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Abstract 
The evolving intercloud enables idle resources to be traded among cloud providers to 

facilitate optimizing utilization and to improve the cost-effectiveness of service for cloud 

consumers. However, several challenges are raised for this multi-tier dynamic market, where 

cloud providers not only compete for consumer requests but also cooperate with each other. To 

establish a healthier and more efficient intercloud ecosystem, this paper proposed a multi-tier 

agent-based fuzzy constraint-directed negotiation (AFCN) model for a fully distributed 

negotiation environment without a broker to coordinate the negotiation process. The novelty of 

AFCN is the use of a fuzzy membership function to represent imprecise preferences of the agent, 

which not only reveals the opponent’s behavior preference but can also specify the possibilities 

prescribing the extent to which the feasible solutions are suitable for the agent’s behavior. 

Moreover, this information can pass and guide each tier of negotiation to generate a more 

favorable proposal. Thus, the multi-tier AFCN can not only improve the performance of 

negotiation, but also enforce global consistency to improve the integrated solution capacity in 

the intercloud. The experimental results demonstrate that the proposed multi-tier AFCN model 

outperforms other agent negotiation models and gives full play to the efficiency and scalability 

of the intercloud in terms of the level of satisfaction, the ratio of successful negotiation, the 

average revenue of the cloud provider, and the buying price of the unit cloud resource. 

 

Keywords 

Multi-Agent negotiation; SLA negotiation; Multi-tier negotiation; Cloud computing; 

Intercloud. 

 

    

 

 

 

 

 

 

 



 

1. Introduction 

The cloud computing paradigm provides on-demand network access to configurable 

computing resources, and flexible deployment for fast delivery to cloud consumers [1] . One of 

the key features of cloud computing is providing elastic infrastructure by utilizing virtual 

technology for the illusion of infinite resources [2-5]. However, the resources of a single cloud 

provider are limited and cannot meet the diversity of service demand of all consumers [6]. 

When cloud providers might not have sufficient resources, they will reject the request of the 

consumer or cancel the low priority service, which will result in a loss of reputation and lead to 

reduced revenue in the market [7]. 

 To overcome this problem, the traditional cloud computing model needs to evolve into an 

intercloud ecosystem to provide cloud interoperability to scale up the capacity of cloud 

resources based on open standard protocols [8]. Therefore, cloud providers should be able to 

trade their idle resources among each other to help to facilitate optimizing the utilization and to 

improve the cost-effectiveness of service [9,10]. For instance, when the cloud service cannot 

completely satisfy the demand of some consumers in the intercloud environment, a provider 

could outsource resources for a higher profit. Similarly, a provider could rent unused resources 

to compensate for the cost of maintaining them for more benefit [7]. Therefore, cloud providers 

with diverse and heterogeneous resources can be grouped together and share their resources 

with each other to scale up their resource pools and contribute to an integrated solution for 

improved competitiveness [2,11], which would provide the customer-tailored dynamic 

composition of cloud services to satisfy customers with the special quality of service (QoS) 

requirements [8,12].  

 However, the intercloud model raises more challenges than the single cloud model in the 

market, because the intercloud model is a larger-scale distributed and interconnected system 

composed of individual cloud consumers and providers. Moreover, the intercloud consists of a 

competitive and cooperative multi-tier market [2,13,14], wherein the provider not only 

competes for the resource demand but also acts as the consumer to cooperate with other 

providers, resulting in a dynamic and on-demand federation cloud. Therefore, establishing a 

healthier and more efficient intercloud ecosystem, which needs an automatic market-oriented 

approach not only solves the conflict between the consumers and the cloud providers but also 

supports the coordination among cloud providers to allow scalable resources.  

In the cloud market, cloud services have emerged as catalysts of the trading market and 

have changed the traditional IT services model, which brings consumers and providers together 

[15,16]. During the process of service transactions, cloud consumers must select and compare 

appropriate services from cloud providers in the market. Since cloud providers offer a variety 

of services with diverse characteristics, an automatic selection approach is necessary to save 



 

time and efficiently match demand. When a transaction is established, the cloud providers must 

immediately provide the service or resource according to the Service Level Agreement (SLA)   

[17,18], which is a legal contract between the provider and consumer that defines demand 

according to Quality of Service (QoS) parameters, such as availability, response time and price. 

Service provision or resource allocation is a challenging issue for cloud providers, who aim to 

configure and deploy their virtualized resources from shared physical resources in a profitable 

manner. The deployed service needs to fulfill the request specification and try to avoid violating 

the SLA because the resources become overallocated with increasing consumer demand. 

Therefore, negotiations based on SLA act as a bridge between consumers’ service selection and 

providers’ service provision, and negotiation is a means of establishing SLA and resolving 

conflicts between consumers and providers. During the negotiation process, providers evaluate 

whether sufficient resources are available to fulfill the SLA request, and consumers select the 

most suitable service within the budget. The cloud service is terminated when the expiration 

date specified in the SLA has been reached; additionally, conditions that violate the SLA may 

lead to termination of the cloud service. Figure 1 shows the lifecycle of cloud service trading-

based SLA. 

Negotiation

Consumer

Service selection

Provider

Service provision

SLA: 

· Availability;
· Response time;
· Price;
· Reliability 
· ...

SLA Termination

SLA Monitor

Expiration date

 Violate the SLA

QoS metric

 

Figure 1: Lifecycle of cloud service trading-based SLA 

Currently, Agent-based approaches are widely used in cloud computing to solve the SLA 

negotiation problem [19-22], by providing efficient, flexible techniques to solve various 

distributed problems. Naturally, the intercloud can be modeled as a multi-agent system, 

composed of the individual cloud provider and consumer as autonomous agents. These agents 

make their decisions independently but also work together to address distributed problems 



 

through automatic SLA negotiation. Moreover, the intercloud market consists of a two-tiered 

SLA negotiation framework, consumer-to-provider negotiation and provider-to-provider 

negotiation [3]. The consumer agent seeks more satisfying cloud services by negotiating with 

the provider agent, while the provider agent aims to increase revenue by delivering themselves’ 

services or contributing integrated services by negotiating with the agents of other providers 

[23].  

However, agent negotiation presents challenges in creating a general framework for 

modeling a two-tiered multilateral and multi-issues SLA negotiation framework for the 

intercloud market. First, the decision-making process should not be managed by a central 

decision-maker. In particular, cloud providers need to dynamically establish ad hoc cooperative 

partners with competitive relationship [11], while central entity arises the trust risks and 

becomes a bottleneck that hinders problem solving [5,24]. Second, efficient coordination based 

on two-tiered negotiation requires all negotiators to understand the behavior of their opponents. 

However, the uncertain and incomplete information of the proposal is exchanged during each 

tier negotiation [25,26], so no agent has any a priori information to evaluate the solution for the 

mutually satisfactory outcome [27].  

This paper aims to propose a multi-tier agent-based fuzzy constraint-directed negotiation 

(AFCN) model to support a fully distributed and autonomous approach for intercloud: 

consumer-to-provider negotiation and provider-to-provider negotiation. The novelty of the 

proposed multi-tier AFCN is the use of a fuzzy membership function to represent the 

preferences of issues such as imprecise QoS [28] (e.g., task completion time and price). During 

the negotiation, this information is shared step-by-step between negotiating agents through the 

iterative exchange of offers and counteroffers. This added information sharing is of critical 

importance for the effectiveness of distributed coordination because it not only reveals the 

opponent’s behavior preference but can also specify the possibilities prescribing the extent to 

which the feasible solutions are suitable for the agent’s behavior. Moreover, this information 

can pass and guide each tier of negotiation to generate a more favorable proposal, which 

enforces global consistency for improving the integrated solution capacity in the intercloud. 

The experimental results demonstrate that the proposed multi-tier AFCN mechanism 

outperforms other agent negotiation models and gives full play to the efficiency and scalability 

of intercloud in terms of the level of satisfaction, the ratio of successful negotiation, the total 

revenue of PAs, and the buying price of unit cloud resources in the intercloud market. 

