
Research on Fusion of Deep Learning Models
Based on Microservice Architecture
Hang Zhang ( 921254176@qq.com)

Changchun University of Science and Technology

Research Article

Keywords: Microservice Architecture, Deep Learning, CTR, DCN, DeepFM, xDeepFM

Posted Date: August 8th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1913303/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1913303/v1
mailto:921254176@qq.com
https://doi.org/10.21203/rs.3.rs-1913303/v1
https://creativecommons.org/licenses/by/4.0/

Research on Fusion of Deep Learning Models Based on Microservice

Architecture

Hang Zhang

Changchun University of Science and Technology, Jilin Changchun 130022, China;

Corresponding author(s). E-mail(s): 921254176@qq.com; ORCID: 0000-0003-3348-9271

Abstract

Due to the differences in development languages and development frameworks, various difficulties are often
faced in the process of integrating microservice architecture and deep learning models. This paper proposes a
DND-P (Deep Model in Nacos Discovery Protocol) protocol to realize the rapid integration of deep learning
models and microservice architectures. First, this paper selects three representative deep learning models
DCN (Deep & Cross Network), DeepFM and xDeepFM in the field of CTR (Click Through Rate) as the
research objects, and randomly samples 600,000 of them from the Criteo public data set. The model is
trained with 10,000 sample sets to obtain a relatively stable model version. Second, use the Django
framework to integrate the trained model as a web application. Finally, the DND-P protocol is directly
referenced in Django to implement service registration in the microservice architecture, and the CTR is
estimated at the business layer through OpenFeign. Through experiments, it is concluded that the integration
of microservice architecture and deep learning model with DND-P protocol can break the barriers between
the two, so as to quickly realize the integration of business applications.

Keywords: Microservice Architecture; Deep Learning; CTR; DCN; DeepFM; xDeepFM;

1 Introduction

With the widespread application of digital information technologies such as mobile Internet, big data, cloud

computing, and artificial intelligence in all walks of life, the scale and data volume of software projects are

increasing, and the complexity of software products is also increasing. Modern enterprise development requires

not only a software development architecture that supports high concurrency and big data, but also rapid

releases.Today, China is accelerating the construction of the digital economy, and major Internet companies are

embarking on digital transformation. In the process of digital transformation, the selection of IT architecture has

become more and more advanced, and most of them are based on cloud native concepts[1] combined with

micro-service architecture for research and development digital platform.Among them, the representative

technology is Spring Cloud Alibaba[2],This is mainly due to the complete technical components included in the

Microservice Architecture System[3],including: service gateway, service registration, service discovery, load

balancing, service degradation, service fuse, etc. Therefore, enterprises can quickly build personalized applications

through the Microservice Architecture System.Secondly, Feng Zhiyong[4] and others conducted in-depth research

on the role of Microservice Architecture in contemporary times, and concluded a series of problems faced by

Microservice Architecture in application;It also expounds the opportunities and challenges brought by the

emerging cloud computing platform and IOT platform to enterprises, and the challenges include how to integrate

with the Microservice Architecture .

In addition, in the digital platforms of Internet e-commerce companies, search advertising and e-commerce

advertising account for the highest proportion of profit models with online advertising as the mainstream.It is

precisely because of its huge commercial value that it has become one of the main research objects in

computational advertising, in which CTR (Click Through Rate, click-through rate) is an important indicator to

measure the monetization ability of advertising.Today, the super computing power of cloud computing has enabled

the rapid development of machine learning technology and deep learning technology, which are widely used in

CTR prediction, and the prediction accuracy is also very high.However, how to integrate the CTR prediction

model based on deep learning technology with the Microservice Architecture is currently a major problem faced

by many Internet companies.Based on the above background, this paper proposes a DND-P (Deep Learning Model

in Nacos Discovery Protocol) protocol, which aims to solve the difficulty of how to integrate deep learning models

with Microservice Architecture.The main contents of this paper include the following points:

1) The principle of the deep learning model is explained. The Criteo data set provided by Kaggle is

selected, and 600,000 data sets are extracted by random sampling technology to train the model, so as to

obtain three relatively stable CTR prediction models (DCN, DeepFM, xDeepFM) .

