1.Tribouilloy C, Rusinaru D, Leborgne L, Mahjoub H, Szymanski C, Houpe D, et al. In-hospital mortality and prognostic factors in patients admitted for new-onset heart failure with preserved or reduced ejection fraction: a prospective observational study. Arch Cardiovasc Dis. 2008;101:(4) 226-34.
2.Gandhi S K, Powers J C, Nomeir A M, Fowle K, Kitzman D W, Rankin K M, et al. The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med. 2001;344:(1) 17-22.
3.Zhao W, Zhao D, Yan R, Sun Y. Cardiac oxidative stress and remodeling following infarction: role of NADPH oxidase. Cardiovasc Pathol. 2009;18:(3) 156-66.
4.Zhu Y, Sun R, Dong E. Heart failure research in China: current status and future direction. Science Bulletin. (23) 23-31.
5.Coma-Canella I, Castano S, Nasarre E. [Heart failure. Current pharmacologic treatment]. Rev Med Univ Navarra. 2005;49:(3) 41-7.
6.McDonough A A, Wang J, Farley R A. Significance of sodium pump isoforms in digitalis therapy. J Mol Cell Cardiol. 1995;27:(4) 1001-9.
7.Mimran A, Ribstein J. Angiotensin converting enzyme inhibitors and renal function. J Hypertens Suppl. 1989;7:(5) S3-9.
8.Shan C X, Li W, Wen H M, Wang X Z, Zhu Y H, Cui X B. Identification of liguzinediol metabolites in rats by ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. J Pharm Biomed Anal. 2012;62: 187-90.
9.Cheng D, Zhou Y, Li W, Shan C X, Chai C, Cui X B, et al. Identification, Characterization, Synthesis and Quantification of Related Impurities of Liguzinediol. J Chromatogr Sci. 2015;53:(8) 1280-8.
10.Chen L, Xu Y, Li W, Wu H, Luo Z, Li X, et al. The novel compound liguzinediol exerts positive inotropic effects in isolated rat heart via sarcoplasmic reticulum Ca2+ ATPase-dependent mechanism. Life Sci. 2012;91:(11-12) 402-408.
11.Wu X, Qi X, Lu Y, Lin C, Yuan Y, Zhu Q, et al. Liguzinediol protects against cardiac fibrosis in rats in vivo and in vitro. Biomed Pharmacother. 2016;80: 260-267.
12.Zhu H H, Chen Y Q, Cheng D, Li W, Wang T L, Wen H M, et al. Synthesis and positive inotropic activity evaluation of liguzinediol metabolites. Bioorg Med Chem Lett. 2016;26:(3) 882-884.
13.Li Y, Song P, Zhu Q, Yin Q Y, Ji J W, Li W, et al. Liguzinediol improved the heart function and inhibited myocardial cell apoptosis in rats with heart failure. Acta Pharmacol Sin. 2014;35:(10) 1257-64.
14.Yin H Q, Wang B, Zhang J D, Lin H Q, Qiao Y, Wang R, et al. Effect of traditional Chinese medicine Shu-Mai-Tang on attenuating TNFalpha-induced myocardial fibrosis in myocardial ischemia rats. J Ethnopharmacol. 2008;118:(1) 133-9.
15.Prabhu S D, Chandrasekar B, Murray D R, Freeman G L. beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation. 2000;101:(17) 2103-9.
16.Ruetten H, Gehring D, Hiss K, Schindler U, Gerl M, Busch A E, et al. Effects of combined inhibition of the Na+-H+ exchanger and angiotensin-converting enzyme in rats with congestive heart failure after myocardial infarction. Br J Pharmacol. 2005;146:(5) 723-31.
17.Ren J, Yang M, Qi G, Zheng J, Jia L, Cheng J, et al. Proinflammatory protein CARD9 is essential for infiltration of monocytic fibroblast precursors and cardiac fibrosis caused by Angiotensin II infusion. Am J Hypertens. 2011;24:(6) 701-7.
18.Li X, Li C, Ji X, Song Z, Wang L, Zhang J, et al. Huang-Lian-Jie-Du-Tang inhibits myocardial remodeling in a rat model of metabolic syndrome. J Ethnopharmacol. 2008;119:(2) 259-65.
19.Dargie H. Heart failure post-myocardial infarction: a review of the issues. Heart. 2005;91 Suppl 2: ii3-6; discussion ii31, ii43-8.
20.Fu Y H, Lin Q X, Li X H, Fei H W, Shan Z X, Huang X Z, et al. A novel rat model of chronic heart failure following myocardial infarction. Methods Find Exp Clin Pharmacol. 2009;31:(6) 367-73.
21.Fujii J, Watanabe H, Kato K. Detection of the site and extent of the left ventricular asynergy in myocardial infarction by echocardiography and B-scan imaging. Jpn Heart J. 1976;17:(5) 630-48.
22.Agac M T, Agac S, Korkmaz L, Erkan H, Turan T, Bektas H, et al. A simple angiographic index to predict adverse clinical outcome associated with acute myocardial infarction. Turk Kardiyol Dern Ars. 2014;42:(4) 321-9.
23.Cohn J N, Ferrari R, Sharpe N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:(3) 569-82.
24.Janicki J S, Brower G L, Gardner J D, Chancey A L, Stewart J A, Jr. The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev. 2004;9:(1) 33-42.
