is
MPI ALL MSID when it

should not
MPI M

SESSION
OVERFLOW

the maximum number of
sessions has been reached

MPI M
MULTIPLE CALL

init or continue (resp
suspend) has been called
more than once without
suspend (resp continue)

MPI M
INVALID ROOT

the parameter root used is
invalid

Last, here is the list of constant values that can be used as an argument:

Springer Nature 2021 LATEX template

14 An Introspection Monitoring Library to Improve MPI Communication Time

Name Description

MPI M
ALL MSID

used to act on all msid that
refers to an active or
suspended session

MPI M
INT IGNORE

used when some output
parameter (of type int) isn’t

wanted

MPI M
DATA IGNORE

used when some output
parameter (of type unsigned

long *) isn’t wanted
MPI M

P2P ONLY
used to monitore point-to-
point communications only

MPI M
COLL ONLY

used to monitore collective
communications only

MPI M
OSC ONLY

used to monitore one-sided
communications only

MPI M
ALL COMM

used to monitore all
(point-to-point, collective and
one-sided) communications

Listing 1: Pseudo-code for a Fortran code using the monitoring library

PROGRAM Main
USE MPI Monitoring
IMPLICIT NONE
INCLUDE ”mpif . h”
INTEGER re tva l , msid
! . . .
CALL MPI M init (r e t v a l)
! . . .
CALL MPI M start (MPICOMMWORLD, msid , r e t v a l)
! . . .

4.4 Common Example

Here is an example to find out how MPI uses point-to-point communications
to implement MPI Barrier. Note that this code is not fully complete as it does
not check any return value, but it gives an idea on how this library can be used.

Listing 2: Produces a file that described all point-to-point messages used to
implement MPI Barrier

#include <mpi.h>
#include "MPI_Monitoring.h"

int main(){
MPI_Init(NULL , NULL);
MPI_M_init ();
MPI_M_msid id;

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 15

MPI_M_start(MPI_COMM_WORLD , &id);

MPI_Barrier(MPI_COMM_WORLD);

MPI_M_suspend(id);
MPI_M_rootflush(id, 0,

"barrier", MPI_M_P2P_ONLY);
MPI_M_free(id);
MPI_M_finalize ();
MPI_Finalize ();
return 0;

}

Note that the only portion of the code that is being watched is between
the calls to MPI M start and MPI M suspend, and this portion could possibly
contain anything else.

4.5 Case with Several Collectives in a Program

As said above, the MPI monitoring component sees collectives once they have
been decomposed into point-to-point messages. However, it is not able to
distinguish between different calls: the monitoring aggregates all the sent oper-
ation into the same MPI T variable. However, thanks to the sessions we are
able to solve the problem of being able to distinguish which send operation
belong to which collective. Indeed, it is sufficient to create one session per MPI
call the programmer wants to distinguish (e.g. two different collective calls).
In this case, the amount of data sent will be copied and stored in different
buffers within the introspection library. As the library is designed such that
the sessions can overlap or be nested, any kind of situations can be monitored
thanks to the session mechanism.

5 Rank Reordering with Introspection
Monitoring

Here, we explain how the introspection monitoring can be used to compute
an optimized communicator where ranks are reordered and that allows for
optimizing communications.

Communicator reordering was proposed in [17] for the case where the appli-
cation is first monitored and then re-executed. Here, the algorithm described
in Figure 1, does not require to restart the application.

Assume that you have a parallel program that performs an iterative com-
putation using a function called compute iteration. This function takes two
parameters the (iteration number and a communicator). The first iteration
(line 3) is monitored by our tool. Then, the number of data exchanged between
all the ranks (size mat) is gathered on rank 0. We compute a new mapping1

of the processes in order to minimize communication cost (line 7). The output
of this call is an array –k– of n integers (n is the number of MPI processes: the

1In the experiments, we will use the TreeMatch algorithm [16], but any other relevant algorithm
can be used.

