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Abstract

This paper discussed Bayesian variable selection methods for models from split-plot mixture designs

using samples from Metropolis-Hastings within the Gibbs sampling algorithm. Bayesian variable selec-

tion is easy to implement due to the improvement in computing via MCMC sampling. We described

the Bayesian methodology by introducing the Bayesian framework, and explaining Markov Chain Monte

Carlo (MCMC) sampling. The Metropolis-Hastings within Gibbs sampling was used to draw dependent

samples from the full conditional distributions which were explained. In mixture experiments with pro-

cess variables, the response depends not only on the proportions of the mixture components but also on

the effects of the process variables. In many such mixture-process variable experiments, constraints such

as time or cost prohibit the selection of treatments completely at random. In these situations, restrictions

on the randomisation force the level combinations of one group of factors to be fixed and the combinations

of the other group of factors are run. Then a new level of the first-factor group is set and combinations

of the other factors are run. We discussed the computational algorithm for the Stochastic Search Variable

Selection (SSVS) in linear mixed models. We extended the computational algorithm of SSVS to fit models

from split-plot mixture design by introducing the algorithm of the Stochastic Search Variable Selection for

Split-plot Design (SSVS-SPD). The motivation of this extension is that we have two different levels of the

experimental units one for the whole plots and the other for subplots in the split-plot mixture design.

Keywords: Variable Selection, Bayesian Analysis, Mixture Experiment, Split-Plot Design.

1 Introduction

Bayesian methods are important approaches due to their ability to quantify uncertainty. In such an ap-

proach, prior distributions that represent subjective beliefs about parameters are assigned to the regression

coefficients. By applying Bayes’ rule, prior beliefs are updated by the data and transformed into posterior

distributions, on which all inference is based.

An important task in regression building is to determine which variables should be included in the model.

Therefore, the principle of Bayesian variable selection is to get the large and the small effects distinctive,

and effective prior essences mass around zero and distribute the remaining over the parameter space. Such

a prior represents the fact that there are small coefficients close to zero on one hand and larger coefficients

on the other hand. These priors can be built as a combination of two distributions, along with a narrow

normal continuous distribution centred at zero with a small variance called a “spike”, and the other with a
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Fig. 1 Gaussian mixture prior for β

flat normal continuous distribution with a large variance to spread over a wider range of parameter values

called a “slab”. This type of priors is called “Spike-and-Slab” priors (see Figure 1. Practically saying, those

priors are beneficial for purposes of variable selection because they permit the classification of the regres-

sion coefficients into two groups: one group of large, significant effects, and the other group with small,

negligible effects.

As reviewed by [1], [2] introduced Bayesian variable selection via “spike-and-slab” prior distributions. The

spike prior that they used was a probability mass at zero to remove the non-significant variables. Their slab

is the uniform distribution with a large symmetric range in order to keep the significant variables. Following

their work, many priors were proposed to implement the spike-and-slab property. [3] proposed the Stochas-

tic Search Variable Selection (SSVS) in which the coefficients are sampled from a mixture of two normal

distributions with different variances. The spike part is the distribution with a small variance while the slab

part is the distribution with a much larger variance. Also, [4] proposed positive mass at zero for the spike

part and a normal distribution for the slab part. In addition, [5] proposed a Bayesian approach for model

selection in fractionated split-plot experiments with application to “robust-parameter design”. In their work,

they extend the SSVS algorithm of [6] to account for the split-plot error structure. They derive an expres-

sion for the posterior probability of a model that requires the computation of, at most, two unidimensional

integrals, and employ this quantity for model selection. They were able to integrate the coefficients and the

variance components from the joint posterior distribution of all parameters because they use the conjugate
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normal-inverse gamma prior for these parameters. The integrals are computed with Gaussian quadrature,

and Global and Local search algorithms to find models with high posterior probabilities.

The novel contribution of this paper to Bayesian variable selection is motivated by a very specific experi-

mental design of data from experiments subject to restricted randomisation. We have two different levels

of the experimental units one for the whole plots and the other for the subplots in the split-plot design;

see, for example, [7]. To address this issue, we adapt the SSVS algorithm in which we sample the subplot

coefficients using a mixture of normal posterior distributions with a slab variance different from the slab

variance which will be used in the mixture of normal posterior distributions for the whole-plot coefficients.

This method reduces Type I and II error rates as well as reduces the prediction error for split-plot design

rather than applying the SSVS algorithm in which all coefficients will be sampled from a mixture of nor-

mal posterior distributions with one slab variance. We called the approached method the Stochastic Search

Variable Selection for Split-Plot Design (SSVS-SPD). The frequentist analysis is dependent on the estimates

of the variance components, yet these estimates cannot be precisely calculated because of the deficiency

of the degrees of freedom for the random effects in the split-plot design. This issue was discussed by [8].

Introducing a prior distribution for the variance components in the linear mixed model provides additional

information to overcome the problem of variance estimation.

This paper differs from [9] in which the dataset used in this paper is the Vinyl Thickness experiment, which

had not been used in variable selection. Also, it differs in the choice of the shape parameter of the correlation

parameter as in this paper we used a = b = 2 to fit this data.

2 Split-Plot design and Sample Model

The model for the block experiments includes two types of errors: block error and residual error. Hence,

linear mixed models (LMMs) are used to analyse responses from the blocked experiments.

Linear mixed-effects models (LMMs) introduce correlations between observations using random effects.

This leads to the use of generalised least squares (GLS) estimation, combined with restricted maximum

likelihood estimation (REML) of the variance components as will be discussed. This type of analysis is used

by the most design of experiments textbooks that deal with blocked designs. In matrix notation, the model

corresponding to a blocked design is written as

Y = Xβ + Zγ + ϵ, (1)

where Y is n × 1 vector of observations on the response of interest, X is the n × p model design matrix

containing the polynomial expansions of the m factor levels at the n experimental runs, β is the p× 1 vector

of unknown fixed parameters, Z is an n×b random design matrix which represents the allocation of the runs

to blocks, and whose (i, j)th element is one where the ith observation belongs to the jth blocks, and zero

otherwise. If the runs of the experiment are grouped per block, then Z is of the form

Z = diag[1k1
, 1k2

, . . . , 1kb
], (2)

where 1k is a k vector of ones, and k1, k2, . . . , kb are the blocks sizes. The random effects of the b blocks

are contained within the b × 1 vector γ, and the random errors are contained within the n × 1 vector ϵ. It

is assumed that γ and ϵ are independent and normally distributed, i.e. Cov (γ, ϵ) = 0b×n, where 0b×n is

the b × n matrix of zeros. Hence, γ ∼ N(0b, σ
2
γIb), and ϵ ∼ N(0n, σ

2
ϵ In), where 0b and 0n are the b and

n column vectors of zeros respectively, and Ib and In are the b−dimensional and n−dimensional identity

matrices respectively.
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Under these assumptions, Y is a normally distributed random variable with mean E(Y) = Xβ, and the

variance-covariance matrix of the response Y can be written as

V = Var(Y) = Var(Xβ + Zγ + ϵ) (3)

= Var(Zγ) + Var(ϵ) (4)

= ZVar(γ)Z′ + σ2
ϵ In (5)

= σ2
γZZ′ + σ2

ϵ In. (6)

V can be given as a block diagonal,

V =











V1 0 . . . 0
0 V2 . . . 0
...

