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Abstract
Multimodal characterization of cell-free DNA (cfDNA) in blood can enable the sensitive and non-invasive
detection of human cancers but remains technically challenging and costly. Here, we developed Multimodal
Epigenetic Sequencing Analysis (MESA), a �exible and sensitive method of capturing and integrating
multimodal epigenetic information of cfDNA using a single experimental assay, i.e., non-disruptive bisul�te-free
methylation sequencing, such as Enzymatic Methyl-seq (EM-seq) and TET-assisted pyridine borane sequencing
(TAPS). MESA can simultaneously infer four epigenetic modalities, namely cfDNA methylation, nucleosome
occupancy, nucleosome fuzziness, and fragmentation pro�le for regions surrounding gene promoters and
polyadenylation sites (PASs). When applied to 462 cfDNA samples from 2 independent clinical cohorts for
colon cancer, new modalities (e.g., nucleosome fuzziness) and genomic features (e.g., PASs) introduced in
MESA are highly complementary or superior to conventional ones, such as promoter DNA methylation, for
cancer detection. Furthermore, MESA’s integrated analysis of multimodal epigenetic features signi�cantly
improved the detection accuracy for colon, liver, and pancreatic cancers compared to single modality models.
Together, MESA captures additional and highly complementary epigenetic information from cfDNA without
additional experimental assays, highlighting the importance and clinical potential of using multimodal
epigenetic features for non-invasive cancer detection.

Introduction
Cancer has long been a leading cause of death worldwide. While research on cancer treatment continues to
make progress in reducing cancer mortality, early detection provides the best opportunity to improve patient
survival and lower treatment cost1. Recently, the analysis of circulating cfDNA — degraded DNA fragments in
blood plasma originating primarily from the apoptosis of normal and diseased cells — has shown great
potential for early cancer detection2-4. The use of these liquid biopsies (non-invasive blood cfDNA-based
detection methods) in routine screening is central to increasing surveillance adherence, identifying cancers in
early curable stages, and ultimately reducing worldwide cancer mortality. One such approach is the whole-
genome sequencing (WGS) of cfDNA, which provides genetic information, such as somatic mutations and
copy number variations5,6. However, detecting cancer-speci�c genetic alterations is challenging due to the
limited number of detectable changes and low fraction of circulating tumor DNA in patient blood samples2,5,7,8.

Aside from genetic alterations, cfDNA methylation has been shown as a promising biomarker for early cancer
detection, as aberrant DNA methylation has been frequently reported in cancer cells and may occur early in
tumorigenesis9-12. Currently, the gold standard for the detection of DNA methylation is bisul�te sequencing.
However, this harsh bisul�te treatment degrades a large fraction of the DNA resulting in biased genome
coverage and increased sequencing cost13. Recently, the development of bisul�te-free DNA methylation
sequencing methods, such as Enzymatic Methyl-seq (EM-seq) and TET-assisted pyridine borane sequencing
(TAPS), have improved methylation sequencing quality and reduced sequencing cost14-16.

Circulating cfDNA primarily consists of nucleosome-associated fragments that largely retain the chromatin
structure information of the cells from which they originate17,18. As cfDNA is degraded by endonucleases
before being released into the bloodstream, closed chromatin regions with dense nucleosomes are particularly
well-protected against enzymatic degradation, while open chromatin regions are more sensitive to
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endonuclease activity17. Several studies have developed methods utilizing chromatin-associated features for
the non-invasive detection or monitoring of cancers, including nucleosome occupancy19,20, window protection
score17, and fragmentation pro�le18,21. However, these methods rely on WGS and thus do not provide any
further epigenetic information.

Recently, the non-destructive nature of EM-seq and TAPS enabled the combination of two epigenetic modalities
based on low-coverage whole-genome methylation sequencing (Supplementary Table 1). In particular, TAPS-
based cfTAPS22 provided DNA methylation and fragmentation for 85 cancer/cirrhosis/pancreatitis/control
samples. Similarly, EM-seq-based cfNOME23 measured DNA methylation and nucleosome occupancy for 12
chronic kidney disease/control samples. Despite this progress, these two methods are largely limited by small
sample sizes and fail to utilize the full spectrum of epigenetic information from cfDNA. Here, we introduce a
four-in-one multimodal epigenetic sequencing analysis (MESA) of cfDNA (Fig. 1) for 462 colon cancer/control
samples from two independent cohorts with deep targeted methylation sequencing. MESA can simultaneously
infer four highly-complementary epigenetic modalities, namely 1) cfDNA methylation, 2) nucleosome
occupancy, 3) nucleosome fuzziness, and 4) fragmentation pro�le across gene promoters and polyadenylation
sites (PASs). MESA’s integrated analysis of multimodal epigenetic features signi�cantly improved the cancer
detection accuracy compared to single modality models.