Springer Nature 2021 LATEX template

16 An Introspection Monitoring Library to Improve MPI Communication Time

size of the original communicator). The array k describes an optimized map-
ping – based on the topology of the machine and the gathered communication
pattern of the application – in order to minimize the communications. More
precisely, k is such that in order to minimize communication cost, Process i
should be executed on the process/core k[i]. This array is then broadcast
among all the MPI processes (line 9). A new communicator (opt comm) is then
computed such that MPI process of rank i in the original communicator gets
rank k[i] in opt comm (line 10). Indeed, as the second parameter (color) of
MPI Comm split is the same for all ranks, all MPI processes are put in the same
communicator. It might be then required to redistribute the data (line 11)
before executing the remaining iterations on the optimized communicator: this
requires to know the vector k on all ranks such that any useful data is sent
from rank k[i] to rank i in the original communicator.

Algorithm 1 Reordering Algorithm for Iterative Computation

1: MPI M init()
2: MPI M start(original comm, &id)

3: compute iteration(1, original comm)

4: MPI M suspend(id)

5: MPI M rootgather data(id, 0, MPI M DATA IGNORE, size mat,

MPI M P2P ONLY)

6: if myrank==0 then

7: k = compute mapping(local topology, size mat)

8: end if

9: MPI Bcast(k, n, MPI INT, 0, original comm)

10: MPI Comm split(original comm, 0, k[myrank], &opt comm)

11: redistribute data(original comm, k)

12: for it = 2 ... max it do

13: compute iteration(it, opt comm)

14: end for

The tricky part of the algorithm is actually line 10. Indeed, the fact that to
optimize communication, process k[i] is mapped by TreeMatch onto process-
ing unit i is equivalent of having rank i in the original communicator becomes
rank k[i] in the optimized communicator.

6 Experimental Results

The sequential experiment of Sec 6.1 was performed on two nodes having an
Infiniband EDR card and a Xeon 6140 Processor at 2.3 GHz.

We conducted our experiments with parallel applications on an OmniPath
100 Gb/s cluster of the PlaFRIM experimental testbed. With two clusters
(Miriel and Bora) Each Miriel node features two Haswell Intel Xeon E5-2680
v3 with 12 cores (2.5 GHz) each. Each node has 128 Gb of 2133 MHz memory

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 17

(5.3 GB/core) anf are interconnected with an OmniPath network 100 Gbit/s.
Each Bora node features 2 18-core Cascade Lake Intel Xeon Skylake Gold 6240
at 2.6 GHz with 192 Gb of memory (5.3 GB/core). The network is also an
OmniPath at 100 Gbit/s.

If not detailed, for each experiments we use one MPI process per core or
24 MPI processes per node. This enables us to test the scalability and the
overhead of the proposed solution.

The source, documentation and test of the library can be downloaded
on the Inria gitlab platfrom at this url: https://gitlab.inria.fr/ejeannot/
mpi-introspection-monitoring

6.1 Comparison with Hardware Counters

In order to assess if the monitoring actually measures what is sent to the
network, we have done the following experiment. An MPI program with 2
processes on different nodes send a random amount of data (between 1 and
800 KB) and then sleeps between 50 and 1000 ms. In the same program, a
thread monitors the network traffic. We use two kinds of monitoring systems:
the library we present in this paper and the hardware counters of the network
card of the machine. On Linux, the number of bytes sent by an Infiniband card
is available in the /sys/class/infiniband/.../counters/port xmit data file. The
number read in this file has to be multiplied by the number of planes of the
card (in general 4): see [18] for more details. The monitoring frequency is 10
ms and we use the reset features of the library session to monitor only what
has happened between two measurements. In Fig. 1, we show the results for
the Hardware counters (top) and our MPI introspection monitoring (bottom).
It is a time series where the x-axis represents the time (in seconds) and the
y-axis the amount of data that is monitored (in Kb).

H
W

 c
o
u
n
te

rs
In

tro
s
p
e
c
tio

n
 M

o
n
.