. . .
. . .

...

0 . . . 0 Vb











,

where

Vi = σ2
ϵ Iki

+ σ2
γ1ki

1′ki
,

and

Vi =











σ2
ϵ + σ2

γ σ2
γ . . . σ2

γ

σ2
γ σ2

ϵ + σ2
γ . . . σ2

γ
...

. . .
. . .

...

σ2
γ . . . σ2

γ σ2
ϵ + σ2

γ











.

As a result, the variance-covariance matrix Vi of all observations within one block is compound symmetric:

the main diagonal of the matrix contains the variances of the observations, while the off-diagonal elements

are covariances. However, Vi can be rewritten as

Vi = σ2
ϵ (Iki×ki

+
σ2
γ

σ2
ϵ

1ki
1′

ki
), (7)

= σ2
ϵ (In + ηZZ′), (8)

where η = σ2
γ/σ

2
ϵ is a measure for the extent to which observations within the same block are correlated.

The larger this variance ratio, the stronger observations within the same block are correlated.

When the random error terms as well as the group effects are normally distributed, the maximum likelihood

estimate of the unknown model parameter β in equation (1) is the generalised least squares (GLS) estimate.

Detecting the estimator β̂ of β, requires to minimise

(y − Xβ)′V−1(y − Xβ) = y′V−1y − 2β′X′V−1y + β′X′V−1Xβ (9)

with respect to β, which is tantamount to detecting β̂, so that

(X′V−1X)β̂ = X′V−1y. (10)
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Therefore, the generalised least squares (GLS) estimator of β is

β̂ = (X′V−1X)−1X′V−1Y, (11)

and the variance-covariance matrix of the estimators is given by

Var(β̂) = Var

(

(X′V−1X)−1(X′V−1Y)

)

= (X′V−1X)−1X′V−1Var(Y)

(

(X′V−1X)−1X′V−1

)

′

= (X′V−1X)−1X′V−1VV−1X(X′V−1X)−1

= (X′V−1X)−1(X′V−1X)(X′V−1X)−1

= (X′V−1X)−1. (12)

Often, the variances σ2
γ and σ2

ϵ are not known and therefore, equation (11) and equation (12) cannot be used

directly. Instead, the estimates of the variance components, σ̂2
γ and σ̂2

ϵ , are substituted in the GLS estimator

as in equation (11), yielding

β̂ = (X′V̂
−1

X)−1X′V̂
−1

Y, (13)

where

V̂ = σ̂2
ϵ In + σ̂2

γZZ′. (14)

In that case, the variance-covariance matrix in equation (12) can be approximated by

Var(β̂) = (X′V̂
−1

X)−1. (15)

The generalised least square (GLS) estimator is unbiased, meaning that E(β̂) = β, and is equal to the

maximum likelihood estimator (MLE). The likelihood function defined as it is the joint probability density

function for the observed data examined as a function of the parameters. Hence, the likelihood function for

Y in equation (1) is

L(β|Y) = (2π)−n/2|V|−1/2exp
[

− 1

2
(Y − Xβ)′V−1(Y − Xβ)

]

, (16)

where π is a constant which does not depend on β. The maximum likelihood estimator (MLE) is the

estimator that maximises the likelihood function, which is tantamount to detecting the β̂ as

∂

∂β
L(β̂|Y) = 0, (17)

which is equal to

∂

∂β
lnL(β̂|Y) = 0, (18)

where lnL(β̂|Y) is the log likelihood function. As equation (9) is proportionate to log of equation (16), the

GLS estimator in equation (11) is the result of equation (17) and equation (18).

The restricted maximum likelihood (REML) used to estimate σ2
ϵ and σ2

γ is

lREML(σ
2
ϵ , σ

2
γ ;Y) = −1

2
ln|V| − 1

2
ln|X′V−1X| − 1

2
(Y − Xβ̂)′V−1(Y − Xβ̂), (19)
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where β̂ is defined in equation (13). The restricted log-likelihood lREML(σ
2
ϵ , σ

2
γ ;Y) is minimised with re-

spect to the variance components σ2
ϵ and σ2

γ to obtain an unbiased estimate for the the variance components.

3 The Bayesian Methodology

3.1 Bayesian Framework

The essential philosophy behind Bayesian inference is to update a prior distribution for an unidentified

parameter to a posterior distribution by Bayes’ theorem. Bayes’ theorem can be used to estimate the condi-

tional distributions. While the frequentist approach treats the parameters as unknown and fixed, the Bayesian

approach regards them as random variables. We can define the prior distribution p(θ) as the probability

density (or mass) function which reflects our beliefs about θ in the parameter space Θ. For given data

y = (y1, y2, ..., yn)
′, the likelihood function f(y|θ) can then be defined given the parameter θ for the data y.

Also, we can define the posterior density (or mass) function p(θ|y1, y2, ..., yn) which represents our updated

belief about θ given the observed data y.

Using Bayes theorem, the posterior density of θ given y is:

p(θ|y) = f(y|θ)p(θ)
∫

Θ
f(y|θ)p(θ)dθ . (20)

Bayesian inference continues from this distribution. The denominator of equation (20) is the marginal like-

lihood of y, and it often does not need to be calculated because it is independent of θ. Bayes’ rule can then

be written as:

p(θ|y) ∝ f(y|θ)p(θ). (21)

Equation (21) defines the unnormalised posterior density. The posterior then is proportional to the likelihood

× the prior. For more details on Bayesian inference, see [10] and [11].

A prior distribution can be selected based on past information or experimental practice. It can be informative

or uninformative. The informative distribution is given numerical information to estimate the parameter of

concern. The uninformative reflects equilibrium among outcomes when weak information about the param-

eter is presented. There are two types of uninformative priors: proper prior and improper prior. The density

for proper prior distribution integrates to 1 whereas the integral of the density for an improper distribution is

not finite. If the prior integrates to any positive finite value, it is called an unnormalised density and can be

renormalised- multiplied by a constant- to integrate to 1 [10, 11].

3.2 Markov Chain Monte Carlo (MCMC) Methods

Markov Chain Monte Carlo simulation is a general method based on drawing values of the θ from approx-

imate distributions, and then correcting those draws to better approximate the target posterior distribution

p(θ|y) [10, 11, 12] . A Markov chain can be defined as a sequence of random variables θ1,θ2, ... for which

for any iteration t, the distribution of θt depends only on the most recent value θt−1 [10, 11, 12]. A Markov

chain is generated by sampling θt ∼ p(θ|θt−1). This p is called the transition kernel of the Markov chain.

Therefore, θt depends only on θt−1, not on θ0,θ1, ...,θt−2.

As t → ∞, the sampling from Markov chain converges to the posterior for the right choice of transition

kernel p(θ|y). Thus, we should run the simulation long enough so that the distribution of the current draws
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is close enough to p(θ|y).