2) DND-P (Deep Model in Nacos Discovery Protocol) protocol algorithm description.

3) Integration and testing of deep learning CTR prediction model and microservice architecture.

2 Microservice Architecture

2.1 Nacos Introduction

Nacos[5] is a dynamic service discovery, configuration management and service management platform open

sourced by Alibaba Group that is easy to build cloud-native applications. In the Microservice Architecture Spring

Cloud Alibaba, the governance of microservices is an indispensable technology. Among them, Nacos provides a

set of simple and easy-to-use feature sets, which can help enterprises quickly realize dynamic service discovery,

service configuration, service metadata and traffic management.The Microservice Architecture in this article is

developed on the basis of Spring Cloud Alibaba, so Nacos is chosen as the registration and discovery management

platform for microservices.

2.1 Architecture diagram

The microservice architecture diagram after integrating the deep learning model is shown in Figure 1:

Figure 1: Microservice Architecture Diagram After Integrating Deep Learning Model

 The left part in Figure 1 is the Nacos Server platform, whose main functions are service registration, service

discovery, and service configuration management.

 The Deep Learning CTR Micro Services on the right is the three trained CTR deep learning prediction

models, of which Input features, Mutiple Deep Learning Model are the input feature vectors of the three deep

learning models DCN, DeepFM, xDeepFM and the weight parameters after training, And persist in the

memory to ensure that the system can quickly output the results during the initial loading and calling process,

and finally use the Django Web framework[6] to build a Web service for the CTR prediction model.

 The middle part is the DND-P protocol, which realizes the integration of the CTR deep learning prediction

model and the microservice architecture.

The final prediction result in this paper is the fusion result of the above three CTR deep learning prediction models,

as shown in Equation (1):

 (1)

Defined as the function Gm(x) as a hypothetical function to perform the fusion prediction of the three models,

Gm(x) can map continuous values between 0 and 1,where represents the prediction result of the i-th

CTR deep learning model, represents the weight coefficient of each model, and is defined as shown in

Equation (2):

(2)

The theoretical support is: since the result predicted by each deep learning model is linearly related to the random

variable Y, the idea of multiple logistic regression is adopted, combined with the idea of the activation function

softmax of the output layer in deep learning, and the two ideas are integrated. Thereby, the value of is

calculated.

3 Deep Learning Model

3.1 DeepFM

DeepFM[7] enables the model to learn the interaction of low-order and high-order features. It integrates the

FM model of embedding and the neural network of DNN, which capture low -order features and high-order features

respectively, and finally combine them.The one-hot sparse matrix can make each feature map to a non-zero vector

through the embedding of FM, thereby increasing the generalization ability of the model.However, FM cannot

perform mining of high-order features.DNN can mine high-order features, thus making up for the shortcomings of

FM.The structure of the DeepFM model is shown in Figure 2:

Figure 2: The Structure Of The DeepFM Model

Assuming that the outputs of the FM Layer and DNN Layer in the DeepFM model are yFM and yDNN,

respectively, the final CTR prediction result of the DeepFM model is:

 (3)

3.1.1 FM

The idea of the FM model is to consider the relationship between any two features after the LR (Logistic

Regression) model. The initial definition of the model equation is as follows:

(4)

Where ωij is the cross weight of XiXj. The model introduces a second-order feature combination, but when XiXj=0,

ωij =0; therefore, ωij eventually becomes 0 in the case of large-scale sparse features.To this end, the FM model can

be improved as follows:

(5)

where <Vi,Vj> is the inner product of two vectors of length k, <Vi,Vj> as follows:

(6)

The improved FM model is able to fully capture all first-order and second-order feature combinations, avoiding the

inability of the model to train in the case of sparse data.Among (5),(6), ω0 is the global bias value, and ωi is the

weight of Xi. is used to replace the original ωij to represent the weight of the second-order feature

combination XiXj.This is the biggest difference between FM models and polynomial regression.As long as the

combination of feature Xi and other arbitrary features has appeared, the corresponding embedding vector Vi can be

learned through training. So when predicting, although the combination of Xi and Xj never appears in the training

data, it can be used as a weight by calculating the inner product of their corresponding embedding vectors.