Results
MESA cohorts

To systematically demonstrate the performance of MESA, we designed two targeted EM-seq panels of different
scales for two independent clinical cohorts, Cohort 1 (n = 130) and Cohort 2 (n = 332) (Fig. 1, Supplementary
Tables 2 and 3). The target regions included a custom-designed methylation panel and a nucleosome
organization panel with regions surrounding both transcription start sites (TSSs) and polyadenylation sites
(PASs) of cancer-related genes (Materials and methods; Supplementary Tables 4-7). Novel to our panel design
is the introduction of PASs, whose alternative regulation is frequently reported to be involved in
tumorigenesis24-27. Since nucleosome occupancy around PASs has also been reported to be associated with
alternative polyadenylation regulation28-30, we predicted that its inclusion would contribute to the improved
performance of the cancer detection model. In contrast to low-pass whole-genome methylation sequencing
such as cfTAPS22 (mean coverage of 11.6×), this targeted design allowed us to perform deeper sequencing
with a mean coverage of 74.2× (range from 41× to 123×) for Cohort 1 and a mean coverage of 200.3× (range
from 76× to 570×) for Cohort 2 at a comparatively low cost. Next, we assessed the quality of our sequencing
data based on non-human, internal spike-in controls with known unmethylated CpG sites (CpG-unmethylated
lambda DNA). Less than 1% methylation was detected in unmethylated lambda, indicating a conversion
e�ciency of at least 99%.

cfDNA methylation in MESA enables accurate detection of colon cancer

As a baseline, we �rst explored the effectiveness of cfDNA methylation features alone in distinguishing
between cancer patients and non-cancer controls. We observed that the average methylation level of all target
CpG sites was elevated in cancer samples compared to non-cancer controls (Fig. 2A and B). This observation is



Page 5/23

consistent with the fact that the targeted CpG sites are primarily located in promoter regions, which are known
to be frequently hypermethylated in cancers31. To further investigate whether these methylation signatures can
discriminate between cancer patients and non-cancer controls, we performed principal component analysis
(PCA) for cfDNA methylation levels in all target CpG sites. Methylation at these sites showed reasonable
separation in PC1 and PC2 (Fig. 2C and D). Next, we investigated the performance of these methylation
features for colon cancer prediction using machine learning methods with leave-one-out cross-validation
(LOOCV) (Materials and methods). Methylation alone achieved an impressive prediction of colon cancer for
both cohorts based on an ensemble classi�er incorporating random forest, logistic regression, and deep forest
methods (Fig. 2E and F, AUC (area under the curve) = 0.8602 for Cohort 1 and AUC = 0.8422 for Cohort 2).
These results suggested that cfDNA methylation in MESA can be used to detect colon cancer with reasonable
accuracy.

MESA successfully captures nucleosome organization information

EM-seq preserves the integrity of cfDNA as compared to bisul�te conversion, which enabled us to capture
additional epigenetic information. From the merged non-cancer controls, we observed a peak around 167 bp
(corresponding to the length of DNA associated with a nucleosome and a linker histone) in the cfDNA fragment
length distribution (Fig. 3A for Cohort 1 and Supplementary Fig. 1A for Cohort 2), which is consistent with that
from cfDNA WGS data17,19. Further supporting the association between cfDNA and nucleosomes, the
dinucleotide frequency of these fragments showed a ~10 bp periodicity (Fig. 3B for Cohort 1
and Supplementary Fig. 1B for Cohort 2), which recapitulates key features of nucleosome-associated
fragments digested by micrococcal nuclease (MNase)32. Next, to accurately measure nucleosome occupancy
pro�les from cfDNA, we used the quanti�cation method DANPOS233,34, a tool widely used for processing
MNase-seq (a technique used for pro�ling nucleosome landscape) data35. The occupancy pro�les reported by
DANPOS2 were concordant with nucleosome pro�les from lymphoblastoid cells (Fig. 3C), indicating the
targeted EM-seq successfully captured nucleosome information. Moreover, pro�les reported by DANPOS2 had
lower background noise compared with raw read coverage measurements, as shown by example regions (Fig.
3C) and the typical well-positioned nucleosomes around TSSs (Fig. 3D). Interestingly, we also observed a
nucleosome-depleted region (NDR) around PASs and well-positioned nucleosomes �anking NDR (Fig. 3E).
These results indicated that MESA was able to capture nucleosome organization information in both TSSs and
PASs.

