Beaulieu, J.J., Smolenski, R.L., Nietch, C.T., Townsend-Small, A., Elovitz, M.S., Schubauer-Berigan, J.P., 2014. Denitrification alternates between a source and sink of nitrous oxide in the hypolimnion of a thermally stratified reservoir. Limnol. Oceanogr 59 (2), 495-506.
Borges, A.V., Darchambeau, F., Lambert, T., Bouillon, S., Morana, C., Brouyere, S., Hakoun, V., Jurado, A., Tseng, H.-C., Descy, J.-P., 2018. Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Sci. Total Environ. 610, 342-355.
Bravard, J.P.,Goichot, M., Tronchère H.,2014.An assessment of sediment-transport processes in the Lower Mekong River based on deposit grain sizes, the CM technique and flow-energy data.Geomorphology. 207 ,174–189.
Church, M., Kellerhals, R., 1978. On the statistics of grain size variation along river. Canadian Journal of Earth Science 7(15),1151-1160.
Curtis, K.E., Renshaw, C.E., Magilligan, F.J., Dade, W.B., 2010. Temporal and spatial scales of geomorphic adjustments to reduced competency following flow regulation in bedload-dominated systems. Geomorphology 118 (1-2), 105-117.
Derbyshire, E., Meng, X.M., Kemp, R.A., 1998. Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record. J. Arid Environ. 39 (3), 497–516.
Dynesius, M., Nilsson, C., 1994. Regulation of river systems in the northern third of the world. Science 266, 4N.
Folk, R.L., Ward, W.C., 1957. Brazos River bar: a study in the significance of grain size parameters.J. Sediment. Petrol. 27, 3-26.
Folk, R.L., 1966. A review of grain-size parameters. Sedimentology 6 (2), 73-93.
Friedman, G. M., 1979. Address of the retiring President of the International Association of Sedimentology: Difference in size distributions of populations of particles among sands from various. Sedimentology,26,3-22.
Frings, R.M., 2008. Downstream fining in large sand-bed rivers. Earth Sci. Rev. 87 (1-2),39-60.
Guo X.J.,Zhu X.S.,Yang Z.J.,Ma J.,Xiao S.B.,Ji D.B.,2020. Impacts of cascade reservoirs on the longitudinal variability of fine sediment characteristics: A case study of the Lancang and Nu Rivers, Journal of Hydrology. 581,124343.
Halls,J.R.,1967. Significance of statistical parameters for distinguishing sedimentary environments in New South Wales,Australia. Journal of Sedimentary Research,37,1059-1069.
Heitmuller, F.T., Hudson, P.F., 2009. Downstream trends in sediment size and composition of channel-bed, bar, and bank deposits related to hydrologic and lithologic controls in the Llano River watershed, central Texas, USA. Geomorphology 112, 246-260.
Klaver, G., van Os, B., Negrel, P., Petelet-Giraud, E., 2007. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube. Environ. Pollut. 148, 718-728.
Li Z., Li Q., Wang J., Feng Y., Shao Q.,2020. Impacts of projected climate change on runoff in upper reach of Heihe River basin using climate elasticity method and GCMs, Sci. Total Environ., 716,137072.
Lu, X.X., Siew, R.Y.,2006. Water discharge and sediment flux changes over the past decades in the lower Mekong River: possible impacts of the Chinese dams.Hydrol. Earth Syst. Sci., 10,181-195.
Ma, X., Yan, J., Fan, F., 2014. Morphology of submarine barchans and sediment transport in barchans fields off the Dongfang coast in Beibu Gulf. Geomorphology 213 (10), 213-224.
Maeck, A., DelSontro, T., McGinnis, D.F., Fischer, H., Flury, S., Schmidt,M., Fietzek, P., Lorke,A., 2013. Sediment trapping by dams creates methane emission hot spots. Environ. Sci. Technol.47,8130-8137.
Minear, J.T., Kondolf, G.M., 2009. Estimating reservoir sedimentation rates at large spatial and temporal scales: a case study of California.Water Resources Research 45.
Morris, P.H., Williams, D.J., 1999. A worldwide correlation for exponential bed particle size variation in subaerial aqueous flows. Earth Surf. Proc. Land 24 (9), 835-847.
Muller, B., Finger, D., Sturm, M., Prasuhn, V., Haltmeier, T., Bossard, P., Wuest, A., 2007.Present and past bio-available phosphorus budget in the ultra-oligotrophic Lake Brienz. Aquat. Sci. 69 (2), 227–239.
Pan, B.T., Pan,H.L., Zhang,D. Guan,Q.Y., Wang,L., Li,F.Q., Guan,W.Q., Cai,A., Sun,X.Z.,2015. Sediment grain-size characteristics and its source implication in the Ningxia–Inner Mongolia sections on the upper reaches of the Yellow River.Geomorphology 246,255-262.
Pejrup, M., 1988. The triangular diagram used for classification of estuarine sediments: a new approach. In: de Boer, P.L., van Gelder, A., Nio, S.D. (Eds.), Tide-Influenced Sedimentary Environments and Facies. Reidel, Dordrecht,289-300.
Ran, L.S., Lu, X.X. and Xu, J.C.,2013. Effects of vegetation restoration on soil conservation and sediment loads in China: A critical review. Critical Reviews in Environmental Science and Technology 43:1384-1415.