0 10 20 30 40

0

200

400

600

800

0

200

400

600

800

Time (s)

V
o

lu
m

e
 (

K
b

)

Fig. 1: Hardware Counters vs. Introspection Monitoring (time series)

https://gitlab.inria.fr/ejeannot/mpi-introspection-monitoring
https://gitlab.inria.fr/ejeannot/mpi-introspection-monitoring
/sys/class/infiniband/.../counters/port_xmit_data

Springer Nature 2021 LATEX template

18 An Introspection Monitoring Library to Improve MPI Communication Time

In Fig 2, we show the same result but in a cumulative manner.

0

10

20

30

0 10 20 30 40
Time (s)

V
o

lu
m

e
 (

M
b

)

Monitoring
method

HW counters
Introspection
Monitoring

Fig. 2: Hardware Counters vs. Introspection Monitoring (cumulative)

In both cases we see that the monitoring sees precisely what is actually
sent to the network and the time difference is barely visible. This means that,
once the introspection monitoring library has monitored some data they are
almost immediately sent to the network. However, the advantage of the mon-
itoring library compared to the hardware counter method is twofold. First, it
is portable: it does not require to find the right file to be read on the target
machine (in the /sys pseudo-filesystem), if only it exists. Second and more
importantly, it provides a higher semantic as with the introspection monitor-
ing, the rank of the sender and the receiver is attached to the sent data, which
is impossible to see with the hardware counters of the network card.

6.2 Overhead

In order to measure the effective impact caused by the library on the moni-
tored code, a simple test was used. It consists of a small code that is being run
twice, one with and one without monitoring, both runs being timed. The code
simply performs a reduce, transferring an arbitrary amount of data through
MPI COMM WORLD. Different number of MPI processes are used 48 (2
nodes), 96 (4 nodes) and 192 (8 nodes). This test is launched 180 times to
clear statistical fluctuations. The results are shown in Fig. 3. The error bar is
the 95% confidence interval computed with the student T test using unpaired
measures and unequal variance.

We plot only the data for small message size because the overhead can been
seen only in these cases. Results show that most of the time the overhead is
not statistically significant. In the worst case, the monitoring overhead is less
than 10 µs.

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 19

●

●

● ●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0

2

4

10
0

10
1

10
2

10
3

10
4

Size (byte)

T
im

e
 D

if
fe

re
n

c
e

 (
µs

)

NP

●

●

●

192
48
96

Fig. 3: Impact of the library on the monitored code (x log-scale): time differ-
ence between monitoring execution and non-monitoring execution. (positive
values mean that execution with monitoring is slower than without). Each
point is the difference of the average of 180 measurements and the error bar is
the 95% confidence interval (unpaired T test with unequal variance).

6.3 Collective Optimization

In order to show the usefulness of a monitoring system being able to decom-
pose collective communication into their point-to-point expression, we have
designed an experiment that features rank reordering as explained in Section 5
using the communication matrix built with the monitored point-to-point mes-
sages. Here, we have taken two collective operations. A ”one to all” collective
(Broadcast) and a ”all to one collective (Reduce). If monitored at a high-level
(before the decomposition into point-to-point), it would not be possible to
see the individual messages that are sent to execute the collective operation.
Here, thanks to the monitoring library, each individual message is recorded,
then ranks are reordered using a process placement algorithm we have devel-
oped (TreeMatch [16]). The goal is to re-arrange the ranks, such that, the ones
that communicate the most are close to each other on the target machine.
The results are depicted in Fig. 4 for the Miriel machine and in Fig. 5 for
the Bora machine. We plot the collective operation runtime versus the buffer
size. Thanks to the precise monitoring, we are able to optimize the collective
communication runtime for all the buffer size. On Miriel, for the reduce oper-
ation we see that, for 96 MPI processes (4 nodes), the runtime is reduced from
15.16 s to 7.57s for 2.108 integers. For 48 MPI processes (2 nodes), the runtime
reduction is 8.28s to 5.59s for 2.108 integers. On Bora we see the same behavior
with an increase of the gain as the buffer size increases (for 576 ranks the exe-
cution tile is reduced for 61.1 seconds to 31.8 s for 5.1011 integers). On Miriel,
or the broadcast operation, the reduction is 16.34s to 10.24s for 96 ranks and
2.108 integers. For 48 processes, the runtime is reduced from 6.21s to 3.35s for
2.108 integers. For 192 MPI processes, the runtime is reduced form 11.92s to
5.01s (resp. 15.11s to 4.46s) for the reduce operation (resp the broadcast) for

Springer Nature 2021 LATEX template

20 An Introspection Monitoring Library to Improve MPI Communication Time

2.108 integers. On Bora for 576 ranks the execution time is reduced for 41.4
seconds to 13.5 s for 5.1011 integers.