3.2.1 Metropolis-Hastings Sampling

Metropolis-Hastings sampling was proposed by [13] and [14]. The theory of this sampling is based on

rejection sampling. The acceptance-rejection method is a technique of getting samples from a distribution

with an unknown form. The Metropolis-Hastings algorithm is a common expression for a family of Markov

chain simulation methods. It is worth describing the Metropolis algorithm first, then broadening it to discuss

the Metropolis-Hastings algorithm. Let p(θ|y) be the conditional posterior distribution where we want to

sample from. Let θt be the current parameter value, and let π(θ) be the proposal density. The proposal

density is much like a conventional transition operator for a Markov chain, the proposal distribution depends

only on the previous state in the chain. However, the transition operator for the Metropolis algorithm has

a additional step that assesses whether or not the target distribution has a sufficiently large density near the

proposed state to warrant accepting the chain.

3.2.2 Gibbs Sampling

A Gibbs sampler is the simplest of the Markov chain simulation algorithms, and it is used to sample from

the conditional conjugate models, where we can directly sample from each conditional posterior [10, 11].

It is rare to find all the conditional posteriors in a model in known forms. One may find some conditional

posterior distributions that are possible to directly sample from. Furthermore, one may find some of the

conditional posteriors that cannot be straightforwardly sampled from. Therefore, the procedure for this issue

is to update the parameters one at a time with the Gibbs sampler used where possible, and one-dimensional

Metropolis updating where necessary. This process is called the Metropolis-Hastings within Gibbs sampling

and will be used in this work.

4 A Hierarchical Mixture Model for Variable Selection

The linear mixed model fitted to data from a split-plot experiment with n responses is

y ∼ N(β01n + Xβ,V), (22)

where y is n× 1 vector of random responses, β0 is the intercept, 1n is a n× 1 vector of ones, X is the n× p
model matrix without the column of the intercept, β is the p× 1 vector of fixed effect parameters and V is

V = σ2
ϵ (In +

σ2
γ

σ2
ϵ

ZZ′),

where Z is the random effect design matrix. As ρ =
σ2
γ

σ2 , and σ2 = σ2
ϵ + σ2

γ , then V can be written as

V = σ2(1− ρ)
(

In +
ρ

1− ρ
ZZ′

)

. (23)
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We need to find the highest posterior probability of an indicator vector ν = (ν1, ν2, ...νp) such that

νj =

{

0 if βj = 0

1 if βj ̸= 0
,

for j = 1, 2, ...p. When νj = 1 the term is assumed to be active and will be included in the model, and when

νj = 0 the term is assumed to be non-active and will not be included in the model.

Following [6], and [5], we assume that β|σ2,ν, c ∼ N(0p, σ
2Dν,c), where ν is the indicator vector, c

is the prior variance of the slab distribution, and Dν,c is a diagonal matrix with the jth diagonal element

cI(νj = 1) + dI(νj = 0), j = 1, ..., p. The parameters σ2,ν and c will be given prior distributions, and the

parameter d is assumed to be a small fixed non-negative number because we want the spike distribution to

have a smaller variance than the slab distribution. Formally the prior construction of β is the following:

βj |σ2, νj , c ∼ (1− νj)N(0, dσ2) + νjN(0, cσ2).

For every coefficient βj , a Bernoulli variable νj is defined taking values 1 and 0 with probability of inclusion

ω, as p(νj = 1) = ω and p(νj = 0) = (1− ω). Often, νj’s are taken as independent Bernoulli (ω) random

variables, where 0 < ω < 1. It is common to fix ω in the normal mixture, however, we shall deal with ω as a

parameter to investigate different values of ω, and sample it from the Beta distribution as it will be explained

in Section 6.3.

5 Prior Distributions

Following the prior distributions used by [5], we assume that the prior distribution for the fixed effects is

β ∼ N(0, σ2Dν,c)

p(β|σ2,ν, c) ∝ |σ2Dν,c|−1/2exp
(

− 1

2
β′(σ2Dν,c)

−1β
)

.

The prior distribution for the total variance is σ2 ∼ IG(a, b),

p(σ2) ∝ (σ2)−a−1exp
(

− b

σ2

)

.

For this work, we used a = 0 and b = 0 following [5] as this yields the common non-informative prior for

σ2. This prior is improper, however we will sample from the posterior distribution, which should be a proper

gamma distribution.

The prior distribution for the correlation parameter is ρ ∼ Beta(a′, b′) with shape parameters a′, b′ > 0. We

consider a′ = b′ = 2 following [8]. According to [8], “ A Beta(a′, b′) prior distribution for a correlation

parameter can be interpreted as indicating a prior point estimate of a′/(a′ + b′), this prior information being

worth a′ + b′ observations”. Our prior was selected to be centred at 2/(2 + 2) = 0.5 and to be worth four

observations in each block. For an experiment with a′ + b′ observations, the posterior distribution would

give equal weight to the prior and the likelihood [8]. Similar choice of the pripr is in [15] as they set a = b =

2 so that the p(ρ) is symmetric with a mode of 0.5. This has the effect of pulling the posterior mode of p(ρ)
towards 0.5 when the data are scarce. The prior density for ρ is

p(ρ) ∝ ρ(a
′
−1)(1− ρ)(b

′
−1).

8
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The prior distribution for the elements of the indicator vector is νj ∼ Bernoulli(ω),

p(νj) =

{

ω if νj = 1

1− ω if νj = 0
,

where ω is the prior probability that βj is active following [5]. The prior distribution for the elements of the

probability of inclusion is ω ∼ Beta(c0, d0),

p(ω) ∝ ω(c0−1) (1− ω)(d0−1).

[5] set ω = 0.25. However, we select c0 and d0 such that the prior of ω has a mode = 0.25. The choice of

c0 = 2 and d0 = 4 results in a prior with a mode = 0.25 and the upper cumulative percentile at 5% equals

0.66. Meaning a 5% chance the observations have a pdf ≥ 0.66.

The prior distribution for the slab variance c is a discrete uniform prior distribution with support points T

= {1/4, 9/16,1, 4, 9, 16, 25} as given by [5]. They found that large values of c tend to favor sparse models

with large effects and in this case small effects will be missed. On the other hand, small values of c tend to

favor less sparse models. Moreover, very small values of c tend to favor sparse models again. They select

the support points in T such that it covers small and large values of c. The prior distribution for c is

p(c) =

{

1
7 if c ∈ T

0 otherwise
.

6 Full Conditional Distributions

We use the prior distributions presented in Section 5 to derive the full conditional distributions. The likeli-

hood of the data depends on β, so we can derive the conditional distribution for β using the prior distribution

β|σ2,ν, c ∼ N(0p, σ
2Dν,c) and the likelihood for the model 22

L(y|β) ∝ |V|−1/2exp
[

− 1

2
(y − Xβ)′V−1(y − Xβ)

]

.