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 

describes our formulation of the negotiation of the intercloud problem and presents our 

proposed multi-tier AFCN model for intercloud. Section 4 describes the detailed process of 

AFCN. Section 5 evaluates the performance of our AFCN model and Section 6 concludes. 

 



 

2. Related works 

 The intercloud refers to a mesh of clouds acting as an interconnected global “cloud of 

clouds” that is viewed as the natural evolution of a single cloud computing pattern [29]. The 

vertical supply chain and horizontal federation are two important kinds of intercloud models 

[30] shown in Figure 2. The model of a vertical supply chain supports interconnection among 

clouds at different levels of cloud stack layers (e.g., SaaS to IaaS), and this model may establish 

the settled federation based on prior agreements [31] without a competitive relationship. The 

model of horizontal federation provides the interconnection among clouds of the same layer 

(e.g., IaaS to IaaS), and different cloud providers in the horizontal federation dynamically 

establish ad hoc cooperative partners with competitive relationships [11].  
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Figure 2: Intercloud market 
In such an intercloud environment, the market for trading arbitrary cloud services can be 

supported based on the SLA. With SLAs, consumers have more flexibility to switch among 

multiple providers [2], while providers can effectively change to another deployment service 

to meet the customer needs [32]. An SLA defines the QoS parameters [33], which include the 

functional and nonfunctional properties of cloud services. Functional properties detail what is 

offered. For instance, Amazon S3 provides storage services, Amazon EC2 offers computing 

services, and Microsoft SQL Azure (SQL Azure) provides database services. If functional 

properties fail, cloud consumers’ requirements cannot be fulfilled. In contrast, nonfunctional 

properties detail how well a service is performed. For instance, Amazon S3 guarantees “a 

monthly uptime percentage of at least 99.9% during any monthly billing cycle”. Here, an 

availability of at least 99.9%, which is one of the important nonfunctional properties of cloud 



 

services, is promised. QoS parameters are related to the cloud service layer (SaaS, PaaS, IaaS), 

except for generic issues such as price and contract period. The CPU capacity, memory size, 

and response time are negotiated for IaaS service; the integration, scalability and number of 

licenses are negotiated for PaaS service; and for SaaS service, the issues involve reliability, 

usability and availability. 

Currently, the two main categories of methods used to solve the service selection or service 

provisioning problem for intercloud are centralized and distributed methods. With centralized 

methods, such as genetic algorithms (GAs), ant colony optimization, and simulated annealing, 

one coordinator or broker [6,25,34] controls and decides the resource provisioning process in 

the sense that full information sharing is often needed to achieve a near-optimal solution. Wen 

et al. [35] adopted GAs to dynamic partition scientific workflows over federated clouds to 

optimize the costs. Anastasi et al. [36] proposed a genetics-based broker to find the near-optimal 

solution to satisfy various QoS requirements of cloud consumers, that can scale up with 

hundreds of providers in the intercloud. Zhang et al. [37] adopted the ant colony algorithms and 

complex network theory in open cloud computing federations to realize load balancing in a 

distributed system. However, centralized methods encounter great difficulties in offering 

sophisticated decision making and cannot address the intercloud scenario for the distributed 

service provision problem. Because these cloud providers are independent separate entities, 

each cloud provider prefers to achieve the optimal individual target, rather than the overall best 

performance of the entire system.  

For supporting multi-issues negotiation in the Cloud market, Patel et al. [38] proposed the 

double auction approach for improving the satisfaction degree of both sides. In the mobile edge 

cloud federation, Yadav et al. [39] proposed the profit maximized auction approach for the 

efficiency in price model. These agents bid for items and an additional trusted broker agent 

called auctioneers evaluate bids and determines the negotiation process by soliciting sensitive 

strategic information from both sides of negotiator. These auction models are typically broker 

negotiation models, a third-party broker agent of broker model (i.e., auction-based model uses 

auctioneer agent) is used for solving conflicts among participant agents. However, a major 

problem with these approaches is that they are essentially centralized scheduling methods and 

often require sharing strategic information that would not be revealed to opponents or even to 

a broker agent, which central entity arises the trust risk and becomes a bottleneck that hinders 

problem solving.  

On the other hand, the agent-based approach, which is characterized by decentralized 

computation and information processing, is more efficient, flexible, and adaptable to the 



 

intercloud market. An agent acts in pursuit of its party's own best interests but also seeks to 

cooperate with other agents to reach an agreement. When conflicts occur, agents use negotiation 

to relax, reconfigure, or compose the demand until a compromise is reached or negotiations are 

terminated. Hassan et al. [31] and Ayachi et al. [40] proposed the agent-based cooperative 

game-theoretic solution that is mutually beneficial to cloud providers in horizontal dynamic 

cloud federations, shows better performance for resource allocation and requires minimal 

computation time. Sim [3] proposed an agent-based economic model for analyzing two-tier 

negotiation in the dynamic intercloud: consumer-to-provider negotiation and provider-to-

provider negotiation. The negotiation among providers is modelled as a coalition game for 

reaching Nash equilibrium. These game approaches assume that each agent has full knowledge 

of the space of possible deals and the fixed strategies and knows how to evaluate them, which 

is not appropriate for the decentralized intercloud environment.  

Similar to the agent-based model of Sim [3], Siebenhaar et al. [41] proposed a multi-tier 

cloud negotiation model and adopted the time-dependent bargaining model to increase the 

flexibility for complex resource provisioning in a vertical cloud federation. Time-dependent, 

resource-dependent, and behavior-dependent models are three common types of bargaining 

strategies and described by [21,42]. These negotiation models exchange offers and 

counteroffers interactively to search for an agreement between the two sides. Dastjerdi et al. 

[21] and Zulkernine et al. [43] applied the time-dependent strategy for SLA negotiation. Wu et 

al. [20] and Sim [3] proposed an automated negotiation model that takes both time and market 

factors into account to address the dynamic cloud market environment. In the intercloud, 

Omezzine et al. [14], Adabi et al. [44] and Shojaiemehr et al. [45] proposed mixed strategies of 

time, market and behavior agent negotiation to enhance the success rate and satisfaction level 

of agents, which take the opponent’s behavior into account and the agents’ behavior of making 

concessions is based on post-negotiation data recording.  

These approaches allow negotiating agents to ensure their satisfaction and avoid the risk 

of conceding everything to the opponent, thereby increasing their chances of achieving their 

optimal goals. However, currently, bargaining agents resolve conflicts through continued 

concessions until the value of issues overlaps or no further solutions can be found because the 

agent exchanges the uncertain and incomplete proposal information without the agent’s 

preference or utilities.  

The proposed two-tiered AFCN model provides a unified framework and uses the fuzzy 

constraint not only to represent the QoS requirements that must be satisfied but also to specify 

the extent to which the solutions are suitable for both sides. This information effectively helps 

the negotiation to arrive at a consensus solution and gives full play to the efficiency and 

scalability of intercloud. Table 1 presents a summary of the aforementioned approaches. 



 

Table 1: Summary of the aforementioned approaches. 

 
Work Behavior 

model 
Distributed 
model 

Multi-tier 
model 

Negotiation strategy Negotiation 
protocol 

Optimality evaluation metric 

Wen et al. [35] GA     cost 
Anastasi et al. [36] GA     cost，scalability 

Zhang et al. [37] Ant 
Colony 

    load balancing, scalability 

Patel et al. [38]  √   double auction success rate, profit 
Yadav et al. [39]  √   auction the level of satisfaction, profit 
Hassan et al. [31] and 
Ayachi et al. [40]  

Game √    cost, profit, the level of satisfaction, 
scalability 

Sim [3] Game √ √ time, market bargaining success rate, the level of satisfaction 

Siebenhaar et al. [41]  √ √ time CNP the level of satisfaction 

Dastjerdi et al. [21]  √  time bargaining profit, the level of satisfaction 

Zulkenine et al. [43]  √  time bargaining the level of satisfaction 

Wu et al. [20]  √  time, market bargaining cost, the level of satisfaction 

Omezzine et al. [14] GA √ √ time, market and behavior bargaining profit, the level of satisfaction, 
success rate 

Adabi et al. [44]  √  time, market and behavior bargaining  

Shojaiemehr et al. [45]  √ √ time, market and behavior bargaining the level of satisfaction, negotiation 
speed 

This paper Fuzzy 
Constraint 

√ √ time, market and behavior bargaining profit, the level of satisfaction, 
success rate, scalability 



 

3. Intercloud Negotiation Model 
In the classic horizontal IaaS federation scenario, the cloud consumer (e.g., cloud end-user, 

enterprise application, cloud application) submits resource requests for task operation to the 

IaaS providers by specifying the service level objectives with service performances metrics 

such as completion time, and availability. According to the service requests of consumers, the 

provider provides access to virtual resources via a combination of CPU, memory, and storage. 