3.1.2 DNN

The DNN part is composed of multi-layer vi as a feedforward neural network to learn high-order feature

combination information. However, since the original input features of CTR estimation are highly sparse,

ultra-high-dimensional, mixed in types (continuous and discrete), and grouped by fields, an embedding layer is

added before the ordinary feedforward neural network, and the feature groups of different input lengths are

analyzed. compression. Another advantage of embedding is that the DNN part can share the embedding vector

with the FM part, and there is no need to train the embedding vector separately. Suppose the output of the

embedding layer is:

 (7)

Then take z as the input of the feedforward neural network, and its forward propagation process is as follows:

(8)

Let the number of hidden layers of the feedforward neural network be h, and the final output of the DNN part is:

(9)

The FM component and the Deep component share the same embedding, which avoids complex and tedious

feature engineering, and can effectively learn high- and low-order interactive features from the input features.

3.2 DCN(Deep&Cross Network)

The Deep Cross Network (DCN) model[8] is Google's follow-up research on Wide&deep[9], which replaces

the Wide&deep part of Wide&deep with the crossover realized by a special network structure, automatically

constructs limited high-order crossover features and learns the corresponding weights, eliminating the complicated

manual cross-product step,as shown in Figure 3:

Figure 3: The Structure Of The DCN Model

The bottom layer of the DCN model is mainly divided into two layers: Embedding and Stacking. After

embedding, the one-hot feature can be converted into a real dense vector of the specified dimension.The matrix

parameters generated in the embedding process are trained together with other parameters in the network, and then

the embedding vector and the normalized embedding vector are stacked as new input features.The equation is as

follows:

(10)

In the above formula, x0 represents the input of the network; represents the embedding vector;

represents the normalized dense vector;In order to effectively apply the explicit intersection features, the DCN

model introduces the Cross Network.The Cross Network consists of crossover layers, and the equation for each

layer is as follows:

(11)

In the above formula, x0 is the output of formula (11) and the input of formula (10).Xk and Xk+1 are column

vectors, representing the output of the intersection layer of the l layer and the (K+1) layer, respectively. are

the weight and bias parameters of the layer l layer.After completing a feature intersection f(x), each intersection

layer adds the original input feature vector,In fact, after each cross-layer mapping, it corresponds to a residual

Xk+1-Xk.

As the layer gets deeper, the order of the corresponding input feature will increase accordingly after passing

through the Cross Network.For K layers, the highest polynomial of the input feature X0 is of order K+1.In fact,

Cross Network consists of these cross terms , corresponding to orders from K to K+1.

Due to the low number of parameters of the Cross Network, the capacity of the model is limited. In order to

obtain high-order nonlinear intersection features, a deep network can be added, and each Layer has the following

equation :

(12)

Among them: and are the parameters of the hidden layer of the K layer and the

K+1 layer, respectively, and are the parameters of the K depth layer, and is the

ReLU function.

Finally, the output of the Cross Network and the output of the Deep Network are spliced together, and then

the spliced result is used as the input feature of the logistic regression model, and the gradient descent algorithm is

used for optimization. Finally, the sigmoid is used as the activation function of the output layer to output the

result.The equation is as follows:

(13)

In the above formula: p is the final prediction probability; represents the final output of Cross Network;

represents the final output of Deep Network; is the weight of Combination Layer.

The DCN model uses a cross network to learn high-order features using Feature Crossing at each layer. The

characteristic is that the network structure is simple and efficient. Compared with DNN and DCN, the

corresponding logloss value is lower, and the number of parameters is one order of magnitude less. However, the

hyper-parameters in the Cross Network and Deep Network, including the number of layers of the crossed neural

network and the number of neurons, cannot be set accurately; at the same time, if the dimension of the feature is

large and the sparseness is serious, it will lead to the efficiency of the DCN model decline.