N
P

 =
 4

8
N

P
 =

 9
6

N
P

 =
 1

9
2

1000 2000 5000 10000 20000 50000 1e+05 2e+05

10

100

1000

10000

10

100

1000

10000
20000

10

100

1000

10000
20000

Buffer size (1000 int)

M
e
d
ia

n
 T

im
e
 (

m
s
)

No monitoring Introspection Monitoring + Rank Reordering

MPI_Reduce time at root

(a) MPI Reduce (MPI MAX) walltime (x and y
log-scale) for 48, 96 and 192 ranks and various
buffer sizes. Binary Tree algorithm.

N
P

 =
 4

8
N

P
 =

 9
6

N
P

 =
 1

9
2

1000 2000 5000 10000 20000 50000 1e+05 2e+05

10

100

1000

10

100

1000

10000
20000

10

100

1000

10000
20000

Buffer size (1000 int)
M

e
d
ia

n
 T

im
e
 (

m
s
)

No monitoring Introspection Monitoring + Rank Reordering

Total MPI_Bcast time

(b) MPI Bcast walltime (x and y log-scale) for
48, 96 and 192 ranks and various buffer sizes.
Binomial Tree algorithm.

Fig. 4: MPI Collective Optimization on Miriel

N
P

 =
 7

2
N

P
 =

 1
4

4
N

P
 =

 2
8

8
N

P
 =

 5
7

6

1000 2000 5000 10000 20000 50000 1e+05 2e+05 5e+05 1e+06

1

10

100

1000

10000

1

10

100

1000

10000

1

10

100

1000

10000

1

10

100

1000

10000

Buffer size (1000 int)

M
e
d
ia

n
 T

im
e
 (

m
s
)

No monitoring Introspection Monitoring + Rank Reordering

MPI_Reduce time at root

(a) MPI Reduce (MPI MAX) walltime (x and y
log-scale) for 72 to 576 ranks and various buffer
sizes. Binary Tree algorithm.

N
P

 =
 7

2
N

P
 =

 1
4

4
N

P
 =

 2
8

8
N

P
 =

 5
7

6

1000 2000 5000 10000 20000 50000 1e+05 2e+05 5e+05 1e+06

1

10

100

1000

1

10

100

1000

1

10

100

1000

1

10

100

1000

10000

Buffer size (1000 int)

M
e
d
ia

n
 T

im
e
 (

m
s
)

No monitoring Introspection Monitoring + Rank Reordering

MPI_Bcast time at root

(b) MPI Bcast walltime (x and y log-scale) from
72 to 576 ranks and various buffer sizes. Bino-
mial Tree algorithm.

Fig. 5: MPI Collective Optimization on Bora

6.4 Rank Reordering Micro-Benchmark

To exemplify the possibility of doing runtime optimization through the intro-
spection monitoring library we have designed a benchmark where group of
ranks perform an MPI Allgather at each iteration. The processes mapping is
such that for each group of ranks, their communicators span different nodes.
Then, we perform a rank reordering for each group to optimize their data

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 21

locality. Results are shown in Fig. 6. We display a heat map for three different
number of processes (48, 96 and 192 i.e 2, 4 and 8 nodes). On the x-axis we
have the size of the data (in number of integers) and on the y-axis the number
of iterations. We measure the time t1 for n iterations then the time t2 for the
reordering the process and the time t3 of n iterations after the reordering2.
Here, to show the gain of the reordering we measure only the communication
time and we compute the percentage of gain, taking into account the reordering
overhead, as 100(t1− (t2 + t3))/t1.