Nucleosome occupancy and fuzziness in MESA enable accurate detection of colon cancer

Based on our �ndings that DANPOS2 could accurately measure nucleosome organization features from
targeted EM-seq, we then investigated whether these features could be used for cancer detection. We derived
two types of features from nucleosome organization: 1) nucleosome occupancy, which re�ects the frequency
with which nucleosomes occupy a given DNA region in a cell population; 2) nucleosome fuzziness, which is
de�ned as the deviation of nucleosome positions within a region in a cell population and could re�ect cell
heterogeneity at the chromatin level (Fig. 4A). Both features were de�ned for each nucleosome organization
target region (TSS and PAS target regions) by DANPOS2 (Materials and methods). We hypothesized that
nucleosome occupancy and fuzziness might capture non-overlapping changes between cancer and control
samples. Genome browser track visualization of four regions showed examples of either occupancy or
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fuzziness changes between cancer and control samples in Cohort 1 (Fig. 4B). Particularly, these changes were
found in both TSS (Fig. 4B, top panels) and PAS (Fig. 4B, bottom panels) regions, emphasizing the importance
of introducing PAS target regions in the MESA panel design.

We then investigated the predictive potential of nucleosome occupancy and fuzziness using the LOOCV
method. Consistent with previous work19, our model based solely on nucleosome occupancy of TSS target
regions achieved an AUC of 0.8055 for Cohort 1 and 0.9160 for Cohort 2 (Fig. 4C and D). Interestingly, adding
PAS target regions further improved model performance, as demonstrated by the enhanced AUC after
combining nucleosome occupancy features of TSS and PAS target regions (Fig. 4C and D; AUC = 0.8464 for
Cohort 1 and AUC = 0.9497 for Cohort 2). To our knowledge, this is the �rst time that nucleosome occupancy
around PAS regions from cfDNA has been utilized in cancer detection. Another novelty of our design is the
introduction of nucleosome fuzziness, which re�ects cell heterogeneity at the chromatin level33,36. Nucleosome
fuzziness based on cfDNA may differentiate cancer from controls, as cancerous tissue is typically more
heterogeneous than normal tissue37,38. Indeed, nucleosome fuzziness alone achieved exceptional cancer
classi�cation (Fig. 4E and F; AUC = 0.7569 for Cohort 1 and AUC = 0.9238 for Cohort 2). Moreover, the
combination of the two modalities (nucleosome occupancy and fuzziness) further improved model
performance for at least one of the two cohorts (Fig. 4E and F; AUC = 0.8457 for Cohort 1 and AUC = 0.9574 for
Cohort 2). These results suggested that the new modality (nucleosome fuzziness) and genomic feature (PASs)
introduced in MESA are effective for cancer detection.

Integrating multimodal epigenetic features in MESA enhances cancer detection

We next investigated the integration of multimodal features captured by MESA for cancer detection. In addition
to DNA methylation, nucleosome occupancy, and nucleosome fuzziness features we previously introduced, we
also included fragmentation pro�le which has been widely used for cancer detection18. Using LOOCV, we found
that the integrated model has the highest AUC of 0.8962 for Cohort 1 and 0.9562 for Cohort 2 than four single
modality models (Fig. 5A and B; Supplementary Table 8), highlighting the bene�ts of incorporating multimodal
information in cancer prediction. When evaluating models based on cancer stage, the multimodal model still
outperformed single modality models (Fig. 5C and D; Supplementary Fig. 2 and Fig. 3). By visualizing the
predicted probability of classifying each sample to the cancer group, we found a similar pattern for the four
single modality models (Fig. 5E and F), suggesting that each modality concordantly predicted the same
classi�cation for most samples. Additionally, when examining the correlations between the probabilities of
different single modality models, we found correlations as low as 0.19 (Fig. 5G and H), indicating that single
modality models may capture complementary information for cancer detection. The observed improved
performance of the multimodal model is consistent with the fact that the integration of single modalities into
multimodal features combines the complementary information. Together, MESA’s integrated analysis of
multimodal epigenetic features signi�cantly improved the performance of cancer detection models relative to
the usage of a single modality alone.