25.Rutschow S, Li J, Schultheiss H P, Pauschinger M. Myocardial proteases and matrix remodeling in inflammatory heart disease. Cardiovasc Res. 2006;69:(3) 646-56.
26.Matsubara L S, Matsubara B B, Okoshi M P, Franco M, Cicogna A C. Myocardial fibrosis rather than hypertrophy induces diastolic dysfunction in renovascular hypertensive rats. Can J Physiol Pharmacol. 1997;75:(12) 1328-34.
27.Pauschinger M, Doerner A, Remppis A, Tannhauser R, Kuhl U, Schultheiss H P. Differential myocardial abundance of collagen type I and type III mRNA in dilated cardiomyopathy: effects of myocardial inflammation. Cardiovasc Res. 1998;37:(1) 123-9.
28.Pauschinger M, Knopf D, Petschauer S, Doerner A, Poller W, Schwimmbeck P L, et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation. 1999;99:(21) 2750-6.
29.Bourboulia D, Stetler-Stevenson W G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20:(3) 161-8.
30.Friehs I, Margossian R E, Moran A M, Cao-Danh H, Moses M A, del Nido P J. Vascular endothelial growth factor delays onset of failure in pressure-overload hypertrophy through matrix metalloproteinase activation and angiogenesis. Basic Res Cardiol. 2006;101:(3) 204-13.
31.Kim H E, Dalal S S, Young E, Legato M J, Weisfeldt M L, D'Armiento J. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest. 2000;106:(7) 857-66.
32.Mujumdar V S, Smiley L M, Tyagi S C. Activation of matrix metalloproteinase dilates and decreases cardiac tensile strength. Int J Cardiol. 2001;79:(2-3) 277-86.
33.Kuno T, Ueyama H, Fujisaki T, Briasouli A, Takagi H, Briasoulis A. Meta-Analysis Evaluating the Effects of Renin-Angiotensin-Aldosterone System Blockade on Outcomes of Heart Failure With Preserved Ejection Fraction. Am J Cardiol. 2020;10.1016/j.amjcard.2020.01.009
34.Lu M, Qin Q, Yao J, Sun L, Qin X. Induction of LOX by TGF-beta1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life. 2019;71:(11) 1729-1739.
35.Lin X Y, Xiao L Z, Gao L J, Zhang H F. [Effects of carvedilol on neurohormone and magnesium metabolism in patients with chronic heart failure]. Zhonghua Xin Xue Guan Bing Za Zhi. 2005;33:(11) 995-7.
36.Wang F, Xu Z M, Wang L, Bian W Y, Jia X, Duan B, et al. [Beneficial neurohormonal profiles of beta-blockades in chronic left heart failure]. Zhonghua Nei Ke Za Zhi. 2005;44:(7) 490-4.
37.Ahmed A. Use of angiotensin-converting enzyme inhibitors in patients with heart failure and renal insufficiency: how concerned should we be by the rise in serum creatinine? J Am Geriatr Soc. 2002;50:(7) 1297-300.
38.Chin M H, Wang J C, Zhang J X, Lang R M. Utilization and dosing of angiotensin-converting enzyme inhibitors for heart failure. Effect of physician specialty and patient characteristics. J Gen Intern Med. 1997;12:(9) 563-6.
39.Phillips M I, Kagiyama S. Angiotensin II as a pro-inflammatory mediator. Curr Opin Investig Drugs. 2002;3:(4) 569-77.
40.Sakata Y, Chancey A L, Divakaran V G, Sekiguchi K, Sivasubramanian N, Mann D L. Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol. 2008;103:(1) 60-8.
41.Nishimura M, Hashimoto T, Kobayashi H, Fukukda T, Okino K, Yamamoto N, et al. Possible involvement of TNF-alpha in left ventricular remodeling in hemodialysis patients. J Nephrol. 2003;16:(5) 641-9.
42.Tamion F, Richard V, Bonmarchand G, Leroy J, Hiron M, Daveau M, et al. Reduced synthesis of inflammatory cytokines by a free radical scavenger after hemorrhagic shock in rats. Crit Care Med. 2000;28:(7) 2522-7.
43.Yan X, Xun M, Dou X, Wu L, Zhang F, Zheng J. Activation of Na(+)-K(+)-ATPase with DRm217 attenuates oxidative stress-induced myocardial cell injury via closing Na(+)-K(+)-ATPase/Src/Ros amplifier. Apoptosis. 2017;22:(4) 531-543.
44.Klimiuk A, Zalewska A, Sawicki R, Knapp M, Maciejczyk M. Salivary Oxidative Stress Increases With the Progression of Chronic Heart Failure. J Clin Med. 2020;9:(3)
45.Villar A V, Cobo M, Llano M, Montalvo C, Gonzalez-Vilchez F, Martin-Duran R, et al. Plasma levels of transforming growth factor-beta1 reflect left ventricular remodeling in aortic stenosis. PLoS One. 2009;4:(12) e8476.
46.Zhang R, Zhang Y Y, Huang X R, Wu Y, Chung A C, Wu E X, et al. C-reactive protein promotes cardiac fibrosis and inflammation in angiotensin II-induced hypertensive cardiac disease. Hypertension. 2010;55:(4) 953-60.
47.Lan H Y. Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci. 2011;7:(7) 1056-67.