9
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Note that we standardise both X and y so the fixed effect vector β does not include the intercept. The

conditional distribution for β can be expressed as:

p(β|ν, σ2, c, ω, ρ, y) ∝p(y|β,ν, σ2, c, ω, ρ) p(β|σ2,ν, c)

∝ |V|−1/2exp
[

− 1

2
(y − Xβ)′V−1(y − Xβ)

]

× |σ2Dν,c|−1/2

exp
(

− 1

2
β′(σ2Dν,c)

−1β
)

∝ |V|−1/2|σ2Dν,c|−1/2exp
[

− 1

2

(

β′(σ2Dν,c)
−1β

)

− 1

2

(

y′V−1y − y′V−1Xβ − β′X′V−1y + β′X′V−1Xβ
)]

∝ |V|−1/2|σ2Dν,c|−1/2exp
[

− 1

2
β′

(

(σ2Dν,c)
−1 + X′V−1X

)

β
]

exp
[

− 1

2
(−y′V−1X)β

]

exp
[

− 1

2
β′(−X′V−1y)

]

∝ |V|−1/2|σ2Dν,c|−1/2exp
[

− 1

2
β′

(

(σ2Dν,c)
−1 + X′V−1X)

)

β
]

exp
[1

2
(y′V−1X)β +

1

2
β′(X′V−1y)

]

∝ |V|−1/2|σ2Dν,c|−1/2exp
[

− 1

2
β′

(

(σ2Dν,c)
−1 + X′V−1X)

)

β

+ β′(X′V−1y)
]

.

The key to deriving the joint posterior distribution is to rewrite the expression in the exponential part in a

more convenient form. This can happen by using the multivariate completion of squares:

U′AU−2U′α = (U−A−1α)′A(U−A−1α)−α′A−1α,

where A is a symmetric positive definite (hence invertible) matrix. We assume U = β, A = (σ2Dν,c)
−1 +

X′V−1X, and α = X′V−1y.

The conditional distribution for β can be written as:

p(β|ν, σ2, c, ω, ρ, y) ∝ |V|−1/2|σ2Dν,c|−1/2exp
[

− 1

2
β′

(

(σ2Dν,c)
−1 + X′V−1X

)

β − 2β′(X′V−1y)
]

∝ |V|−1/2|σ2Dν,c|−1/2exp
[

[

β −
(

(σ2Dν,c)
−1 + X′V−1X

)

−1

(X′V−1y)
]

′

[

(σ2Dν,c)
−1 + X′V−1X

][

β −
(

(σ2Dν,c)
−1 + X′V−1X

)

−1

(X′V−1y)
]

]

∝ exp
[

− 1

2
(β − β∗)

′D−1
∗

(β − β∗)
]

.

Thus, we can sample β from the conditional posterior N (β∗,D∗), where

β∗ =
(

(σ2Dν,c)
−1 + X′V−1X

)

−1

(XV−1y), and D∗ =
(

(σ2Dν,c)
−1 + X′V−1X

)

−1

. (24)
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6.1 The Conditional Distribution for ρ

The likelihood of the data depends on ρ, so the conditional distribution for ρ can be derived by

p(ρ|β,ν, σ2, c, ω, y) ∝ p(y|β,ν, σ2, c, ω, ρ) p(ρ)

∝ |V|−1/2exp
[

− 1

2
(y − Xβ)′V−1(y − Xβ)

]

× ρ(a
′
−1)(1− ρ)(b

′
−1).

We note here that the likelihood depends on ρ through V as in (4.6), so we can express V as a function of ρ,

V = σ2 (1− ρ) (In +
ρ

1− ρ
ZZ′).

The conditional distribution for ρ is a non-standard distribution that cannot be sampled directly. Therefore,

we use the Metropolis-Hastings (M-H) rejection sampling. Our correlation parameter is ρ ∈ (0, 1], and

has a prior β(a′, b′). We apply the Random-Walk Metropolis-Hastings algorithm, and select a proposal

distribution of log-normal distribution for the variance ratio η where η = f(ρ) = ρ
1−ρ with a mean equal to

the current value of ηt at iteration t and variance s2. The choice of s2 affects the jumping rule in the random

walk proposal distribution. As we have one parameter to be updated in the random walk algorithm which is

ρ, we follow [10] and [16] to set s2 = g2Σ. The most efficient jump has a scale g ≈ 2.4/
√
h where h is the

number of parameters which will be updated. In this work, we set g = 2.4 and h = 1 following [16], and

we set Σ = 100 as this yields an appropriate acceptance rate associated with the independent sampler of the

ACF plot. Thus, η ∈ (0,∞) and

g(η) =
1

η
√
2πs2

exp
[

− 1

2s2
(ln η − ηt)2

]

We can use η = ρ
1−ρ as a transformation function between η and ρ as ρ = η

1+η and the Jacobian function of

ρ is J(ρ) = dη
dρ = 1

(1−ρ)2 .

We draw a proposal value η∗ from a log-normal(ηt, s2) distribution, and the probability of accepting or

rejecting η∗ is the minimum of 1 and the ratio r where r is

r =
p(ρ∗|all)

p(ρt|all)
× q(ηt|η∗)

q(η∗|ηt)
,

which is equivalent to

r =
p(ρ∗|all)

p(ρt|all)
× q(ρt|ρ∗)J(ρt)

q(ρ∗|ρt)J(ρ∗)
.

Our proposal ratio is

q(ηt|η∗)
q(η∗|ηt)

=
η∗exp

[

− 1
2s2 (ln ηt − η∗)

2
]

ηtexp
[

− 1
2s2 (ln η∗ − ηt)2

] ,

which is equivalent to

q(ρt|ρ∗)J(ρt)
q(ρ∗|ρt)J(ρ∗)

=
( ρ∗

1−ρ∗

) exp
[

− 1
s2

(

ln( ρt

1−ρt )− ( ρ∗

1−ρ∗

)
)2]× | 1

(1−ρt)2 |
( ρt

1−ρt ) exp
[

− 1
s2

(

ln( ρ∗

1−ρ∗

)− ( ρt

1−ρt )
)2]× | 1

(1−ρ∗)2
|
.

11
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The ratio r can be expressed as

r =
|V(ρ∗)|−1/2exp

[

− 1
2 (y − Xβ)′V(ρ∗)

−1(y − Xβ)
]

× (ρ∗)
(a′

−1)(1− ρ∗)
(b′−1)

|V(ρt)|−1/2exp
[

− 1
2 (y − Xβ)′V(ρt)−1(y − Xβ)

]

× (ρt)(a′−1)(1− ρt)(b′−1)

×
ρ∗(1− ρt)exp

[

− 1
s2

(

ln( ρt

1−ρt )− ( ρ∗

1−ρ∗

)
)2] |(1− ρt)−2|

ρt(1− ρ∗)exp
[

− 1
s2

(

ln( ρ∗

1−ρ∗

)− ( ρt

1−ρt )
)2] |(1− ρ∗)−2|

.

(25)

Where V(ρ∗) = σ2 (1− ρ∗) (In + ρ∗

1−ρ∗

ZZ′), and V(ρt) = σ2 (1− ρt) (In + ρt

1−ρt ZZ′).