MESA with cfTAPS data

As MESA took advantage of the non-disruptive nature of EM-seq to capture multimodal epigenetic information
from a single assay, the multimodal approach was predicted to effectively perform on any cfDNA methylation
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sequencing assay of a similar nature. We tested this hypothesis on another bisul�te-free cfDNA sequencing
method cfTAPS22, which was applied to a cohort including 21 hepatocellular carcinoma (HCC) patients, 23
pancreatic ductal adenocarcinoma (PDAC) patients, and 30 non-cancer controls. As shown by a well-studied
nucleosome array, the occupancy reported by DANPOS2 for cfTAPS data was consistent with nucleosome
pro�les from lymphoblastoid cells (Fig. 6A), indicating cfTAPS could capture nucleosome information as
targeted EM-seq did. Despite the low sequence depth (mean coverage of 11.6×), we still observed occupancy
changes between cancer and control samples for regions surrounding either TSSs or PASs (Fig. 6B). Then, we
extracted three types of features, including DNA methylation, nucleosome occupancy, and fragmentation
pro�le. Next, we applied the same model training method as for Cohort 1 and Cohort 2 to the cohort of cfTAPS
data (HCC vs. control; PDAC vs. control). Here, we did not include nucleosome fuzziness because it was
inaccurate to calculate the fuzziness score when the sequencing depth was low. In line with results from Cohort
1 and Cohort 2, we found that the multimodal model has the highest AUC compared with three single modality
models (Fig. 6C and D; AUC = 0.9381 for HCC cohort and AUC = 0.8449 for PDAC cohort). Since there were two
cancer types in this dataset, we also trained three-class models to distinguish HCC, PDAC, and controls. Using
LOOCV, we found the multimodal model achieved an overall accuracy of 0.7297 (Fig. 6D and Supplementary
Fig. 4), which outperformed the three single modality models. Together, MESA’s integrated analysis of
multimodal epigenetic features is widely applicable in multiple non-disruptive methylation sequencing
protocols.

Discussion
In this study, we present a comprehensive epigenetic analysis of cfDNA, aiming at improving the non-invasive
early detection of human cancers. Our integrated model shows enhanced detection accuracy for colon, liver
and pancreatic cancers compared to single modality models in three independent cohorts with either EM-seq or
cfTAPS. A signi�cant advantage of the multimodal assay is its �exibility. Based on each unique dataset and
patient cohort input, each of the four modalities of epigenetic information may be either included or excluded in
an unbiased manner. For example, cancer types in which nucleosome occupancy is relatively unchanged may
bene�t only from integrating the remaining modalities. Removal of nucleosome occupancy features, in this
case, could prevent confounding and unnecessary complexity. Therefore, this multimodal approach allows for
the development of an unbiased combinatorial prediction model. Furthermore, all four modalities are
simultaneously captured in a single assay, offering full �exibility without the need to perform multiplex assays
while minimizing potential batch effects and other technical biases in multiplex and separated assays.

A potential concern of this multimodal approach is that modalities might be highly correlated with one another,
thus not necessarily re�ecting complementary information. In this paper, we showed that the predicted
probabilities of individual modalities are not highly correlated. For example, although the nucleosome
organization is weakly related to the fragmentation pro�le18, nucleosomes can provide information other than
fragmentation. Nucleosome organization focuses on the position-speci�c cfDNA fragments, while
fragmentation pro�le concentrates only on the size of the cfDNA fragments globally18,21. Even if two samples
have the same fragment size distribution, these samples may possess dramatically different nucleosome
organization in most regions. Therefore, they can still provide complementary information for the prediction
model. We further note that, to our knowledge, this study introduces the measurement of nucleosome fuzziness
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and PAS regions for the �rst time in cfDNA sequencing data analysis. As shown by our results, they both
contribute to a better performance of the cancer detection model.