This paper focuses on a horizontal IaaS federation, wherein different cloud providers 

dynamically establish cooperative partners. If the provider in the IaaS federation cannot 

accommodate the service demand, the service can be outsourced to another provider. Thus, a 

cloud provider in a federation acts as both infrastructure provider and consumer.  

The intercloud environment is composed of some large-, medium-, and small-sized 

federations, even isolated cloud providers, which consist of a two-tiered negotiation model, as 

shown in Figure 3. In the CA-to-PA negotiation tier, the cloud consumer agent (CA) starts a 

negotiation process for cloud resources with the multiple provider agents (PAs). In the 

federation, a PA negotiating with a CA is named home PA (hPA), which will hide the internal 

information of the federation and can assemble cloud resources to provide a single access point 

of resources. When the hPA might not have sufficient resource capacity or experiences a need 

to provide high-cost resources to meet service requests, the hPA can negotiate for additional 

resource capacity with other federation members named foreign PAs (fPAs). In the hPA-to-fPA 

negotiation tier, each hPA simultaneously negotiates with multiple fPAs to establish federation 

SLA contracts that comply with all SLA requirements. The fPAs do not interact directly with 

the CA in the two-tiered negotiation process. However, the fPAs also act as hPAs to receive 

requests from the CA. Therefore, we assume that the hPA must hide the identity information of 

the CA in the hPA-to-fPA negotiation. If the negotiation is a success, a CA and PA pair will sign 

the consumer SLA contract, and the hPA will give notice to the selected fPAs to determine the 

final federation SLA.  
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Figure 3: Inter-cloud negotiation model 

In the decentralized intercloud environment, these agents are independent and have 

private interests and information; they make local decisions and reach a common satisfactory 

agreement based on agent negotiation. Meanwhile, these negotiating agents constitute a 

distributed two-tier network. Thus, a multi-agent system (MAS) model is developed to model 

the two-tier SLA negotiation problem (TSLAN) 

Definition 1. The TSLAN problem can be modeled as a MAS, ( , , , )CA PA I L , which is 

a 4-tuple where 

⚫ CA is a set of cloud consumer agents (CAs), each of which requests cloud service 

with a specified demand; 

⚫ PA is a set of cloud provider agents (PAs), each of which can benefit from selling 

services to the CA . There are three subsets of PA , =( )PA iPA hPA fPA . 

iPA are isolated cloud providers without any interrelations with other providers in 

the intercloud; the federation cloud providers of the home PAs, hPA , can not only 

offer their own service to the CA but also purchase services from the other federation 

members, which are foreign PAs, fPA ;  

⚫ I  is a set of interrelations between the consumer agent and provider agent PA ; 

each interrelation, i, j,sI , specifies a QoS metric, s , that needs to be negotiated 

between the 
th

i  CA, iCA , and the th
j PA, jPA .  



 

⚫ L  is a set of interrelations between hPA  and fPA ; each interrelation, p,q,oL , 

specifies an object, o , that needs to be negotiated between the th
p  hPA, phPA  

and the th
q  fPA, qfPA . 

According to Definition 1, the solution of TSLAN must satisfy all the constraints about 

the interrelation between I and L .  Therefore, agents must negotiate with each other to 

resolve conflicts about these constraints, and rational agents want a favorable integrated 

solution. The hPA , therefore, will play a critical role in reaching a satisfactory consensus for 

the TSLAN problem because it is the link between I and L .  

In fact, agent negotiation is naturally formulated by distributed fuzzy constraint networks 

to discover the agent’s intention for a common agreement. As shown in Figure 4, each agent 

participating in the negotiation can be represented as a fuzzy constraint network (FCN); 

negotiation among agents corresponds to constrained objects and the agent’s demands and 

preferences can also be represented by fuzzy constraints. Therefore, the proposed TSLAN 

problem can be described as a distributed fuzzy constraint satisfaction problem (DFCSP) 

interlinked by inter-agent constraints in that an agreement is reached that satisfies all constraints, 

resulting in a mutually satisfactory outcome. The distributed FCN (DFCN) formulates the agent 

negotiation in searching for a solution to the DFCSP. Meanwhile, the CA-to-PA and hPA-to-

fPA negotiations can be regarded as different tier of DFCN. 

Agent negotiationDFCSP

FCN

Object Object

FCN

Object Object

Agent

Preference

Issue

Preference
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Agent
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Issue
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constraint

external 

constraint

constraintconstraint

external 

constraint

external 

constraint
Negotiation Negotiation

constraintconstraint

constraintconstraint constraintconstraint

 

Figure 4: Agent negotiation formulated by the DFCSP 

 

Definition 2. A DFCN, ( , , )U X C , in an MAS, ( , , , )CA PA I L , can be defined as a set 

of FCNs, 1 2{ , , , }n
N N N [46,47], where 



 

⚫ U  is the universe of discourse for the entire DFCN; 

⚫ ( )k=X X  is the set of all non-recurring objects in DFCN, while kX  is a tuple of 

non-recurring objects of the 
th

k  agent;  

⚫ ( )k=C C  is the set of all fuzzy constraints about the objects X  in DFCN, and 

kC  is the set of fuzzy constraints that involves a set of internal or external fuzzy 

constraints among objects in kX  . The external fuzzy constraints of the first-tier 

agents are interrelated with I , while the external fuzzy constraints of the second-tier 

agents are interrelated with L ; 

⚫ ( , , )k k k k= U X CN  represents the th
k  agent is connected to other FCNs by a set of 

external constraints of kC , while kU  is the universe of discourse for an FCN. 

The set of non-recurring objects, kX , of the th
k  agent represents its beliefs, including 

the agent’s attributes (e.g., the QoS metrics) and the knowledge of the environment (e.g., market 

conditions and negotiation time). The set of fuzzy constraints, kC  , for the th
k   agent 

corresponds to a set of restrictions (e.g., budget constraints, QoS preferences, resource capacity, 

and cost constraints). Moreover, the linking agent, hPA, has different beliefs and constraints for 

different tiers of negotiation; for example, the hPA wants the maximum revenue from the CA, 

and on the other hand, it aims to achieve the minimum payment for fPA.  

Definition 3. According to Definition 2, the solutions to an FCN, k
N  , represent the 

intentions of the agents, written as k
N

, and defined as follows. 

( )1 ... ...k

k k k

i m = C C C
N  (1) 

where for each constraint k k

i C C , k

iC  is the cylindrical extension in the space kX . k
N

 

is an n-array fuzzy possibility distribution for objects kX  that satisfies fuzzy constraints kC . 

Meanwhile, k 
N

 is an level −  cut of k
N

, that can be regarded as a set of solutions 

satisfying all constraints kC  that are greater than or equal to an acceptable threshold  . If 

k  = 
X , it is over constrained with no solutions, and the agent will adjust the threshold   

and use fuzzy constraint relaxation to reconfigure the ranges of the constraints to create new 

feasible solutions, thereby moving toward a satisfactory consensus solution for all constraints 

in DFCN. 