Rice, S., Church, M., 1998. Grain size along two gravel-bed rivers: Statistical variation, spatial pattern and sedimentary links. Earth Surf. Processes Landforms 23.
Rosenberger, K.J., Storlazzi, C.D., Cheriton, O.M., McPhee-Shaw, E.E., 2016. Variability of the internal tide on the southern Monterey Bay continental shelf and associated bottom boundary layer sediment transport. Cont. Shelf Res. 120, 68-81.
Sklar, L.S., Dietrich, W.E., Foufoula-Georgiou, E., Lashermes, B., Bellugi, D., 2006. Do gravelbed river size distributions record channel network structure? Water Resour. Res. 42, W06D18.
Snelder, T.H., Lamouroux, N., Pella, H., 2011. Empirical modelling of large-scale patterns in river bed surface grain size. Geomorphology 127, 189-197.
Sun, D.H., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F.C., An, Z.S., Su, R.X., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components.Sed. Geol., 152, 263-277.
Ta, W.Q., Xiao, H.L., Qu, J.J., Xiao, Z., Wang, T., Zhang, X.Y., 2004. Measurements of dust deposition in Gansu Province, China, 1986-2000. Geomorphology 57 (1), 41–51.
Vandenberghe,J.,Sun, Y., Wang, X. Abels, H.A., Liu, X., 2018. Grain-size characterization of reworked fine-grained aeolian deposits.Earth-Sci. Rev., 177,43-52.
Vörösmarty,C.J., Meybeck,M., Fekete,B., Sharma,K., Green,P., Syvitski,J.P.M., 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planet. Change, 39,169-190.
Walling, D.E., Fang, D.,2003. Recent trends in the suspended sediment loads of the world's rivers.Glob. Planet. Chang, 39, 111-126.
Wang, J., Sheng, Y., Gleason,C.J., Wada, Y., 2013. Downstream Yangtze River levels impacted by three Gorges Dam.Environ. Res. Lett., 8 , 4012.
Wang, N.L., Zhang, S.B., He, J.Q., Pu, J.C., Wu, X.B., Jiang, X., 2009. Tracing the major source area of the mountainous runoff generation of the Heihe River in northwest China using stable isotope technique. Chin. Sci. Bull. 54, 2751-2757.
Wang, Y., Lian, Y.T., Feng, Q., Wang, Z.J., Zhao, W.J., Liu, J.J., Lu, S.G., Zhang, X.Y., 2019. Effects of dam interception on the spatial distribution of sediment granularities in Heihe River. J. Lake Sci. 31 (5), 1459–1467 (in Chinese).
Wei, G.L., Cui, B.S., Dong, S.K., Yang, Z.F., 2008. Impact of hydropower development on river ecosystem service: a case study from the Manwan Hydropower Project. Acta Sci. Circum. 28 (2), 235-242.
Weltje, G., Prins, M., 2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geol. 202, 409–424.
Willis,C.M., Griggs G.B.,2003. Reductions in Fluvial Sediment Discharge by Coastal Dams in California and Implications for Beach Sustainability.J. Geol., 111, 167-182.
Xu, J., 2000. Grain-size characteristics of suspended sediment in the Yellow River, China. Catena 38,243-263.
Yang, Z., Cheng, B., Xu, Y., Liu, D., Ma, J., Ji, D., 2018. Stable isotopes in water indicate sources of nutrients that drive algal blooms in the tributary bay of a subtropical reservoir. Sci. Total Environ. 634, 205–213.
Zanella,E.,Ferrara,E,Bagnasco,L.,Ollà,A.,Lanza, R.,Beatrice,C.,2012. Magnetite grain-size analysis and sourcing of Mediterranean obsidians.Journal of Archaeological Science,39,1493-1498.
Zhang, J., Geng, H.P., Pan, B.T., Hu, X.F., Chen, L.P., Wang, W., Chen, D.B., 2020. Climatic zonation complicated the lithology controls on the mineralogy and geochemistry of fluvial sediments in the Heihe River basin, NE Tibetan Plateau. Quaternary International 537, 33-47.
Zhang, J., Zhang, Z.F., Liu, S.M., Wu, Y., Xiong, H., Chen, H.T., 1999. Human impacts on the large world rivers: would the Changjiang (Yangtze River) be an illustration? Global Biogeochem. Cycles 13 (4), 1099–1105.
Zhang, Z.C., Dong, Z.B., 2015. Grain size characteristics in the Hexi Corridor desert. Aeolian Res. 18, 55-67.
Zheng S., Edmonds, D.A., Wu, B.S., Han, S.S., 2019. Backwater controls on the evolution and avulsion of the Qingshuigou channel on the Yellow River Delta.Geomorphology 333,15:137-151.
Zhou, J.J., Zhang, M., Lu, P.Y., 2013. The effect of dams on phosphorus in the middle and lower Yangtze River. Water Resour. Res. 49 (6), 3659–3669.
Zhu,B.Q., Yu, J.J., Rioual, P., Ren, X.Z.,2014. Particle size variation of aeolian dune deposits in the lower reaches of the Heihe River Basin, China.Sed. Geol., 301, 54-69.
Zhu, G.F., Su, Y.H., Feng, Q., 2008. The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeol. J. 16 (1), 167-182.