One limitation of our study is its relatively small sample size. Follow-up studies will be needed to strengthen the
application of MESA in a wide variety of human cancers. However, despite the limitations, our study
demonstrates a salient example of how targeted EM-seq of cfDNA captures multimodal epigenetic information
and enables accurate detection of cancer at a low relative cost. Our design provides a clinically practical
method for liquid biopsy, especially for cancer types with few or no genetic changes. Moreover, for Cohort 1, we
observed better performances of the multimodal model for early stage (I and II) than late stage (III and IV)
patients (Fig. 5C). Although this observation may be biased by the relatively small sample size of each stage, it
shows the possible advantages of MESA on early cancer detection. As cfDNA methylation-based liquid
biopsies garner more attention and clinical use, MESA represents a widely applicable platform for improving
non-invasive cancer detection.

Materials And Methods
Study cohort

Cohort 1 comprised 70 patients diagnosed with colorectal cancer and 60 control individuals without colorectal
cancer. Cohort 1 subjects were recruited at clinical sites within the United States through the ELITE Study
(NCT05181826) or were obtained through the following contract research organizations: BioIVT (Westbury,
NY), BioOptions (Brea, CA), Discovery Life Sciences (Boston, MA) and DX Biosamples (San Diego, CA). Cohort 2
comprised 129 patients diagnosed with colorectal cancer and 203 control patients without colorectal cancer.
Cohort 2 subjects were enrolled at the Sun Yat-sen University Cancer Center (Guangzhou, China). Subjects
diagnosed with colorectal cancer were diagnosed according to current clinical practices. Control subjects did
not have any clinical history or symptoms of colorectal cancer. All specimen collection protocols were
approved by the respective Institutional Review Board (IRB). For both Cohort 1 and Cohort 2, informed consent
was obtained from all patients, in accordance with the Declaration of Helsinki Ethical Principles for medical
research involving human subjects.

Collection and preparation of samples

Cohort 1 specimens were drawn into PAXgene cfDNA tubes (PreAnalytiX) and shipped to a central Helio
Genomics laboratory (USA) using custom specimen collection and shipping kits (Helio Genomics). The whole
blood specimens were then processed to cleared plasma by centrifugation and stored at approximately -80℃
until analysis. Cohort 2 specimens were drawn into KANGJIAN blood collection tubes at the corresponding
hospital. Samples were shipped to a central LAMH laboratory (Laboratory of Advanced Medicine and Health,
China) with dry ice and stored at approximately -80℃ until analysis.

Targeted sequencing panel design

TCGA-COAD and TCGA-READ 450K methylation array data were downloaded from the UCSC Xena database
(https://tcga.xenahubs.net) and processed by a custom script to identify CpG sites with signi�cant methylation
differences between cancerous and adjacent normal tissues. A total of 9599 signi�cantly differentially

https://tcga.xenahubs.net/
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methylated CpG sites in the colorectal cancer samples were selected, and a list of 150 bp genomic regions
centered on each of the selected CpG sites was designed for targeted sequencing. Additionally, 912 promoter
regions (TSS ± 1 kb) and 365 polyadenylation regions (PAS ± 1 kb) of the curated cancer-related genes were
added to the targeted panel. With the repeat elements and ENCODE blacklist regions removed39, the size of the
version 1 colorectal cancer targeted panel (used on Cohort 1 subjects) was about 4.6 Mb (Supplementary Table
4). The shrinking version 2 colorectal cancer targeted panel (used on Cohort 2 subjects) was about 220 kb
(Supplementary Table 5). Both targeted panels were synthesized by Twist Bioscience (USA).