 

4. Negotiation Model of a Two-Tiered AFCN 

The two-tiered AFCN model considers each tier of negotiation behavior between the CA 

and PA or between the hPA and fPA, and provides the main decision-making functionality. First, 



 

agents evaluate the offers or counteroffers and decide whether to accept them. If the solution 

cannot be accepted by the agent, concessions are calculated through the opponent's responsive 

state and the intention. Then, a set of feasible solutions are generated with a lower intention by 

the decision behavior, and a prospective solution is selected as a new offer/counteroffer. The 

exchange of offers/counteroffers continues until the termination conditions are met (e.g., the 

achievement of consensus or failure).  

 

4.1 Behavior of the First-Tier Agent 
During the first-tier negotiation, CAs start negotiation requests by proposing an ideal offer 

for cloud resources to the corresponding PAs. Then, CAs and PAs continuously exchange offers 

and counteroffers until the negotiations terminate. The behavior of the agent involves the 

following steps: solution evaluation, concession calculation, feasible solution generation, offer 

generation, and negotiation termination. 

Step 1: Solution evaluation 

An agent’s preferences are captured by a utility function based on utility theory. The utility 

function is formally defined by the aggregated satisfaction value (ASV). The ASV represents 

the preference over the combination of objects in the agent, and is transferred into a utility value 

that is used to evaluate the satisfaction of solution S   to decide if an agreement has been 

reached or concession is necessary. The ASV of solution S  for the th
k  agent is defined as 

follows.  

1

1
( )INk

l ll
I

F w
N =

 = (S) S  (2) 

where ( )lF S  is the fuzzy membership degree of the th
l  issue of the solution, S , a IN  is 

the total number of issues that need to be negotiated and lw   is their respective weighting 

factors. The fuzzy membership function helps the agent flexibly estimate imprecise preferences 

about individual or combinations of multiple issues. 

Step 2: Concession calculation 

The concession strategy is used to calculate the concession to generate a new threshold 

with a lower intention toward a consensus. The concession strategy takes into account one’s 

own satisfaction degree, the response degree by the opponent, the time factor, and the market 

factor [48,49]. These four factors are defined as Satisfaction, Response, Time, and Market.  

Satisfaction: The current solution is evaluated by the ASV and is regarded as the 

satisfaction degree, which is the accepted threshold of intention k 
N

. Given the solution S  

from the last offer for intention k 
N

, the satisfaction value ρ  is defined by the ASV as 



 

follows: 

(S) =   (3)  

Response: The opponent responsive degree δ  is regarded as the opponent’s belief about 

the offer A  and the opponent’s counteroffer B  and is defined as follows.  

1

1 ,

( , ) ( , )
1 ( )

( , )
n n n n

n t n

D Dδ
D

−

−

−
= −

A B A B

A B
 (4) 

where 1n−A  is the offer of the previous round. nA  and nB  are the offer and counteroffer 

of the current negotiation round, respectively. The distance measure ( , )D A B  is associated 

with the offer and counteroffer over the set of issues and is defined as follows: 

2

1

1
( , ) ( , )IN

l ll
I

D G C C
N =

=  A BA B  (5) 

where G  is the distance measure of two fuzzy sets, which are the possibility distributions of 

the offer A  and counteroffer B  for each negotiation issue of the agent. Euclidean distance 

is often adopted as the distance measure. lC
A  is the fuzzy constraint of the th

l  issue to offer 

A , and lC
B  is the fuzzy constraint of the same issue to counteroffer B . 

Time: The time constraint is the negotiation environment limit. The polynomial function 

proposed by [42] is used and defined as follows: 

1

max

(1 )( )
n

r q q
n

= + − β  (6) 

where the variable n  is the current round of negotiation and 
maxn  indicates the deadline of 

the negotiation process. Parameter   is the used to control the slope, and q  is a constant, 

that defines the initial concession at the beginning of the second-tier of negotiation ( = 0n ). 

Market: The market factor   represents the market conditions, and is defined as follows: 

n

n

 =
D

D
 (7) 

where nD   is a distance function ( , )D A B  between the offer and counteroffer in the th
n  

negotiation round and nD  represents the average distance value among all past negotiations. 

An agent’s satisfaction level represents the current agent’s intention, the opponent's 

responsive state reveals the opponent's behavior preferences, and the market environments are 



 

negotiation knowledge available for perceiving and reasoning. Then, the agent calculates the 

concession   as follows:  

( ( ) ( ) ( ) ( ))r r         =   ρ  (8) 

where ( ) ρ , ( )  , ( )r r  and ( )   denote the desire for a concession according to the 

satisfaction value, the response degree of the opponent, time constraints, and market influence.  

Then, the agent can determine the new behavior state 
* , which is defined as follows:  

*  = −   (9) 

Accordingly, an agent generates feasible solutions and presents a new perspective solution, 

which is limited by the new behavior state 
* . 

Step 3: Feasible solution generation 

Given the intent * k


N
 of the agent with the *  level cut, the task of generating a set 

of feasible solutions P  is defined by  

*

*{ | ( ) ( ( ) )}k

k


 =      P S S S

N
 (10) 

The set of feasible solutions P  is gradually explored in a partial solution space which 

allows agents to exploit rational trade-off space among different issues, rather than a single 

point value or re-exploring proposals over the whole solution space. This approach ensures that 

agents move toward an agreement efficiently and effectively.  

Then the agent generates the best offer by selecting the most appropriate solution 

according to the latest counteroffer B  of the opponent and the feasible solution set P . An 

appropriate measure function is denoted as follows. 

2

1

1
( , ) (min( ( ) (1 ( , ))))IN

l l ll
I

T F G C C
N =

=  −S B S A B   (11) 

where ( )lF S  is the fuzzy membership function of the th
l  issue of the solution S . lC

A  and 

lC
B  are the possibility distributions for the offer A and counteroffer B  over the constraint of 

the th
l issue, respectively. Then, the solution with the maximum appropriateness *S  is 

proposed by ranking the feasible solutions P , as follows. 

* max( ( , )| )T= S S B S P  (12) 

However, if the agent achieves an additional solution from the second-tier, the agent must 

be integrated into the first-tier negotiation solution, and the maximum appropriateness solution 



 

*S of the first-tier is proposed by ranking the feasible integrated solutions of the two tiers, as 

follows. 

* *max( ( , )| )T=  S S S' B S P  (13) 

where *S'  is the appropriate solution for the second-tier.  

Step 4: Offer generation 

To generate a new offer 
* * * * *

1 2( , ,... ,..., )
Xp N=A A A A A  over the set of objects kX  about 

the XN  number of objects. Each element 
*
pA  is the marginal particularized possibility 

distribution in the space kX  and is defined by [46] as follows. 

1 2 1 1

* Proj ( ... ... )k k k k k k
p p p p+ NX

tP
−

=     
X X X X X X

A  (14) 

where k
p


X  is the cylindrical extension of k

p


X  in the space kX . 

Step 5: Termination 

During the negotiation process, negotiated agents exchange offers and counteroffers until 

either one negotiation succeeds in reaching an agreement or all negotiations fail to find a 

solution. Then, successful negotiation occurs if the ASV of counteroffer B  or the ASV of 

next round offer *S  exceeds the threshold. Negotiation success can be defined as follows. 

* * *( ) or ( )    S B  (15) 

Otherwise, negotiation fails if the solution is empty or the negotiation resource are 

exhausted such as if the threshold is less than 0 or the negotiation time runs out. 

* *or 0=  S  (16) 

4.2 Behavior of the Second-Tier Agent 
The behavior of first-tier agents will affect and guide the behavior of second-tier agents, 

meanwhile, the results of second-tier negotiation can affect the outcome of upper-tier 

negotiation. In other words, the hPA links the first tier and the second tier, so the two-tier 

negotiation is not independent. Therefore, the behavior of the hPA plays a critical role in 

achieving a better TSLAN outcome.  