3.3 xDeepFM

xDeepFM[10] consists of three parts, namely DNN, Linear and CIN. After the embedding layer, the DNN will

be connected with the CIN module and connected to the simple multi-layer perceptron in parallel. Linear is a

simple linear regression model with raw features as input. The main function of CIN (compressed interaction

network) is to learn explicit intersection features. As shown in Figure 3:

Figure 3: The Structure Of The xDeepFM Model

The purpose of CIN is to generate cross-features in a vector-wise manner in an explicit manner, as evidenced by it

has some common properties with Convolutional Neural Networks[11] (CNN) and Recurrent Neural Networks[12]

(RNN). The proposal of CIN solves the problem of feature intersection, and the order of intersecting features is the

number of layers of CIN.CIN is a multi-layer output structure, each layer will train a matrix, the matrix represents

the matrix trained by the K layer as , let , where Hk represents the number of feature vectors of

the K layer, the formula is as follows:

(14)

 represents the feature vector of row h in Xk+1 .

 represents the feature vector of the i-th row of the output matrix d of the k-th layer of CIN.

 represents the j-th row feature vector of the original feature matrix X0.

 is a scalar value representing the parameter at row i and column j.

 is an operator representing the Hadamard product, i.e. the inner product of matrices of the same order.

After the output of each layer is obtained, all feature matrices are compressed into a new vector through the sum

pooling operation as the final output of CIN. The formula is as follows:

(15)

Wo is a parameter vector of length .The Linear, CIN, and DNN are unified together as the final output of the

model, as shown in the following formula:

(16)

 is the original input feature.

 is the output vector of DNN.

 is the output vector of CIN.

 , , and are the training parameters of the corresponding modules, respectively.

 b is the global bias term; σ is the activation function.

3.3 DND-P

DND-P (Deep Model in Nacos Discovery Protocol) is a public package developed on the basis of the Python

programming language and Django as a web framework. It can be installed directly through the pip command

when building Django web applications. Among them, the DND-P algorithm is described as follows:

Algorithm 1 Calculate DND-P

Require: status is a flag having three value: 1-starting, 2-running and 0-stopping. Initial value is ‘1’.

Ensure: status = 1

1: global variable p

2: if status = 1 then

3: url ‘registering nacos server api’

4: request_params ‘register server’

5: response_result requests(url, request_params)

6: if response_result.status = 200 and response_result.msg = ‘ok’ then

7: p new asynchronous process

8: p.start()

9: end if

10: else if status = 0 then

11: url ‘deleting nacos server api’

12: request_params ‘delete server’

13: response_result requests(url, request_params)

14: if response_result.status = 200 and response_result.msg = ‘ok’ then

15: p.stop()

16: end if

17: else

18: url ‘beating nacos server api’

19: request_params ‘beating server’

20: current_time datetime.now()

21: while p do:

22: synchronize({

23: one_minute = datetime.now()

 24: if one_minute - current_time = 60 seconds then:

25: requests(url, request_params)

26: current_time = one_minute

27: end if

28: })

29: end if

3 Experiment

3.3 DataSet

The experiment uses the real data set published by Criteo. Criteo is a classic data set in the CTR field. The

features are desensitized. There are 13 continuous features and 26 category features. The samples are sorted by

time. This experiment randomly sampled 600,000 sample sets, of which the number of positive samples is:

153,822, and the number of negative samples is: 446,178.

3.3 Environment

The environment for training DCN, DeepFM, and xDeepFM models is shown in Table 1:

Table 1: Deep Learning CTR Model Environment

Type Of Environment Configuration Parameters

Hardware Environment

Host Model Aliyun ecs.vgn5i

CPU 4 core(vCPU)

GPU Tesla P4*1/4

Memory 24 GiB

Hard Disk SSD cloud disk 40GiB (2400 IOPS)

Software Environment

Operating System Ubuntu 20.04.4

Development Language Python 3.8

Deep Learning Framework tensorflow-gpu 2.2.0

 The environment of the Microservice Architecture is shown in Table 2:

Table 2 Microservice Architecture Environment

Type Of Environment Configuration Parameters

Hardware Environment

Host Model Aliyun ecs.c5.large

CPU 4 core(vCPU)

Memory 8 GiB

Hard Disk SSD cloud disk 40GiB (2120 IOPS)