6.2 The Conditional Distribution for σ
2

The likelihood of the data depends on σ2, so we can express the conditional distribution of σ2 as

p(σ2|β, ρ,ν, c, ω, y) ∝ p(y|β,ν, σ2, c, ω, ρ) p(σ2)

∝ |V|−1/2exp
[

− 1

2
(y − Xβ)′V−1(y − Xβ)

]

× (σ2)−a−1exp
(

− b

σ2

)

.

We know that V = σ2 (1− ρ) (In + ρ
1−ρZZ′), so the conditional posterior for σ2 can be written as

p(σ2|y, ...) ∝ |(1− ρ) σ2(In +
ρ

1− ρ
ZZ′)|−1/2(σ2)−a−1 × exp

(

− b

σ2

)

exp
[

− 1

2
(y − Xβ)′

(

(1− ρ) σ2 (In +
ρ

1− ρ
ZZ′)

)

−1

(y − Xβ)
]

∝ (σ2)−(a+n
2 )−1exp

(

− 1

σ2

[ (y − Xβ)′
(

(1− ρ)(In + ρ
1−ρZZ′)

)

−1

(y − Xβ)

2
+ b

])

.

This is the inverse gamma distribution with a shape parameter a∗ and a scale parameter b∗ such that

a∗ = a+
n

2
, and b∗ =

(y − Xβ)′
(

(1− ρ)(In + ρ
1−ρZZ′)

)

−1

(y − Xβ)

2
+ b. (26)

The indicator vector can be drawn conditionally on the regressor coefficient and computation of the

marginal likelihood is not required. The prior probabilities for νj are

p(νj) =

{

ω if νj = 1

1− ω if νj = 0
,

where ω is the prior probability that βj is active. The joint conditional posterior distribution for ν has mass

function

p(ν|β, y) ∝ p(y|β,ν) p(β,ν)
= p(y|β) p(β,ν)
∝ p(β,ν)

= p(β|ν) p(ν).

12
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The conditional density for β given ν is

p(β|ν) ∝ |σ2diag
[

cI(νj = 1) + dI(νj = 0)
]

|−1/2

× exp
[

− 1

2
β′

(

σ2diag
[

cI(νj = 1) + dI(νj = 0)
]

)

−1

β
]

.

The conditional distribution for the jth component given νj is

p(βj |νj) ∝ |σ2
[

cI(νj = 1) + dI(νj = 0)
]

|−1/2

× exp
[

−
β2
j

2σ2
[

cI(νj = 1) + dI(νj = 0)
]

]

.

The conditional posterior probabilities for νj are therefore

p(νj = 1|βj , y) = p(νj = 1) p(βj |νj = 1)

∝ ω |c σ2|−1/2exp
[

−
β2
j

2 c σ2

]

,
(27)

and

p(νj = 0|βj , y) = p(νj = 0) p(βj |νj = 0)

∝ (1− ω) |d σ2|−1/2exp
[

−
β2
j

2 d σ2

]

.
(27)

6.3 The Conditional Distribution for ω

The probability of inclusion ω can be drawn conditionally on the indicator and computation of the marginal

likelihood is not required. Hence the conditional distribution for ω is

p(ω|ν, σ2, c,β, ρ, y) ∝ p(y|ω,ν, σ2, c,β, ρ) p(ω,ν, σ2, c,β, ρ)

= p(y|ν, σ2, c,β, ρ) p(ω,ν)

∝ p(ω,ν)

= p(ν|ω) p(ω)
∝ ω

∑p
j=1 νj (1− ω)p−

∑p
j=1 νj × ω(c0−1)(1− ω)(d0−1)

∝ ωc0+
∑p

j=1 νj−1(1− ω)p−
∑p

j=1 νj+d0−1.

Hence,

ω|ν ∼ Beta
(

c0 +

p
∑

j=1

νj , p−
p

∑

j=1

νj + d0

)

, where p−
p

∑

j=1

νj =

p
∑

j=1

I(νj = 0). (28)

6.4 The Conditional Distribution for c

The prior distribution for c is a discrete uniform distribution with support points T = {1/4, 9/16,1, 4, 9,

16, 25}, and it can be drawn conditionally on the regressor coefficient. The computation of the marginal

13
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likelihood is not required. Hence, the conditional distribution for c

p(c|β, σ2,ν, ω, ρ, y) ∝ p(y|β, σ2,ν, c) p(β,ν, σ2, c)

= p(y|β, σ2) p(β,ν, σ2, c)

∝ p(β, σ2,ν, c)

= p(β|σ2,ν, c) p(c)

∝ 1

7
|σ2diag

[

cI(νj = 1) + dI(νj = 0)
]

|−1/2

× exp
[

− 1

2
β′

(

σ2diag
[

cI(νj = 1) + dI(νj = 0)
]

)

−1

β
]

∝ 1

7

[

p
∏

j=1

[

cI(νj = 1) + dI(νj = 0)
]

]

−1/2

× exp
[

− 1

2c
(β′I∑

j νj=1β)
]

× exp
[

− 1

2d
(β′I∑

j νj=0β)
]

∝ 1

7
c

−
∑p

j=1
νj

2 +
1

7
d

−
∑p

j=1
(1−νj)

2 × exp
[

− 1

2c
(β′I∑

j νj=1β)
]

× exp
[

− 1

2d
(β′I∑

j νj=0β)
]

∝ 1

7
c

−
∑p

j=1
νj

2 × exp
[

− 1

2c
(β′I∑

j νj=1β)
]

∝ 1

7
c

−
∑p

j=1
νj

2 × exp
[

− 1

2c
(β′β)

]

.

Therefore,

p(c|y, ...) ∝







1
7c

−
∑p

j=1
νj

2 × exp
[

− 1
2c (β

′β)
]

if c ∈ T

0 otherwise
.

Then, the posterior probabilities of the conditional distribution p(c|y, ...) are

p(c =
1

4
|y, ...) ∝ 1

7

(1

4

)

−
∑p

j=1
νj

2 × exp
[

− 1

2
(

1
4

) (β′β)
]

,

p(c =
9

16
|y, ...) ∝ 1

7

( 9

16

)

−
∑p

j=1
νj

2 × exp
[

− 1

2
(

9
16

) (β′β)
]

,

p(c = 1|y, ...) ∝ 1

7

(

1
)

−
∑p

j=1
νj

2 × exp
[

− 1

2
(

1
) (β′β)

]

,

p(c = 4|y, ...) ∝ 1

7

(

4
)

−
∑p

j=1
νj

2 × exp
[

− 1

2
(

4
) (β′β)

]

,

p(c = 9|y, ...) ∝ 1

7

(

9
)

−
∑p

j=1
νj

2 × exp
[

− 1

2
(

9
) (β′β)

]

,

14
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p(c = 16|y, ...) ∝ 1

7

(

16
)

−
∑p

j=1
νj

2 × exp
[

− 1

2
(

16
) (β′β)

]

,

and

p(c = 25|y, ...) ∝ 1

7

(

25
)

−
∑p

j=1
νj

2 × exp
[

− 1

2
(

25
) (β′β)

]

.