Targeted EM-seq of cfDNA 

The Helio ECLIPSE™ platform was used to analyze cfDNA extracted from patient specimens as previously
described40. Brie�y, total cfDNA was isolated from specimens by using either (Cohort 1) a QIAsymphony DSP
Circulating DNA Kit (QIAGEN, USA) or (Cohort 2) the EliteHealth cfDNA Extraction Kit (EliteHealth, China). Spike-
in control unmethylated Lambda DNA was sheared down into about 170 bp by sonication. A total of 5 ng
cfDNA along with 0.2 pg of unmethylated Lambda DNA per specimen was used to prepare the barcoded NGS
libraries using the NEB Next Enzymatic Methyl-seq Kit (New England Biolabs, USA) according to the
manufacturer’s instructions. The libraries were then hybridized with a custom set of capture probes (Twist
Bioscience, USA) to capture the targeted library sequences using the Twist Fast Hybridization and Wash Kit,
along with the Twist Universal Blocker. The captured libraries were then supplemented with a 20% PhiX
genomic DNA library to increase base calling diversity and submitted for sequencing using Illumina NovaSeq
6000 instruments as 2 × 150 bp reads.

Targeted EM-seq data processing and quality control

Raw sequencing reads were �rst trimmed by TrimGalore (v0.6.5, https://github.com/FelixKrueger/TrimGalore)
to remove low-quality reads and potential adaptor contamination. Then the remaining reads were aligned to the
hg19 human genome reference using BSMAP (v2.90)41. The aligned reads were further processed by Samtools
(v0.1.19)42 and Bedtools (v2.29.1)43 to only keep primarily mapped reads with fragment sizes between 80 bp
and 200 bp to remove potential genomic DNA contamination from normal blood cells. This �nal �le served as
the input �le for all the following processes except fragment size distribution analysis, which used reads
without a size �lter. Spike-in unmethylated lambda DNA was used to control for C to T conversion e�ciency.
Samples with lambda methylation levels of more than 1% (CT conversion rate less than 99%) were removed
from the downstream analysis.

Multimodal feature extraction from targeted EM-seq of cfDNA

We extracted four types of features: cfDNA methylation, nucleosome occupancy, nucleosome fuzziness, and
fragmentation pro�le.

cfDNA methylation: Conventional methylation ratio was calculated by Methratio.py (BSMAP, v2.90) from
aligned bam �les for the target CpG sites. 

Nucleosome occupancy: Occupancy values were calculated using DANPOS2 (v2.2.2), a tool widely used
for processing MNase-seq data. For Cohort 2, the average value for each nucleosome organization target
region was calculated using bigWigAverageOverBed from UCSC tools (v393)44. Due to the relatively long
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target regions of Cohort 1 (2 kb), we split each target region into 1 kb sliding windows with 10 bp steps.
Then, for each sliding window, we calculated the average nucleosome occupancy.

Nucleosome fuzziness: Fuzziness values were calculated using DANPOS2. For each nucleosome
organization target region (1 kb sliding windows for Cohort 1), we calculated the average fuzziness of all
the nucleosomes whose center is located within the region. 

Fragmentation pro�le: Fragmentation pro�le was de�ned as the ratio of short (80 - 150 bp) to long cfDNA
fragments (151 - 200 bp) in a target region.

 

Single modality machine learning models for cancer detection

We trained machine learning models for Cohort 1 and Cohort 2 using the same procedure. All the models were
trained and evaluated using the leave-one-out cross-validation (LOOCV) method. Brie�y, all the N samples were
divided into training samples and test samples for N iterations, where the number of test samples = 1 and the
number of training samples = N -1. Since missing values could reduce the accuracy of the machine learning
model, we imputed the missing values in each iteration. Firstly, we removed features with missing values in
more than 10% of the training sample. Then we imputed the missing values with the average valid values of
training samples for the corresponding feature. Next, feature selection and model training were performed in
the training samples. Then predictive power of the features and performance of the model were evaluated on
the test sample. Finally, the results of all the N iterations were aggregated together to calculate performance
metrics.