During the course of second-tier negotiation, the hPA firstly should first pay attention to the 

dynamic behavior of the CA and flexibly form a dynamic set of objects with the expected 

constraint in the second-tier negotiation space. For the hPA-to-fPA negotiation, the hPA can use 

the average distance function ( , )D A B  to measure any object that needs to be negotiated in 

the second-tier, and the selected objects k'X  are defined as follows:  



 

 | ( , ) ( , )k' k

l l lD C C=  A BX X A B G  (17) 

where G  is the distance measure of two fuzzy sets, which are the possibility distributions 

of the offer and counteroffer. lC
A  is the constraint of the issue l  for A  from the first-tier 

negotiation and lC
B  is the constraint of the same issue for counteroffer B .  

The constraint k'
C  for the objects k'X  must consider the own desire and opponent’s 

belief from the first-tier, as follows. 

 |k' k' k'

l l l lC C C C C= = A B  (18) 

Then, the hPA can start the second-tier negotiation with the fPAs in the federation. In 

addition, the fPAs regard requests from the hPA as having lower-priority demand than the 

requests of CAs because the second-tier negotiation always launches after the PAs schedule 

the requests of CAs. The behavior of the second-tier agent includes the following steps: 

concession calculation, feasible solution generation, and negotiation termination. 

Step 1: Concession calculation 

The negotiation result of the first-tier determines the final outcome and guides the 

second-tier negotiation behavior of the agent; for example, the market environment is 

affected by the consumer’s demand and the whole federation’s resource supply, and the 

response from the second-tier agent aims to satisfy the end consumer’s demand. Therefore, 

the behavior of the second-tier agent must incorporate the belief about the concession factors 

from the first-tier and the current-tier negotiation environments to generate the second-tier 

margin of concession ' , defined as follows.
 

' ( ( ') ( ') ( ') ( '))r r r            =       ρ  (19) 

where ' , ' , 'r  and '  represent the satisfaction, response, time, and market factor of the 

second-tier. The second-tier negotiation environment in the federation cloud results in different 

concession factors, such as the market factor being influenced by the internal market of the 

federation.  

 

Step 2: Feasible solution generation 

Furthermore, the rational behavior of hPA needs to contribute to a better-integrated 

appropriateness solution. Therefore, the set of second-tier feasible solutions P'   should not 

only explore the second-tier solution space, but also aim for a better-integrated solution for the 

CAs. The feasible solution P'  is defined as follows.  

*

* * *

'
{ | ( ) ( ' ( ) ') ( ' )}k'

   =        P' S S S
N

 (20) 



 

where the set of feasible solutions P'  of the second-tier not only satisfies the threshold of the 

second-tier but also expects the satisfaction degree to be larger than the behavior state of the 

upper tier.  

 

Step 3: Termination 

 The termination of the second-tier is only suspended, while the final result needs to wait 

for the CA’s notice. Therefore, when the second-tier negotiation succeeds in reaching an 

agreement, the fPA does not need to deploy the cloud service in time. In addition, even if all 

negotiations fail in this second-tier negotiation, the hPA may start a second new negotiation 

with these fPAs during the next round of the first-tier negotiation. 

 The final success for the second-tier negotiation can be defined as follows.  

* * * * * *( ( ) or ( ) ) And ( ( ) or ( ) )          S B S' ' B' '  (21) 

Otherwise, the negotiation of the second-tier negotiation fails. 

 

Figure 5 shows the complete two-tiered behavior of the various types of agents. The 

two-tiered SLA negotiation is more complex because the hPA needs to collaborate with 

multiple fPAs simultaneously. During the process of negotiation, each agent owns its own 

behavioral process with respect to receiving the proposal and returning the counterproposal 

and uses individual desires to guide the negotiation behavior. Normally, the agent receives a 

proposal from the corresponding agents and then evaluates the solutions using Eq. (2). If 

consensus exists, the agent terminates the negotiations with the successful state using Eq. 

(15). Otherwise, the agent will make a concession and generate a set of feasible solutions P  

using Eq. (10) based on the relaxed new behavior state. This new behavior state is guided by 

the desire related to the satisfaction level ρ  in Eq. (3), the opponent’s responsive state δ  

in Eq. (4), the time factor r  in Eq. (6), and the market factor   in Eq. (7). Then, the agent 

proposes a new prospective solution *S  using Eq. (12) based on the counteroffer. Finally, 

the new solution is translated into a new offer *A   using Eq. (14), which is sent to the 

corresponding agents. 

In addition, the behavior of the hPA is related to the dual behavior: the hPA waits for the 

offer and utilizes its own resources to immediately answer the request of the CA and also 

generates a second-tier offer for renting services from multiple fPAs if its own capacity is not 

sufficient or if the utilization of its own capacity is not favorable based on the agent’s intention. 

The hPA links the first tier and the second tier and must share information in the second-tier 

negotiation, such as desire, behavior state, own solution, and state of termination from the first-

tier, as represented by the dotted line in Figure 5. During the second-tier negotiation process, 



 

initially, the hPA determines the issues to negotiate and the constraints using Eq. (17) and Eq. 

(18), which are translated into the initial offer of the second-tier negotiation, and sent to the 

multiple fPAs. Then, the agent makes a concession based on Eq. (29), that considers all the 

factors of the two tiers. Based on the new behavior state, new feasible solutions are generated 

using Eq. (20). Finally, the agents terminate negotiation in the temporary successful or failed 

state and await the final result from the first-tier negotiation. However, if any consensus solution 

is agreed upon, the second-tier solution needs to be integrated into the first-tier negotiation 

solution, and the agent generates the appropriate solution using Eq. (13) rather than Eq. (12).   

Beliefs

Foreign 
PAs

Feasible Solution 
Generation

Feasible Solution 
Generation

A Common 
Consensus

Offer GenerationOffer Generation

Exit 
Solution 

Successful 
State

Successful 
State

Failure 
State

Failure 
State

Yes

Yes

Concession CalculationConcession Calculation

Solution EvaluationSolution Evaluation

No

CAs

offer

counter-offer

Second tier offer 
Generation

Second tier offer 
Generation

Second tier solution 
Evaluation

Second tier solution 
Evaluation

Second tier concession 
Calculation

Second tier concession 
Calculation

Second tier feasible 
Solution Generation

Second tier feasible 
Solution Generation

A Common 
Consensus

Opponent 
Response

Enviroment

Internal 
State

Second tier 
Solution 

Integration 

Second tier 
Solution 

Integration 

Second tier 
solution 

generation

Second tier 
solution 

generation

Second tier
counter-offer

Second tier 
offer

No

Exit 
Solution 

Failure 
State

Failure 
State

No

Yes

No

Second tier

 Beliefs 

Opponent 
Response

Enviroment

Internal 
State

Desires

Behavior 
Strategy

Behavior 
Derermination

Second 

tier 

Desires

Behavior 
Derermination

Behavior 
Strategy

Behavior 
State

Behavior
 State

First tier behavior Second tier behavior 

Successful 
State

Successful 
State

Yes

Figure 5: Negotiation behavior of the two-tiered AFCN 

 

4.3 Negotiation Protocol of the Two-Tiered AFCN 

The negotiation protocol defines the common rules, communication messages, and 

communication sequence that govern the interaction between negotiating parties. The messages 

follow the standard of FIPA-ACL [50] (Foundation for Intelligent Physical Agents-Agent 

Communication Language) because its formal semantics and specifications of interaction can 

be used relatively easily to represent the fuzzy concept. 

Figure 6 shows the sequence diagram of the negotiation process. The negotiated PA acting 

as the hPA splits the negotiation into two-tiered negotiations between multiple CAs and multiple 

fPAs. The CA-to-PA negotiation process is related to the hPA-to-fPA negotiation process to 



 

synchronize the communication sequence until the hPA-to-fPA negotiation is complete. To 

avoid negotiation loops, we assume the fPA does not transmit the offer from the hPAs to start a 

new hPA-to-fPA negotiation. In the CA-to-PA negotiation tier, the communication protocol can 

send the following six messages: CFP (call for proposal), Propose, Agree, Refuse, Accept, 

Reject, and Cancel. In the hPA-to-fPA negotiation tier, the communication protocol adds the 

Inform and Failure messages. The Inform message indicates that the hPA agrees with the 

counteroffer proposed by the fPA, while the result of the negotiation must wait for the CA’s 

determination. The Failure message notifies the fPA that the result of the negotiation is a failure 

when the hPA receives the Cancel message from the CA. 