NP = 48 NP = 96 NP = 192

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

1

10

100

1000

10000

Buffer size (MPI_INT)

N
b

 i
te

ra
ti
o

n
 l
o

o
p

s

−200

−100

0

100

Gain
percentage

Fig. 6: Heatmap of the gain (in percent) of using reordering while varying the
number of iterations and the buffer size or the All Gather micro-benchmark.
Green values: reordering pays off. Red values: reordering overhead is too high.
Miriel machine

As expected, we see that when the number of iterations is low or when the
buffer size is small, the percentage of gain is lower than 0%. This means that
the time to reorder plus the time to execute loops after reordering is greater
than the time without reordering. In all these cases, the communication time
is very small (never greater than 2 ms) and much higher than the reordering
cost. However, as soon as the buffer size is large enough or the number of
iterations is high, the reordering cost is amortized enabling a better execution
time than the non-reorder case alone. In the best cases, the gain is more than
95% (almost a 2-time improvement): this is the case for 48 processes and 100
iterations or more for the 100 000 MPI INT buffer size (or 1000 iterations or
more for the 10 000 buffer size).

6.5 Rank Reordering on Conjugate Gradient

The conjugate gradient algorithm is an iterative algorithm that computes the
solution of a system of linear systems whose matrix is symmetric and positive-
definite. Such algorithm is perfectly suited for the reordering use-case as the
communication pattern of each iteration is the same. Hence, we can monitor

2timings are the average of the maximum time on all the ranks of 6 runs

Springer Nature 2021 LATEX template

22 An Introspection Monitoring Library to Improve MPI Communication Time

the first iteration, build the communication matrix, compute a new mapping
and apply a rank reordering as explained in Sec. 5.

In this paper, we have taken the conjugate gradient code from the NAS
parallel benchmark 3.33 called CG. We have designed two functions one to start
the monitoring and one to compute the reordering. The CG code uses only the
MPI COMM WORLD communicator. In order to apply the reordering we have
changed this to a global variable which is assigned to MPI COMM WORLD
at the beginning of the program and to the new computed communicator
after the reordering phase has been done. To avoid redistributing the data, we
have used the fact that the CG code has an initialization phase that does one
iteration of the conjugate gradient algorithm. We monitor this initialization
phase to compute the optimized communicator. In order to be fair, the time
of the reordering is added to the whole timing of the application.

In the NAS suite, the number of processes of the CG code is a power of
two. We use three values (64, 128, 256) and 3, 6 and 11 nodes respectively. As
the number of cores per node is 24, some cores are spared. Hence, we use and
compare three different initial mappings: a random mapping, a round-robin
mapping (RR) where rank i is mapping on the ith leftmost core and standard
where no binding is used.

Also, to avoid interference with the other running applications, we have
used nodes that are on the same 100 GB/s switch.

Results are depicted in Fig 7. We show the gain of the reordering vs. without
reordering (ratio greater than 1 shows a gain for the reordering case). On the
X-axis, we vary the number of MPI processes (from 64 to 256). Each bar is
different class from B (small problem size) to D (large problem size)4. Each
graph has three rows that show three types of initial mapping described in the
previous paragraph (Random, Round-Robin or Standard).

In Fig. 7a the y-axis is the ratio of execution time. We see that all the
ratios are greater than 1, meaning that the reordering is beneficial. In general
the ratio is decreasing with the problem size (the class), this is due to the fact
that the larger the problem the longer the execution time and, even if the gain
difference is larger, the smaller the ratio. To see what is the actual gain in
terms of communication, we have measured the gain of the reordering but only
for the communication time to do so we have added a timer that measures the
time spent by rank 0 in MPI calls. The results are shown in Fig 7b. In this case
the ratios are much greater (both timings are reduced by the same amount)
and show, in some cases, up to a 1.9x improvement. Another interesting fact
is that in case of the random mapping the gain is not better than the round-
robin mapping. This is due to the fact that the remapping algorithm we use
(TreeMatch) is sensitive to the initial mapping: in the case of the random
initial mapping it is not able to provide a reordering as good as with the round
robin initial mapping. This is an issue out of the scope of the paper and will
be tackled in future work.