For each of the four modalities, sequential backward selection (SBS) was used for feature selection45, in which
features are sequentially removed from the complete feature set, and the feature subset with the highest ROC
AUC is �nally selected. Speci�cally, in each iteration of LOOCV, we calculated rankings for all features in the
training set based on their contribution to the prediction using the Boruta algorithm in the BorutaPy package
(v0.3)46. Then SBS was used to re�ne the top 1000 features from Boruta with ROC AUC based on support
vector machine (SVM), which outputs a selected feature subset. Next, we applied a voting classi�er for the
model training, which ensembled the predictive probabilities from three methods: Logistic Regression, Random
Forest47, and Deep Forest48. Brie�y, the voting prediction result on the i th testing sample was given by
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Multimodal machine learning model for cancer detection

The multimodal machine learning model was built following the model-based multimodal integration
strategy50. A feature subset was selected for each of the four modalities based on the training procedure. The
multimodal prediction model was then trained on the concatenation of z-score standardized selected features
of the four modalities and predicted on the corresponding testing sample. This approach could preserve unique
information from different modalities and provide complementary information across different types of
features.

cfTAPS data processing and machine learning models for cancer detection

The cfTAPS data was processed in the same manner as the original paper22. Raw sequenced reads were
trimmed using TrimGalore (v0.6.5, https://github.com/FelixKrueger/TrimGalore) to remove adapter and low-
quality bases.   Trimmed reads were aligned to the hg19 human reference genome using bwa mem (v0.7.17)51.
The alignment �les were �ltered to remove low mapping quality (MAPQ < 20) as well as duplicate reads using
alignmentSieve from deepTools (v3.5.0)52. MethylDackel extract (v0.6.1,
https://github.com/dpryan79/MethylDackel) was used for methylation calling. CpG sites that overlapped
common single-nucleotide polymorphism (SNP)53

(https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13), blacklisted regions39, centromeres,
and sex chromosomes were excluded from downstream analysis.

Next, we extracted three types of features: DNA methylation, nucleosome occupancy, and fragmentation pro�le.
(1) DNA methylation: The methylation ratio was calculated using the number of methylated CpGs divided by
the total number of sequenced CpGs for each promoter and enhancer region. The promoter and enhancer
regions were downloaded from Ensemble54 (http://ftp.ensembl.org/pub/grch37/release-
100/regulation/homo_sapiens/homo_sapiens.GRCh37.Regulatory_Build.regulatory_features.20191101.gff.gz).
(2) Nucleosome occupancy: Occupancy values were calculated using DANPOS2. Average values of the 1 kb
regions surrounding TSSs and PASs of all RefSeq annotated genes55 were calculated. The locations of PASs
were downloaded from PolyA_DB (version 3)56. Due to the relatively low coverage of cfTAPS data, we removed
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features that had occupancy values lower than the mean of all values in at least one sample. (3)
Fragmentation pro�le: Fragmentation pro�les were calculated as the fraction of cfDNA fragments (300 – 500
bp) at 10-bp length range bins, which were used in the original cfTAPS paper22.

We then trained both two-class (distinguishing cancer (HCC or PDAC) and control samples) and three-class
models (distinguishing HCC, PDAC, and control samples) using the same procedure as for targeted EM-seq
data. The only difference was that we applied SBS to the top 300 features from Boruta because of the
relatively low sample size. For the three-class models, we used accuracy instead of ROC AUC as the
performance metric for SBS.
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Figure 1

Schematic diagram displaying the design of MESA. cfDNA is isolated from blood samples of two independent
cohorts and then processed to generate targeted EM-seq libraries. Analysis of the EM-seq data enables the
extraction of four modalities: cfDNA methylation (purple), nucleosome occupancy (blue), nucleosome
fuzziness (green), and fragmentation pro�le (orange). Then, the feature selection is performed for each
modality separately. The Boruta algorithm is used for feature ranking, and the top-ranking features (shown in
red) are selected for the sequential backward selection procedure. Selected features are standardized and
combined for training a multimodal machine learning model, which outperforms the single modality models in
the detection of cancer based on leave-one-out cross-validation.
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Figure 2

Differential cfDNA methylation between cancer and non-cancer samples enables accurate cancer detection.

The average methylation level of all target CpG sites in cancer patients (Cancer) and controls (Non-Cancer)
from Cohort 1 (A) and Cohort 2 (B). Scatter plots showing PC1 and PC2 from PCA of methylation level of all
target CpG sites in cancer patients (Cancer) and controls (Non-cancer) of Cohort 1 (C) and Cohort 2 (D). The
percentage of variances explained by each PC is shown in the parentheses. ROC curves of model performance
based on the methylation level of CpG sites for Cohort 1 (E) and Cohort 2 (F). 