At the beginning of a negotiation, the CA generates an initial offer and proposes a CFP 

message to the corresponding PAs to request cloud resources. Each PA evaluates the offer and 

may act as an hPA to dispatch the sub-offer and proposes a new CFP message to the fPAs for 

outsourcing. Before the hPA proposes a Propose message to the CA, it needs to make a 

counteroffer based on the results of all hPA-to-fPA negotiation. During the process of 

negotiation, the CA continuously bargains with multiple PAs through interactive Propose 

messages, in addition to bargaining between the hPA and fPA. Afterward, the Agree message 

from the fPA informs the hPA that a successful deal has been made, and the hPA can send the 

Inform message to the selected fPA to indicate that the result of the negotiation must wait for 

the CA’s information. Thus, each PA finally proposes an Agree or Refuse message to the 

corresponding CA, and the CA selects the optimal counteroffer from the PA that agreed with 

the deal and sends an Accept message to the PA. Moreover, the CA sends a Cancel message to 

the other candidate PAs, and the hPA transmits the result of the negotiation and sends an Accept 

or Failure message to the corresponding fPAs. Accordingly, agreements are reached across two 

tiers by means of the negotiation of each independent agent. 
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Figure 6: Negotiation protocol of the two-tiered AFCN 

 

5. Performance Evaluation 

To evaluate the performance of the proposed two-tiered AFCN model in the intercloud, 

experiments were implemented using the JADE (Java Agent Development Environment) 

platform, which is currently the most popular platform for developing MAs. Moreover, 

CloudSim [51], which is an appropriate toolkit to provide a comprehensive simulation basis 

that enables an on-demand model to perform an experiment for necessary facilities, parameters, 

and conditions related to evolving intercloud infrastructures [52,53], was used as a cloud 

simulation platform.  

In the simulation environment, there are ten IaaS providers, and each provider data center 

comprises 120 heterogeneous PMs. Each PM is modeled to have 10 CPU cores and 32 GB of 

RAM and 2 TB of storage. Specifically, the CPU performance for the first group of 30 PMs is 

set to 1000 million instructions per second (MIPS); the performance for the second group of 30 

PMs is set to 2000 MIPS, and the performance for the final group of 30 PMs is set to 4000 



 

MIPS. For example, the Amazon Elastic Compute Cloud (EC2) delivers different types of 

instances characterized by the size of the CPU (i.e., small, medium, or large).  

The consumer submits resource requests to the simulated data center for task operation. 

Each request runs with a varied workload, which is modeled to generate a CPU load according 

to a uniformly distributed random variable with 1000-40000 MIPS and a performance 

completion time according to a uniformly distributed random variable ranging between 10 and 

20 minutes.  

Ten negotiation rounds are allowed and the negotiation is terminated with a failure if no 

agreement is reached. CAs and PAs have sufficient time to complete negotiation within 6 

rounds in all experiments. The results are validated with a z-test, which shows that some 

experiments must be repeated at least 100 times to guarantee that the difference between the 

means is not significant (i.e., the value of p > 0.05). Therefore, for all experiments, 150 

instances were randomly generated to assess the performance in each experiment.  

To evaluate the performance of the two-tiered negotiation model in the intercloud market, 

the efficiency of negotiation, such as a high degree of satisfaction and more agreement being 

reached for the negotiators is the most important property of the global outcome [54]. Thus, 

efficiency involves the combined ASV, and the ratio of successful negotiation, which is 

typically selected in the most previous research [21,43,55]. In addition, for the private interests, 

the consumer agents aim to minimize the buying price, whereas the provider agents aim to 

maximize revenue [56]. Thus, the local optimality of each agent is another desirable property 

and is domain-specific.  

Moreover, since the demand and supply of the intercloud market can affect the 

performance of the negotiation model, scalability is an important feature in the intercloud 

market. The agent negotiation model should be designed to enlarge the scale of the cloud market 

or federation cloud. In addition, it should guarantee the best efficiency in matching the 

consumer’s demand and provider’s supply. 

5.1 Performance Comparisons among Different Negotiation Models  

Li [48] adopted the one-tiered AFCN for SLA negotiation in the traditional cloud market 

and outperformed other agent-based approaches, so we use that approach as a benchmark when 

we investigate the performance of two-tiered negotiation models. For the intercloud market, to 

evaluate the impact of the negotiation models and prove that intercloud can deliver better 

service quality, the performance of two-tiered AFCN model (denoted as AFCN-AFCN) is 

compared with that of typical bargaining models used in the case of two-tiered SLA negotiation, 

including the model that considers the time factor proposed by Dastjerdi et al. [21], denoted as 

T-T, the model that considers the time and market factors proposed by Wu et al. [20], denoted 

as T_M- T_M, and the model that considers time, market and behavior factors proposed by 

Omezzine et al. [14] denoted as T_M_B- T_M_B.  



 

All these bargaining models take into account the time factor, and their time-dependent 

concession strategies are similar. To compare the rationality of the bargaining model, we select 

the same polynomial decision function, 1

max

(1 )( )
r

t q q
r

= + − , to determine how the values of 

an issue are automatically adjusted by the agents based on the time factor.  

Figure 7 shows the average combined ASV derived from successful negotiation with an 

resource demand/supply ratio increasing from 0.1 to 1.5. The maximal average combined ASV 

is 2 (namely, the ASV of the CA is 1, and the ASV of the PA is 1). The average combined ASV 

decreases with an increasing resource demand/supply ratio because PAs have fewer available 

resources to satisfy the specific request from the CA. Moreover, the two-tiered AFCN-AFCN 

model in the federation cloud achieves the highest average combined ASV. The models that 

include behavior factors (AFCN-AFCN and T_M_B- T_M_B) in the federation always achieve 

a higher average combined ASV than that achieved without federation negotiation experience 

in the one-tier AFCN model. However, the T-T model achieves a lower average combined ASV 

than that achieved by the one-tier AFCN model because the time model achieves the worst 

solution for negotiators due to the substantial oscillation and excessive concessions when an 

agreement is approached. Moreover, when the demand/supply ratio varies from 1.2 to 1.5, the 

T_M-T_M model achieves a lower average combined ASV than the one-tier AFCN model 

because when the demand exceeds the supply, the PAs of the federation keep their ASV to 

maximize their profit, thereby reducing the collaboration. 

  

Figure 7: Average combined ASV for different negotiation models 

Table 2 shows the satisfaction level achieved by the CA or PA gained respectively. As the 

demand/supply ratio increases from 0.1 to 1.5, the AFCN-AFCN model achieves a better ASV 

for the CA or PA than the other models used in the same tier negotiation. The T-T model is a 
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fairer negotiation model, and the concession rates of CA and PA are similar due to the same 

time in the negotiation at which an agreement is reached. The models involving the market 

factor (T_M, T_M_B, and AFCN models) are influenced by variation in the resource 

demand/supply ratio. When the demand is less than the supply, the PAs reduce their ASV to 

strive for a successful negotiation; when the demand is greater than the supply, the PAs will 

raise their ASV to maximize their profit.  