Software Environment

Operating System Ubuntu 18.04

Development Language Python 3.8, Java 8

Microservice Framework

Spring Cloud Hoxton.SR9

Spring Cloud Alibaba 2.1.0.RELEASE

Nacos 1.1.4

Spring Boot 2.3.7.RELEASE

Web Framework Django 2.0

In the data set, the positive/negative samples are divided by 8:2, and then combined, so that the overall allocation

is 80% as the training set and 20% as the test set.After many experiments, the optimal parameter combination and

model prediction results are obtained, as shown in the following table 3:

Table 3 Experimental Results

 Hyper-parameters
Evaluation

Metrics

Model
batch

size
embedding Dropout

CIN

Layers

CIN Output

Filters

Cross

Net

Layers

epochs AUC Loss

DCN

256 128 0.1

- - 3

5

0.7330 0.5407

DeepFM - - - 0.7404 0.5723

xDeepFM 3 12 - 0.7402 0.5756

The optimal combination obtained after many experiments is that the batch size is 256; the embedding layer

of DNN is 128 layers, and the number of neurons is 128; the L2 regularization penalty coefficient is 0.7, the

dropout is 0.1, and the learning rate is 0.001; The CIN network has 3 layers and the output dimension of each layer

is 12; the Cross Network is 3; the activation function is ReLU; the number of iterations is 5.

4 Conclusion

First create a namespace of ctr_deep_model in Nacos. Then, start the DCN, DeepFM, and xDeepFM Web

Servers that integrate the DND-P protocol respectively. The corresponding service names are ctr_dcn_model,

ctr_deep_fm_mode, and ctr_x_deep_fm_model. Each service actually represents a cluster, and there is one

instance in each cluster. Finally, the microservices developed in Java are called, and 5 positive samples and 5

negative samples are randomly selected from the 20% test set for testing, and finally good results are obtained.

It can be concluded that the DND-P protocol can quickly realize the integration of the microservice

architecture and the deep model in the cloud platform, and it can integrate well in different languages and under

different frameworks.

References

[1] Sun Bing. Analysis of application architecture and development trend of cloud native in

enterprises[C]//.Proceedings of the 25th Annual Conference on New Network Technologies and Applications

in 2021 by the Network Application Branch of China Computer Users

Association.,2021:412-418.DOI:10.26914/c.cnkihy.2021.047868.

[2] Alibaba Group, Alibaba Cloud Intelligent Business Group, cloud native application platform.Alibaba Cloud

Cloud Native Architecture Practice[M]. Beijing: Machinery Industry Press. 2021.5..

[3] XIN Yuanyuan, NIU Jun, XIE Zhijun, et al. Survey of implementation framework for microservices

architecture.Computer Engineering and Applications, 2018, 54（19）：10-17.

[4] Feng Zhiyong，Xu Yanwei，Xue Xiao，and Cheng Shizhan.Review on the Development of Microservice

Architecture.Journal of Computer Research and Development.,DOI: 10.7544/issn1000-1239.2020.20190460

57(5):1103-1122, 2020.

[5] https://github.com/alibaba/nacos.

[6] https://www.djangoproject.com/start/overview/.

[7] Guo H, Tang R, Ye Y, et al. DeepFM: A Factorization-Machine based Neural Network for CTR

Prediction[C]// Twenty-Sixth International Joint Conference on Artificial Intelligence. 2017.

[8] Wang R, Fu B, Fu G, et al. Deep & Cross Network for Ad Click Predictions[C]// ADKDD'17. ACM, 2017.

[9] Cheng H T, Koc L, Harmsen J, et al. Wide & Deep Learning for Recommender Systems[C]// Proceedings of

the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016.

[10] Lian J, Zhou X, Zhang F, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for

Recommender Systems[C]// the 24th ACM SIGKDD International Conference. ACM, 2018.

[11] Qiang L, Feng Y, Wu S, et al. A Convolutional Click Prediction Model[C]// Acm International on Conference

on Information & Knowledge Management. ACM, 2015.

[12] Zhang Y, Dai H, Chang X, et al. Sequential Click Prediction for Sponsored Search with Recurrent Neural

Networks[C]// Twenty-eighth Aaai Conference on Artificial Intelligence. AAAI Press, 2014.