The conditional posterior p(c|y, ...) can be written as

p(c|y, ...) =















c−

∑p
j=1

νj

2 exp[−β′β

2c ]

∑
c∈T c−

∑p
j=1

νj

2 exp[−β′β

2c ]

if c ∈ T

0 otherwise

. (29)

7 Bayesian Variable Selection Algorithms

In this section, we introduce the computational algorithms which we use in the Bayesian analysis for variable

selection using the SSVS, and the SSVS-SPD. In this work, we choose an asymmetric proposal distribution,

the log-normal density. We apply the Metropolis-Hastings algorithms to sample the variance ratio η where

η = f(ρ) = ρ
1−ρ , and ρ is the correlation parameter. This is because of the fact that in our experiments,

observations from different subplots within the same wholeplot are positively correlated as ρ =
σ2
γ

σ2
ϵ+σ2

γ
; also

observations from different wholeplots are independent [5].

7.1 The Stochastic Search Variable Selection (SSVS) Algorithm

We process the MCMC estimation of the parameters β, ρ, σ2,ν, ω, and c. We use the priors of all these

parameters as in Section 5. The following Metropolis-Hastings within Gibbs sampling algorithm can be

implemented. Let y be the n × 1 vector of random responses, X is the n × p model matrix without the

column of the intercept, β is the p × 1 vector of fixed effect parameters, where p is the number of fixed

effect parameters that need to be estimated. We set initial values for the parameters as β(0) = 1p, ν(0) = 1p,

ρ(0) = 0.5, σ2(0) = 10, c(0) = 1, ω(0) = 0.5, d = 0.001. Starting at the tth iteration such that t =
1, 2, ..., its where its = 10000, and setting j = 1, 2, ..., p, the sampling algorithm is:

1. For j = 1, 2, ..., p, sample ν
(t)
j of the indicator vector ν(t) using (27) for β

(t−1)
j , c(t−1), σ2(t−1), and

ω(t−1).

2. Sample the mixture weight ω(t) using (28) for ν(t).

3. Sample the regressor coefficients β(t) using (24) for X, y, V(t−1), D(t−1), c(t−1), ν(t), and σ2(t−1).

4. Sample the total variance σ2(t) using (26) for X, y, Z, β(t), and ρ(t−1).

5. (a) Sample ρ
(t)
∗ from β(a′, b′).

(b) Calculate α(t) using (25) for X, y, V(ρ
(t)
∗ ), V(ρ(t−1)), and β(t).

(c) Sample u(t) from U(0, 1).

(d) If α(t) > u(t), then set ρ(t) = ρ
(t)
∗ , otherwise set ρ(t) = ρ(t−1).

6. Sample c(t) from the set T with probability mass function given in (29) for β(t), and ν(t).
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7.2 The Stochastic Search Variable Selection for Split-Plot Design (SSVS-SPD) Al-

gorithm

We adapt the SSVS for the analysis of data from split-plot designs by taking into account the two types of

factors, i.e. the whole-plot factors and the subplot factors which expected to have different effect sizes for the

two strata in split-plot design [7] . This approach can be reported as the Stochastic Search Variable Selection

for Split-Plot Design (SSVS-SPD). While the SSVS samples all parameters from one slab variance poste-

rior distribution, the SSVS-SPD samples the whole-plot parameters and the subplot parameters from two

different slab variance posterior distributions given that the whole-plot and the subplot effects might have

different sizes. While the SSVS samples all parameters from one slab variance posterior distribution, the

SSVS-SPD samples the whole-plot parameters and the subplot parameters from two different slab variance

posterior distributions. We use the same priors as in the SSVS for all the parameters of interest as in Section

5. Basically, the SSVS-SPD can be seen as running the SSVS twice in one process, one for subplot factors

and the other one for whole-plot factors. The algorithm can be explained as follows:

We process the MCMC estimation of the parameters β, ρ, σ2,ν, ω, and c. The following Metropolis-

Hastings within Gibbs sampling algorithm can be implemented. Let y be the n × 1 vector of random

responses, X is the n× p model matrix without the column of the intercept, X.S is the n× ps model matrix

for subplot factors where ps is the number of subplot fixed effect parameters.

Also, X.W is the n × pw model matrix for whole-plot factors where pw is the number of whole-plot fixed

effect parameters. The β = (βs,βw) is the p× 1 vector of fixed effect parameters, where p is the number of

fixed effect parameters that need to be estimated, βs is the ps × 1 subplot effect parameters, and βw is the

pw × 1 whole-plot effect parameters.

We set initial values for the parameters as β
(0)
s = 1ps

, β
(0)
w = 1pw

. The initial values for the indicator vec-

tors for the subplot factor νs and the whole-plot factor νw are ν
(0)
s = 1ps and ν

(0)
w = 1pw. Also, ρ(0) = 0.5,

σ2(0) = 10, and d = 0.001. The initial values for the slab variance for the subplot factors cs and for the slab

variance for the whole-plot factors cw are c
(0)
s = c

(0)
w = 1. Finally, the initial weights for the subplot factors

ωs and for the whole-plot factors ωw are ω
(0)
s = ω

(0)
w = 0.5.

Starting at the tth iteration such that t = 1, 2, ..., its where its = 10000, and setting j = 1, 2, ..., ps and

k = 1, 2, ..., pw, the sampling algorithm is:

1. For j = 1, 2, ..., ps, and k = 1, 2, ..., pw sample ν
(t)
sj and ν

(t)
wk of the indicator vectors ν

(t)
s and ν

(t)
w

using (27) for β
(t−1)
sj , β

(t−1)
wk , c

(t−1)
s , c

(t−1)
w , σ2(t−1), ω

(t−1)
s , and ω

(t−1)
w .

2. Allocate ν(t) = (ν
(t)
s ,ν

(t)
w ).

3. Sample the mixture weights ω
(t)
s and ω

(t)
w using (28) for ν

(t)
s and ν

(t)
w .

4. Allocate ω(t) = (ω
(t)
s , ω

(t)
w ).

5. Sample the regressor coefficients β
(t)
s and β

(t)
w using (24) for X, y, V(t−1), D(t−1)

s ,D(t−1)
w , c

(t−1)
s ,

c
(t−1)
w , ν

(t)
s , ν

(t)
w , and σ2(t−1). Where the Ds is a diagonal matrix with the jth diagonal element

c
(t−1)
s I(νsj = 1) + dI(νsj = 0), and Dw is a diagonal matrix with the kth diagonal element

c
(t−1)
w I(νwk = 1) + dI(νwk = 0).

6. Allocate β(t) = (β
(t)
s ,β

(t)
w ) and D(t) = diag(D(t)

s ,D(t)
w ).

7. Sample the total variance σ2(t) using (26) for X, y, Z, β(t), and ρ(t−1).
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8. (a) Sample ρ
(t)
∗ from β(a, b).

(b) Calculate α(t) using (25) for X, y, V(ρ
(t)
∗ ), V(ρ(t−1)), and β(t).

(c) Sample u(t) from U(0, 1).

(d) If α(t) > u(t), then set ρ(t) = ρ
(t)
∗ , otherwise set ρ(t) = ρ(t−1).