 



 

Table 2: Inequality degree between the CA and PA for different negotiation models  

Demand 

/Supply 
ratio 

T-T T_M-T_M T_M_B-T_M_B AFCN-AFCN 

CA PA Inequality CA PA Inequality CA PA Inequality CA PA Inequality 

0.1 0.717 0.716 0.001 0.730 0.711 0.019 0.736 0.718 0.018 0.737 0.726 0.011 
0.2 0.717 0.716 0.001 0.728 0.712 0.016 0.735 0.718 0.017 0.736 0.726 0.010 
0.3 0.716 0.716 0.000 0.725 0.714 0.011 0.731 0.720 0.011 0.732 0.728 0.004 
0.4 0.716 0.715 0.001 0.723 0.715 0.008 0.727 0.723 0.004 0.730 0.729 0.001 
0.5 0.714 0.714 0.000 0.721 0.716 0.005 0.726 0.723 0.003 0.729 0.729 0.000 
0.6 0.714 0.713 0.001 0.715 0.722 -0.007 0.722 0.726 -0.004 0.727 0.731 -0.004 
0.7 0.713 0.712 0.001 0.712 0.723 -0.011 0.719 0.727 -0.008 0.725 0.732 -0.007 
0.8 0.713 0.712 0.001 0.709 0.725 -0.016 0.717 0.729 -0.012 0.721 0.733 -0.012 
0.9 0.712 0.711 0.001 0.704 0.728 -0.024 0.712 0.732 -0.020 0.718 0.734 -0.016 
1.0 0.710 0.709 0.001 0.700 0.729 -0.029 0.704 0.737 -0.033 0.711 0.739 -0.028 
1.1 0.707 0.706 0.001 0.688 0.732 -0.044 0.699 0.739 -0.040 0.705 0.740 -0.035 
1.2 0.702 0.702 0.000 0.678 0.736 -0.058 0.691 0.741 -0.050 0.697 0.741 -0.044 
1.3 0.697 0.696 0.001 0.669 0.736 -0.067 0.684 0.742 -0.058 0.691 0.743 -0.052 
1.4 0.692 0.692 0.000 0.654 0.738 -0.084 0.677 0.742 -0.065 0.685 0.744 -0.059 
1.5 0.688 0.687 0.001 0.646 0.736 -0.090 0.670 0.742 -0.072 0.677 0.744 -0.067 

 



 

Figure 8 shows that the ratio of successful negotiations decreases as the demand/supply 

ratio increases from 0.1 to 1.5. When the demand/supply ratio varies from 0.1 to 0.8, the success 

ratio is greater than 0.90 for all negotiation models with sufficient resources. Again, the AFCN-

AFCN model achieves a higher success ratio than the two-tiered Time, T_M, and T_M_B 

models. However, as Figure 8 shows, the one-tiered AFCN model achieves a higher success 

ratio than the T_T model and T_M-T_M model. Market factors (e.g., the opportunity and 

competition factors) significantly affect the behavior of the T_M model, and the members of 

the federation become competitive in sharing resources, which result in less successful 

negotiation in the federation.  

  

Figure 8: Success ratio for different negotiation models 

 

Figure 9 shows that the buying price per unit resource of the CAs increases gradually as 

the demand/supply ratio increases from 0.1 to 1.5 because PAs can allocate fewer resources and 

experience increased costs. Again, the AFCN-AFCN two-tiered negotiation model achieves the 

lowest price per unit resource of the CAs and outperforms the other models for demand/supply 

ratios from 0.1 to 1.5. However, when the demand/supply ratio varies from 0.6 to 1.5, the T_M-

T_M model achieves a higher buying price than the one-tier AFCN model. Furthermore, the T-

T model achieves the highest price per unit resource.   
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Figure 9. Buying price for different negotiation models 

 

Figure 10 shows the average revenue of the PAs derived from successful negotiations as 

the demand/supply ratio varied from 0.1 to 1.5. As indicated in Figure 10, the AFCN-AFCN 

model outperforms the other models in terms of average revenue. Additionally, the T_M-T_M 

model achieves a higher average revenue than the T_M_B-T_M_B model when the 

demand/supply ratio varies from 1.3 to 1.5. 

 

Figure 10: Average revenue of PAs for different negotiation models 

 

Thus, a one-tiered AFCN can achieve a higher average combined ASV than the T-T model 
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intercloud efficiency because these models resolve conflicts through continued concessions 

until the values of issues all overlap and further possible solutions cannot be found.  

The market-driven agents within the T_M, T_M_B, and AFCN models are utility-

maximizing agents, an agent seeks its own interests based on making minimally sufficient 

concessions [57]. However, the T_M model focuses on the numbers of competitors and patterns 

to represent the market factor influence. The T_M_B and AFCN models take into account the 

behavior of the opponent agent, which is a major factor in interpreting and processing to guide 

the agent’s behavior to improve the satisfaction level and avoid the risk conceding everything 

to the opponent, thus increasing their chances to achieve their best goals. 

Moreover, the AFCN represents opponents' behavior information with a fuzzy membership 

function to evaluate the proposal, and to specify the possibilities prescribing the extent to which 

the feasible solutions are suitable for both sides. As a consequence, experimental results 

demonstrate that the performance of negotiation can be improved by the two-tiered AFCN 

model. 

 

5.2 Performance Comparisons between Federation and Isolated Providers 

The real intercloud environment is composed of some large, medium, and small 

federations and even isolated cloud providers. To evaluate the impact of federation PAs and 

isolated PAs in the case of the intercloud market, the number of providers in the federation is 

considered as a simulation parameter, and the performance of 50% federation PAs (the 

federation consists of half of the providers) adopting the different two-tiered negotiation models 

(T-T, T_M-T_M, T_M_B- T_M_B, AFCN-AFCN) and isolated PAs adopting the one-tiered 

negotiation models (T, T_M, T_M_B, AFCN) is compared in terms of the success ratio and 

total revenue of PAs.  

Figure 11 shows that the success ratio decreases gradually as the demand/supply ratio 

increases from 0.1 to 1.5. The federation provider always achieves a higher success ratio than 

the isolated PA. Moreover, a federation provider adopting the AFCN model achieves the 

highest success ratio. Isolated PAs need to provide a better solution than federation PAs to 

strive for successful negotiation, which results in a lower success ratio. However, as the demand 

increases, the PAs of the T_M-T_M federation allocate resources more cautiously, which leads 

to the federation PAs achieving approximately the same success ratio as that achieved by 

isolated PAs.   



 

 

Figure 11: Success ratios of federation and isolated PAs for different negotiation models 

Table 3 shows the average revenue of the PAs derived from successful negotiations as the 

demand/supply ratio varies from 0.1 to 1.5. Again, the federation provider always achieves 

higher revenue than the isolated provider, and the federation provider adopting the AFCN 

model achieves the highest revenue. For the same reason, in term of the success ratio, the 

isolated provider adopting the Time model achieves lower revenue than the T_M, T_M_B, and 

AFCN models. 

Table 3: Avg. revenue of federation and isolated PAs for different negotiation models 

Demand 
/Supply 
 ratio 

T-T T_M-T_M T_M_B-T_M_B AFCN-AFCN 
Federation Isolated Federation Isolated Federation Isolated Federation Isolated 

0.1 237 214 269 245 272 251 282 256 
0.2 453 432 498 482 527 497 557 503 
0.3 660 628 743 673 789 725 806 746 
0.4 890 822 1032 904 1089 946 1158 977 
0.5 1080 997 1279 1083 1316 1092 1437 1154 
0.6 1276 1181 1488 1280 1528 1306 1664 1347 
0.7 1435 1311 1638 1388 1719 1483 1817 1534 
0.8 1518 1402 1767 1544 1828 1592 1964 1644 
0.9 1613 1513 1847 1676 1925 1682 2047 1736 
1.0 1665 1579 1933 1767 1997 1780 2136 1813 
1.1 1714 1616 1997 1884 2031 1809 2197 1894 
1.2 1731 1631 2043 1938 2078 1838 2267 1928 
1.3 1744 1665 2108 2033 2132 1853 2299 1947 
1.4 1768 1682 2129 2084 2171 1894 2343 1979 
1.5 1793 1698 2159 2098 2198 1921 2388 2011 
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5.3  Scalability Comparisons among Different Negotiation Models 

To evaluate the scalability of the negotiation model, the experiments evaluate the 

scalability performance in terms of how many providers participating in the federation. Hence, 

we varied the number of PAs from 10 to 200. As the demand/supply ratio increases from 0.1 to 

1.5, the number of cloud consumers dynamically increases simultaneously. 