Page 19/23

Figure 3

Nucleosome organization information from targeted EM-seq of cfDNA. (A) Fragment length distribution of
sequenced cfDNA fragments. A peak value at 167 bp (black dashed line) is consistent with the association
with nucleosomes. (B) The distribution of dinucleotide fraction across 147 bp fragments and the �anking
genomic regions. (C) Genome browser tracks showing sequencing signals of targeted EM-seq of healthy cfDNA
(cfDNA targeted EM-seq) and nucleosome calls from a published dataset (Lymphoblastoid cell MNase-seq).
DANPOS2, occupancy values reported by DANPOS2. Raw coverage, occupancy values estimated by read
coverage. Aggregate lines showing nucleosome occupancy pro�les across TSSs (D) and PASs (E) of target
genes. Relative nucleosome occupancy represents nucleosome occupancy normalized by the average value of
the plotted regions. NDR, nucleosome depleted regions. Results in this �gure are based on targeted EM-seq of
60 healthy controls from Cohort 1.
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Figure 4

Accurate detection of cancer based on nucleosome occupancy and fuzziness. (A) A schematic diagram
showing the differences between nucleosome occupancy and fuzziness for four example positions in four
cells. (B) Genomic regions showing nucleosome occupancy (left panel) and fuzziness changes (right panel)
between cancer and non-cancer samples. The top panel shows genome browser tracks of TSS target regions,
and the bottom panel shows PAS target regions. For each panel, two example cancer and non-cancer samples
are displayed. The blue boxes show the gene bodies with white arrows indicating the transcription directions.
(C-D) ROC curves showing the model performances based on the nucleosome occupancy of TSS target regions
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(Occupancy TSS), PAS target regions (Occupancy PAS) or combination of the two (Occupancy TSS + PAS). (E-
F) ROC curves showing the model performances based on nucleosome occupancy (Occupancy TSS + PAS),
fuzziness (Fuzziness TSS + PAS) or combination of the two (Occupancy + fuzziness). 

Figure 5

Multimodal epigenetic analysis from MESA improves the performance of cancer detection model. (A-B) ROC
curves showing model performances based on different modalities. Methylation, methylation ratio of all target
CpG; Occupancy, nucleosome occupancy of all TSS and PAS target regions; Fuzziness, nucleosome fuzziness
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of all TSS and PAS target regions; Fragmentation, the ratios of short (80-150 bp) to long fragments (151-200
bp) for all target regions; Multimodal, the combination of all four types of features. (C-D) Tables showing the
AUC values of ROC curves for different models and cancer patients in different stages. Cancer patients without
stage information are removed from this analysis. The values are colored from low to high by a green-yellow-
red color scale. The shade of the color represents higher, middle, or lower values. (E-F) Heatmaps showing the
predicted probabilities of single modality models for each sample. The probability represents the predicted
probability of classifying the sample to the cancer group. (G-H) Heatmaps showing pairwise Spearman
correlations of the predicted probability of all samples between different types of features. The Spearman
correlation values are labeled on the heatmaps.

Figure 6

Multimodal epigenetic analysis of cfTAPS improves the performance of cancer detection model. (A) Genome
browser tracks showing sequencing signals of cfTAPS of controls (cfTAPS of healthy controls) and
nucleosome calls from a published dataset (Lymphoblastoid cell MNase-seq). Sequencing signals from
cfTAPS are calculated by DANPOS2. (B) Genomic regions showing nucleosome occupancy changes between
HCC (left panel) or PDAC (right panel) and control samples. Nucleosome occupancy is calculated by
DANPOS2. The top panel shows tracks of regions surrounding TSSs, and bottom panel shows regions
surrounding PASs. For each panel, two example cancer and control samples are displayed. The blue boxes
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show the gene bodies with white arrows indicating the transcription directions. (C-D) ROC curves showing the
performances of two-class models which distinguish HCC (C) or PDAC (D) from control samples. (E) Barplot
showing the overall accuracy of three-class models which distinguish HCC, PDAC, and control samples.
Methylation, methylation ratio of promoter and enhancer regions; Occupancy, nucleosome occupancy of 1 kb
regions surrounding TSSs and PASs; Fragmentation, the ratios of fragments (300 to 500 bp) in 10-bp length
range bins; Multimodal, the combination of all three types of features.
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