9. Sample c
(t)
s and c

(t)
w from the set T with probability mass function given in (29) for β

(t)
s , β

(t)
w , ν

(t)
s

and ν
(t)
w .

10. Allocate c(t) = (c
(t)
s , c

(t)
w ).

8 Real Data Application

[17] and [18] described an experiment in the production of vinyl for automobile seat covers. The experiemnt

has 28 runs and is a modified version of an example in [18]. It involves the production of vinyl for automobile

seat covers. In the experiment, the effect of five factors on the thickness of the vinyl are investigated. Three of

the factors are mixture components and two of them are so-called process variables. As in ordinary mixture

experiments, the component proportions sum to one. In this example, the response of interest does not only

depend on these proportions, but also on the effects of the process variables. The mixture components in

the experiment are three plasticizers whose proportions are represented by s1, s2, and s3. The two process

variables studied are rate of extrusion (w1) and temperature of drying (w2). The experiment was conducted

in a split-plot format. The process variables are the whole plot factors of the experiment, whereas the mixture

components are the sub-plot factors. The data are shown in Table 1.

A main effects plus two factor interactions model was assumed for the process variable w1 and w2. For

the mixture components, the quadratic mixture model was used. The main effects of the process variables

were crossed with the linear blending terms only, so the model estimated in [17] is given by

yij =

3
∑

i=1

βisi +

m−1
∑

i=1

m
∑

j=i+1

βijsisj +

2
∑

i=1

αiwi + αw1w2 +

2
∑

i=1

2
∑

j=1

δijsiwj + γi + ϵij

They computed the variance components σ2 = σ2
ϵ + σ2

γ by R. The σ̂2
ϵ = 6.764 and the σ̂2

γ = 0.00001. The

factor effect estimates will be displayed in the next section to compare it with the proposed methods in this

paper.
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Table 1 Data for the Vinyl thickness for three-component mixture experiment with two process variable [19]

Obs. Block w1 w2 s1 s2 s3 y
1 1 -1 -1 1 0 0 10

2 1 -1 -1 0 1 0 4

3 1 -1 -1 0 0 1 3

4 1 -1 -1 0 0.5 0.5 9

5 2 1 -1 0 0 1 7

6 2 1 -1 1 0 0 10

7 2 1 -1 0 1 0 7

8 2 1 -1 0.5 0 0.5 12

9 3 -1 1 0.5 0 0.5 9

10 3 -1 1 0 1 0 5

11 3 -1 1 0.5 0.5 0 8

12 3 -1 1 0 0 1 2

13 4 1 1 0 0.4 0.6 4

14 4 1 1 0.5 0 0.5 7

15 4 1 1 0 1 0 5

16 4 1 1 1 0 0 6

17 5 1 -1 0.5 0.5 0 5

18 5 1 -1 1 0 0 12

19 5 1 -1 0 0 1 16

20 5 1 -1 0 0.6 0.4 9

21 6 -1 1 0 0.5 0.5 11

22 6 -1 1 1 0 0 12

23 6 -1 1 0 0 1 2

24 6 -1 1 0 1 0 9

25 7 1 1 0.5 0.5 0 3

26 7 1 1 0 1 0 5

27 7 1 1 0 0 1 9

28 7 1 1 1 0 0 5

9 Analysis of the Vinyl Thickness Experiment

The real dataset for the vinyl thickness experiment has been used to apply the Bayesian variable selection

approach. The model involves 5 main variables (w1, w2, s1, s2, s3) and two factor interaction variables

(w1s1, w1s2, s1s2, s1s3, s2s3, w2s1, w2s2, w1w2). We used the prior distributions above. Following [20],

in a Bayesian framework the final model could be the median probability model cosisting of those variables

whose posterior inclusion probability p(νj = 1|y) ≥ 0.5. The posterior probability of parameter βj , j =
1, 2, ..., p being active is approximated by

its
∑

q=1

ν
(q)
j

its
, (30)

where νj
(q) is νj sampled at iteration q = 1, . . . , its of the Metropolis-Hastings within Gibbs sampling

algorithm.
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We summarise the results of applying the Bayesian variable selection for the data from thickness vinyl

experiment. The model which will be used is:

yij =

3
∑

i=1

βisi +

m−1
∑

i=1

m
∑

j=i+1

βijsisj +

2
∑

i=1

αiwi + αw1w2 +

2
∑

i=1

2
∑

j=1

δijsiwj + γi + ϵij

The estimates of the 13 parameters of the model have been reported using (SSVS) and (SSVS-SPD) for the

responce y which is displayed in Table 1 as well as the estimates by the generalised least estimator (GLS)

for comparision purpose.

Figure 2 shows a comparison between SSVS and SSVS-SPD with respect to the resulting approximate

posterior probability for the thickness vinyl experiment. The parameters βw1
, βs1 , βs2 , βs3 , βw1s1 , βw1s2

have the highest posterior probability of being active by both SSVS and SSVS-SPD. This indicates that the

six associated variables to these terms play a significant role in this experiment. Followed by these terms,

we find the parameters βw1w2
, βs1s2 , βs1s3 , βs2s3 have an approximate posterior probability of about 0.5 and

0.6 by both SSVS and SSVS-SPD. We note that SSVS and SSVS-SPD tend to consider βs1s2 , βs1s3 , βs2s3

to be significant at an approximate posterior probability of 0.5 and 0.6 while they are not significant by the

GLS method. All methods consider βw2 , βw2s1 , βw2s2 to be non significant with low approximate posterior

probability in this experiment. The bayesian analysis for the real data of thickness vinyl experiment yielded

10 significant variables. In contrast, the pvalue for the GLS estimates in Table 2 shows there are 7 significant

variables as it excldes the variables associated to the coefficients βs1s2 , βs1s3 , βs2s3 . This means that the

SSVS and SSVS-SPD yielded in extra 3 significant variables to the model. Table 2 represents the posterior

means of the coefficents and standard deviation by both the SSVS and the SSVS-SPD methods and the

GLS estimates with the pvalues for the thickness vinyl experiement. Table 3 shows the posterior mean of

the correlation ρ̂ and the posterior mean of the total variance σ̂2 for both SSVS and SSVS-SPD methods.

Figure 3, show the ACF plots for Markov Chain using Metroplis Hastings within Gibbs sampling algorithim

used by SSVS and SSVS-SPD to sample the correlation ρ and the variance σ2.
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Table 2 The estimated coefficients and standard deviations (in parenthesis) for the thickness vinyl experiment by SSVS and SSVS-SPD. The first row

is the estimates coefficeients and p−values (in parenthesis) for the GLS.