Figure 12 shows the average combined ASV derived from successful negotiation with the 

resource demand/supply ratio increasing from 0.1 to 1.5. Figures 12 (a), (b), (c), and (d) show 

that the performance of the Time, T_M, T_M_B and AFCN models varied with as the number 

of providers increased from 10 to 200. The average combined ASV decreases with an increasing 

resource demand/supply ratio because PAs have fewer available resources to satisfy the specific 

request from the CA. Meanwhile, the average combined ASV increases with the number of PAs 

for all negotiation models because a large number of PAs can offer more diverse resource 

capacity to satisfy a large number of specific QoS demands from CAs. When the demand/supply 

ratio varies from 0.1 to 1.0, the Time model achieves less growth in terms of the average 

combined ASV as the numbers of Pas increases. In contrast, the T_M model achieves less 

growth when supply is short. For the behavior negotiation models with variation in PAs, 

T_M_B and AFCN always keep increasing as the demand/supply ratio varies from 0.1 to 1.5, 

while the AFCN model achieves the highest scalability in terms of the combined ASV. 

Figure 13 shows that the ratio of successful negotiations decreases as the demand/supply 

ratio increases from 0.1 to 1.5, while the success ratio increases as the numbers of PAs increases 

for all negotiation models. The T_M_B and AFCN behavior models show an increase in the 

success ratio as the number of PAs increases. The Time model achieves obvious scalability 

when the demand/supply ratio varies from 1.0 to 1.5 due to the more diverse service capacity. 

However, the T_M model shows small variation in the success ratio as the number of PAs 

changes when the demand/supply ratio varies from 1.0 to 1.5 because all PAs allocate resources 

more strictly as the demand/supply ratio increases. 

Figure 14 shows that the buying price of unit resource increases gradually as the 

demand/supply ratio increases from 0.1 to 1.5. The buying price decreases with increasing 

number of PAs for all negotiation models. However, the Time model shown an indistinct 

decrease in buying price as the number of providers increases, while the T_M model achieves 

obvious scalability when the demand/supply ratio increases from 0.1 to 1.0. Again, the T_M_B 

and AFCN can maintain higher scalability in terms of buying price with as the number of Pas 

increases.  

Figure 15 shows that the average revenue of the PAs increases gradually as the 

demand/supply ratio increases from 0.1 to 1.5. The average revenue increases with increasing 

number of PAs for all negotiation models. The Time model achieves less growth in terms of 

average revenue. However, the T_M model cannot maintain growth in terms of average revenue 



 

as the number of PAs changed. When the demand/supply ratio varies from 1.0 to 1.5, the T_M 

model shows reduced the scalability due to the lower success ratio. Again, the T_M_B and 

AFCN behavior models maintain remarkable scalability in terms of average revenue as the 

number of PAs increases.  

  

 



 

 
 

Figure 12: Average combined ASV for different numbers of PAs
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Figure 13: Success ratio for different numbers of PAs 
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Figure 14: Buying price for different numbers of PAs 
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Figure 15: Average revenue for different numbers of PAs 
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According to the experimental results and performance comparisons, the negotiation 

strategy of the agents impacts the performance of two-tiered negotiation. For the Time model, 

time is a predominant factor adopted to guide behavior, which is not suitable for the time 

insensitivity of automated negotiation. However, the Time model make fixed and continued 

concessions based on the time function until the values of the issues overlap, which results in 

worse solutions than those achieve by the other models due to the greater oscillation and 

excessive concessions when an agreement is approached. For the two-tiered Time-Time model, 

the outcome of the second-tier is not able to promote the performance of the whole negotiation. 

Therefore, the one-tiered and two-tiered Time model provides little support for the efficiency 

and scalability of federation. This support is achieved simply because a large number of PAs or 

federation members can offer more diverse resource capacity to satisfy a large number of 

specific QoS demands from CAs. However, when CAs and PAs adopt the concession strategy 

with the same concession rate, the Time model is a fairer negotiation model, as Table 2 indicates.  

The behavior of the T_M model and two-tiered T_M-T_M model significantly affects the 

variation of the demand/supply ratio. When the demand is less than the supply, PAs or 

federation PAs always propose desirable service to induce purchases. This approach can 

efficiently improve the success ratio and support the the scalability of the intercloud market. 

However, as the demand/supply ratio increases, the PAs allocate the resources more strictly, 

and the federation market between the hPA and fPA becomes increasingly competitive in terms 

of sharing resources, which avoids resource waste and provides more resource to allocate. 

Therefore, the negotiation solution is better than that achieve by the Time model. However, the 

model results in a higher price per unit resource of the CAs than that of the other models. 

Therefore, in cases of short supply, the T_M model cannot support efficient scalability of 

federation. 

The T_M_B model considers not only time and market factors but also the behavior of the 

opponent agent. The opponent’s behavior is stored in the local database and is a major factor in 

interpreting and processing when guiding the agent’s behavior to improve the satisfaction level 

and avoid the risk of conceding everything to the opponent, thereby increasing the probability 

of achieving the optimal goals. Thus, the two-tiered T_M_B- T_M_B model can increase the 

chance of achieving a better solution via second-tier negotiation. Therefore, the T_M_B model 

achieves better negotiation performance and scalability than the two-tiered Time and T_M 

models.  

However, these aforementioned bargaining negotiation agents are unable to give full play 

to the efficiency and scalability of the intercloud market. This is because no agent has a priori 

information about the feasible solutions of other agents or any possible agreements just 

exchanging the uncertain and incomplete information of the proposal without the agent’s 



 

preference or utilities, which affect the decision-making behavior for generating better solutions 

in the two-tiered negotiation. 

The agents of the proposed AFCN model are endowed with beliefs about the market 

environment and the opponent’s behavior, with intentions to guide the behavior of the agent, 

which represents the goal the agents want to achieve. The agent’s owner’s intention and the 

opponents' behavior information, expressed by the fuzzy membership function, are used to 

evaluate the proposal and to specify the extent to which the feasible solutions are suitable for 

both sides. Moreover, the behavior of first-tier agents can affect and guide the behavior of 

second-tier agents, and the belief and intention of agents are linked between first-tier 

negotiation and second-tier negotiation. As a consequence, the experimental results 

demonstrate that the two-tiered AFCN model can improve the efficiency and scalability of 

intercloud negotiation.  

 

6. Conclusion 

This paper proposes an agent-based multi-tier negotiation model called AFCN to perform 

two-tiered negotiations that facilitate intercloud performance. The AFCN provides a fully 

distributed framework for the SLA negotiation problem in intercloud markets. By sharing the 

fuzzy membership function information among the CAs and PAs (hPAs and fPAs), the agents 

are able to more effectively interpret their opponents’ preferences and reach a satisfactory 

consensus. Moreover, this information can pass and guide each tier of negotiation to generate a 

more favorable proposal. Thus, the multi-tier AFCN can not only improve the performance of 

negotiation, but also enforce global consistency to improve the integrated solution capacity in 

the intercloud. The experimental results demonstrate that the proposed AFCN model adopted 

in the two-tiered negotiation environment can outperforms the other models in terms of the 

level of satisfaction, ratio of successful negotiation, buying price for unit resources, and average 

revenue of PAs in the intercloud.  

This paper demonstrates that the two-tiered AFCN is suited for SLA negotiation in the 

horizontal IaaS federation. However, it has some limitations for the vertical supply chain 

federation because the issues are different in each negotiation tier. Nevertheless, some fuzzy-

based rule inference techniques can be incorporated to transform issue on decision making 

during the negotiation process. 

Future research can address the behavior-based learning model embedded in the multi-

tier AFCN model to assist the agent in generating a more favorable proposals. The learning 

model can further explore the opponent’s uncertain belief, including the preference, the 

behavior strategy and state, especially for the next feasible proposal. Some research has 

proposed neural network learning, Bayesian learning, evolutionary behavior learning and deep 

learning  to learn the opponent’s uncertain behavior and to improve the utility value and the 



 

success ratio. Therefore, it’s important to evaluate the performance of various learning models 

integrated in the AFCN.  
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