3https://www.nas.nasa.gov/publications/npb.html
4We do not show the class A as the timing are very small (less than 0.1 s) and the reordering

is not useful

https://www.nas.nasa.gov/publications/npb.html

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 23

R
a

n
d

o
m

R
o

u
n

d
 R

o
b

in
S

ta
n

d
a

rd

64 128 256

1

1.05

1

1.05

1

1.05

Number of MPI processes

E
xe

c
u
ti
o
n
 T

im
e
 R

a
ti
o

CLASS B C D

(a) Gain in execution time

R
a

n
d

o
m

R
o

u
n

d
 R

o
b

in
S

ta
n

d
a

rd

64 128 256

1

1.1

1.3

1

1.1

1.3

1.5

1.7

1

1.1

1.3

1.5

1.7

Number of MPI processes

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e
 R

a
ti
o

CLASS B C D

(b) Gain in communication time

Fig. 7: NAS benchmark conjugate gradient reordering gain. The gain is the
ratio of the non-reordered case vs the reordered case: ratio greater than one
means that the reordering is faster. Y-axis in log-scale. We plot different class
of the CG kernel (B to D) and each row is a different initial mapping (random,
round-robin or standard). Miriel machine

7 Discussion

In most of our experiments, we have 1 MPI process per core. However, having
many MPI processes per nodes does not help to exhibit communication opti-
mization. Hence, we think that our results would show even more gain in the
case where we use more nodes and less MPI processes per nodes.

Apart from rank reordering, being able to understand how the application
communicates can be useful in many other cases. For instance, in [19] we
used the dynamic and introspection monitoring to compute the communication
matrix during the execution of an MPI application. The goal was to perform
elastic computations in case of node failures or when new nodes are available.
The runtime system migrated MPI processes when the number of computing
resources changed: the placement of such processes was computed according
to the topology and the communication matrix. Recently, in [20], we use the
introspection monitoring to detect and predict network usage using machine
learning technique. Here, the goal is to determine when the network is under-
utilized in order to fetch checkpoint to the storage.

Reordering is interesting if the mapping algorithm is fast enough. In the
experiments we have shown that reordering 256 MPI Processes has a negligible
impact on the duration (up to 0.02 seconds). One might wonder what happens
in the case of a larger number of processors. In table 1 we display the mapping
computation time of TreeMatch for very large settings (up to a communication
matrix of order 65 536). We see that even for such large input size the time
to compute the reordering is less than 100s.

Springer Nature 2021 LATEX template

24 An Introspection Monitoring Library to Improve MPI Communication Time

Com Matrix size 8 192 16 384 32 768 65 536

Reordering time in s 2.6 6.3 20.9 88.7

Table 1: Reordering computation time for large input size

8 Conclusion

Being able to query the state of the MPI software stack is very important as
it enables runtime optimization. In particular this enables to optimize the way
communications are carried out on a distributed memory parallel machine. In
this paper we have proposed an introspection library. This high-level library
features sessions that allows for watching specific part of the application, is
able to see how collectives are decomposed into point-to-point communica-
tions, provide a C as well as a Fortran API and is freely available. We have
carried-out experiments that show that the library captures precisely what is
sent to the network card with a very small overhead. Thanks to its ability to
see how collective are decomposed in point-to-point, we have been able to opti-
mize tree-based collective at runtime. Last, we have presented a dynamic rank
reordering algorithm and show that, as long as the communication cost is large
enough, the reordering cost is amortized leading to almost 2-time performance
improvement.

This library is based on a monitoring module available only in Open MPI

(version 4.0 or later). The advantage of such a library is that it hides the
low-level MPI tool variables and command. Hence, if a monitoring module
would be developed in another MPI implementation (such as MPICH), our
proposed library could easily be ported to such implementation enabling a
better portability.