Method w1 w2 s1 s2 s3 w1w2 s1s2 s1s3 s2s3 w1s1 w1s2 w2s1 w2s2

GLS 2.7048 -1.4579 9.6836 5.7338 6.0306 -1.2478 -9.2955 5.0613 10.2519 -4.2558 -3.3837 0.5313 1.8096

(0.006) (0.1416) (0) (0) (0) (0.0189) (0.1742) (0.4597) (0.0987) (0.0038) (0.0208) (0.7141) (0.2275)

SSVS 1.1231 -0.4047 8.7741 5.6278 6.2141 -0.5013 -3.8195 2.9947 3.5948 -2.1752 -1.6525 -0.0646 0.4176

(1.5031) (0.8618) (1.4849) (1.4178) (1.3677) (0.8598) (5.5208) (5.0878) (5.0977) (2.0511) (1.8558) (0.6786) (0.9723)

SSVS-SPD 1.1101 -0.3762 7.1253 4.1025 4.7905 -0.5875 -3.5483 2.8006 3.2632 -1.9048 -1.4335 -0.0466 0.7020

(0.9997) (0.9801) (2.7811) (2.5124) (2.4627) (1.0781) (5.5493) (5.5481) (5.5821) (1.9083) (1.6913) (1.0416) (1.2863)
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Fig. 2 Approximate posterior probability for the thickness vinyl experiment.

Table 3 Posterior means of the σ̂
2 and the ρ̂ by the SSVS and SSVS-SPD for the thickness vinyl experiment.

Method σ̂2 ρ̂
SSVS 11.7622 0.3624

SSVS-SPD 12.3379 0.4906
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Fig. 3 ACF plot for the Markov chain formed by sampling the total variance σ
2 and the correlation ρ by SSVS and

SSVS-SPD for the thickness vinyl experiment.
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10 Simulation Study Using the Design of the Vinyl Thickness Exper-

iment

We performed a simulation study by generating 1000 datasets, where each dataset would ran for 10000

iterations using MCMC. The SSVS and the SSVS-SPD would be applied at two levels of η = 1 and η = 10.

We assume that σ2
ϵ + σ2

ϵ = 10. Thus, the true value of the total variance σ2 = 10. Also, the true value of ρ
is 0.5. We will calculate Type I and II error rates using the indicator vector ν and the approximate posterior

probability in 30.If the true variable is active but the algorithim yielded a corresponding approximation

posterior probability of less than 0.5, this variable would then have Type II error rate. Also, if the true

variable is non active but the algorithim yielded a corresponding approximation posterior probability larger

than or equal to 0.5, this variable would then have Type I error rate. We also will calculate the precision of

the point estimates by SSVS and SSVS-SPD by counting the median relative model error (MRME) for the

estimates of the SSVS and SSVS-SPD. We focus on the properties of the estimated models by investigating

the following properties:

1. consistency in variable selection (frequency in selecting the active/ nonactive variable), and

2. prediction performance.

For point 1, at 5% significant level, we report Type I error rate (an effect that is truly not significant but the

corresponding procedure estimate indicates that it is significant). We also report Type II error rate (an effect

that is truly present but the corresponding procedure estimate indicates that it is not significant).

For point 2, following [21] and [22], prediction accuracy is measured by computing the mean-squared error

for each penalised estimate β̂λ as,

ME(β̂λ) = (Xβ̂λ − Xβ)′(Xβ̂λ − Xβ).

The relative model error (RME) is the ratio of the model error of the penalised estimates to the model error

for the GLS estimates of the fixed effects,

RME =
ME(β̂λ)

ME(β̂GLS)
,

where β̂GLS in equation (13) is the generalised least squares estimator of β. The median of the relative

model error (MRME) over 1000 simulated data sets were reported. MRME values greater than one indicate

that the methods estimates perform worse than the GLS estimates, values near to one indicate that the the

methods estimates performs in a similar way to the GLS estimates, values less than one indicate that the the

methods estimates performs better than the GLS estimates.

We perform a simulation study to examine the performance of the SSVS and SSVS-SPD methods. Using

the design of the thickness vinyl. We generate the response given the true model as:

E(Y) = 4w1 − 3s1 + s3 + 4w1w2 + 2s1s2 − s1s3 + 2w1s1 + 3w2s1 (31)

Type I and II error rates are displayed in Tables 4 and 5, for two setting of η = 1 and η = 10. Also, Table

6 represents the estimated Posterior means of σ̂2 and ρ̂ by the SSVS and SSVS-SPD from the simulation by

using the design of the thickness vinyl experiment. Figure 4 shows the MRME values at η = 1 and η = 10.

We notes that the SSVS at η = 1 have MRME greater than one which indicates that the estimates by the

SSVS is worse than the GLS estimates. While at η = 10, the SSVS perform better than the GLS estimates.
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The SSVS-SPD have similar performance with the GLS estimates at both level of η.

Type II error rates at both level of η generally is low indicating that the activ values are easy to detect by

both SSVS and SSVS-SPD. Furthermore, Type II error rates by the SSVS-SPD are lower than Type II error

rates by the SSVS. With regard to Type I error rate, for both level of η, the SSVS-SPD have lower Type I

error rates than the SSVS. Detecting active variables by both SSVS and SSVS-SPD is better than detecting

the non active variables.

Table 4 Type I error rate for the simulation by using the design of thickness vinyl experiment.

True non active variable Method w2 s2 s2s3 w1s2 w2s2
η = 1 SSVS 0.061 0.054 0.078 0.051 0.042

SSVS-SPD 0.058 0.037 0.052 0.046 0.040

η = 10 SSVS 0.045 0.069 0.055 0.077 0.082

SSVS-SPD 0.050 0.030 0.056 0.069 0.058

Table 5 Type II error rate for the simulation by using the design of thickness vinyl experiment.

True active variable Method w1 s1 s3 w1w2 s1s2 s1s3 w1s1 w2s1
4 -3 1 4 2 -1 2 3

η = 1 SSVS 0.004 0.005 0.002 0.005 0.007 0.005 0.004 0.007

SSVS-SPD 0.003 0.005 0 0.003 0.004 0.003 0.008 0.019

η = 10 SSVS 0.002 0 0 0.032 0.005 0 0.014 0.005

SSVS-SPD 0 0 0 0.017 0 0 0.009 0.010

Table 6 Posterior means of the σ̂
2 and the ρ̂ by the SSVS and SSVS-SPD for the simulation by using the design of

thickness vinyl experiment.

η Method σ̂
2

ρ̂

1 SSVS 10.9 0.56

SSVS-SPD 11.2 0.50

10 SSVS 9.00 0.62

SSVS-SPD 9.32 0.68

11 Conclusion

This paper provided an analysis of data from split-plot mixture process experiments using a motivating ex-

ample from the industrial environment. Specifically, we recommend the use of the SSVS-SPD method for

bayesian variable selection. In our results, we observed that the SSVS-SPD can identify the active vari-

ables (linear and two-factors interaction), much better than the SSVS and the traditional used GLS method.

However, as expected this comes with the expense of slightly higher Type I error rates. We also observed a

better prediction performance for the models chosen by the SSVS-SPD compared to the models chosen by

the SSVS method.

24



Bayesian Variable Selection for Mixture Process Variable Design Experiment

0
.5

1
.0

1
.5

2
.0

M
R

M
E

SSVS SSVS−SPD

η=1

η=10

Variable Selection Methods

Fig. 4 Median relative model error (MRME) for the simulation by using the design of thickness vinyl experiment.
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