Declarations

Ethical Approval

Not applicable

Competing interests

The authors have no competing interests as defined by Springer, or other
interests that might be perceived to influence the results and/or discussion
reported in this paper.

Authors’ contributions

Richard Sartori developed the introspection library and wrote the library
part of the paper. Emmanuel Jeannot drafted the paper, did the experiments
and wrote most of the paper. Emmanuel Jeannot was responsible for the
conceptualization and the methodology.

Funding

No funding was received for this work.

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 25

Availability of data and materials

The source, documentation and test of the library can be downloaded
on the Inria gitlab platfrom at this url: https://gitlab.inria.fr/ejeannot/
mpi-introspection-monitoring

Acknowledgment

We would like to thank Guillaume Mercier for fruitful discussion on the
reordering strategy. The PlaFRIM experimental testbed is being developed
with support from Inria, LaBRI, IMB, and other entities: Conseil Régional
d’Aquitaine, FeDER, Université de Bordeaux, and CNRS.

References

[1] Trahay, F., Brunet, E., Bouksiaa, M.M., Liao, J.: Selecting points of inter-
est in traces using patterns of events. In: Daneshtalab, M., Aldinucci, M.,
Leppänen, V., Lilius, J., Brorsson, M. (eds.) 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, PDP
2015, Turku, Finland, March 4-6, 2015, pp. 70–77. IEEE Computer Soci-
ety, ??? (2015). https://doi.org/10.1109/PDP.2015.30. http://dx.doi.org/
10.1109/PDP.2015.30

[2] Knüpfer, A., et al.: In: Brunst, H., Müller, M.S., Nagel, W.E., Resch, M.M.
(eds.) Score-P: A Joint Performance Measurement Run-Time Infrastruc-
ture for Periscope, Scalasca, TAU, and Vampir, pp. 79–91. Springer,
Berlin, Heidelberg (2012)

[3] Keller, R., Bosilca, G., Fagg, G., Resch, M., Dongarra, J.J.: In: Mohr,
B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) Implementation and
Usage of the PERUSE-Interface in Open MPI, pp. 347–355. Springer,
Berlin, Heidelberg (2006). https://doi.org/10.1007/11846802 48. http://
dx.doi.org/10.1007/11846802 48

[4] Bosilca, G., Foyer, C., Jeannot, E., Mercier, G., Papauré, G.: Online
Dynamic Monitoring of MPI Communications. In: Springer (ed.) Euro-
Par 2017: Parallel Processing - 23rd International Conference on Parallel
and Distributed Computing. LNCS, vol. 10417, pp. 49–62. Santiago de
Compostela, Spain (2017)

[5] Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres,
J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H.,
Daniel, D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, Concept,
and Design of a Next Generation MPI Implementation. In: Proceedings,
11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary,
pp. 97–104 (2004)

https://gitlab.inria.fr/ejeannot/mpi-introspection-monitoring
https://gitlab.inria.fr/ejeannot/mpi-introspection-monitoring
https://doi.org/10.1109/PDP.2015.30
http://dx.doi.org/10.1109/PDP.2015.30
http://dx.doi.org/10.1109/PDP.2015.30
https://doi.org/10.1007/11846802_48
http://dx.doi.org/10.1007/11846802_48
http://dx.doi.org/10.1007/11846802_48

Springer Nature 2021 LATEX template

26 An Introspection Monitoring Library to Improve MPI Communication Time

[6] Janssen, C.L., Adalsteinsson, H., Cranford, S., Kenny, J.P., Pinar, A.,
Evensky, D.A., Mayo, J.: A simulator for large-scale parallel com-
puter architectures. Technology Integration Advancements in Distributed
Systems and Computing 179 (2012)

[7] Vetter, J.S., McCracken, M.O.: Statistical scalability analysis of communi-
cation operations in distributed applications. In: ACM SIGPLAN Notices,
vol. 36, pp. 123–132 (2001). ACM

[8] Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. Concurrency and Computation:
Practice and Experience 22(6), 702–719 (2010)

[9] Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler,
H., Müller, M.S., Nagel, W.E.: The vampir performance analysis tool-set.
In: Tools for High Performance Computing, pp. 139–155. Springer, ???
(2008)

[10] Brown, K.A., Domke, J., Matsuoka, S.: Tracing Data Movements Within
MPI Collectives. In: Proceedings of the 21st European MPI Users’ Group
Meeting. EuroMPI/ASIA ’14, pp. 117–117117118. ACM, New York, NY,
USA (2014). https://doi.org/10.1145/2642769.2642789. http://doi.acm.
org/10.1145/2642769.2642789

[11] Aguilar, X., Laure, E., Fürlinger, K.: Online performance data introspec-
tion with ipm. In: 2013 IEEE 10th International Conference on High
Performance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing, pp. 728–734 (2013).
IEEE

[12] Aguilar, X., Jordan, H., Heller, T., Hirsch, A., Fahringer, T., Laure, E.:
An on-line performance introspection framework for task-based runtime
systems. In: International Conference on Computational Science, pp. 238–
252 (2019). Springer

[13] Forum, M.P.I.: MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org/ (2012)

[14] Barrett, B., Squyres, J.M., Lumsdaine, A., Graham, R.L., Bosilca, G.:
Analysis of the Component Architecture Overhead in Open MPI. In:
Proceedings, 12th European PVM/MPI Users’ Group Meeting, Sorrento,
Italy (2005)

[15] Hoefler, T., Jeannot, E., Mercier, G.: An overview of topology map-
ping algorithms and techniques in high-performance computing. High-
Performance Computing on Complex Environments, 73–94 (2014)

https://doi.org/10.1145/2642769.2642789
http://doi.acm.org/10.1145/2642769.2642789
http://doi.acm.org/10.1145/2642769.2642789

Springer Nature 2021 LATEX template

An Introspection Monitoring Library to Improve MPI Communication Time 27

[16] Jeannot, E., Mercier, G., Tessier, F.: Process Placement in Multicore
Clusters: Algorithmic Issues and Practical Techniques. IEEE Transac-
tions on Parallel and Distributed Systems 25(4), 993–1002 (2014). https:
//doi.org/10.1109/TPDS.2013.104

[17] Mercier, G., Jeannot, E.: Improving mpi applications performance on
multicore clusters with rank reordering. In: Proceedings of the 16th
International EuroMPI Conference. LNCS 6960, pp. 39–49. Springer,
Santorini, Greece (2011)

[18] Understanding mlx5 Linux Counters and Status
Parameters. https://community.mellanox.com/s/article/
understanding-mlx5-linux-counters-and-status-parameters (2018)

[19] Cores, I., Gonzalez, P., Jeannot, E., Mart́ın, M., Rodriguez, G.: An
application-level solution for the dynamic reconfiguration of mpi appli-
cations. In: 12th International Meeting on High Performance Computing
for Computational Science (VECPAR 2016), Porto, Portugal (2016). To
appear

[20] Tseng, S.-M., Nicolae, B., Bosilca, G., Jeannot, E., Chandramowlish-
waran, A., Cappello, F.: Towards Portable Online Prediction of Network
Utilization using MPI-level Monitoring. In: EuroPar’19: 25th Inter-
national European Conference on Parallel and Distributed Systems,
Goettingen, Germany (2019). https://hal.inria.fr/hal-02184204

https://doi.org/10.1109/TPDS.2013.104
https://doi.org/10.1109/TPDS.2013.104
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://hal.inria.fr/hal-02184204

	Introduction
	Related Work
	Background
	Library Description
	General Description
	Usage
	Complete API
	Common Example
	Case with Several Collectives in a Program

	Rank Reordering with Introspection Monitoring
	Experimental Results
	Comparison with Hardware Counters
	Overhead
	Collective Optimization
	Rank Reordering Micro-Benchmark
	Rank Reordering on Conjugate Gradient

	Discussion
	Conclusion
	Ethical Approval
	Competing interests
	Authors' contributions
	Funding
	Availability of data and materials

