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To survive in dynamic environments, animals make behavioral decisions based on innate

and learnt information about the valences of sensory cues. In the brains of multiple species,

innate and learnt sensory valence signals are initially encoded by distinct neural

populations1–7 but then reconverge in downstream brain structures that guide behavioral

choices6–9. This reconvergence hinges on the prior acquisition of learnt valence information,

which in turn might depend upon innate valence signals. However, it remains unknown

whether and how innate sensory valence cues shape the acquisition of learnt valence

information. Here we show that in the fruit fly brain, interactions between innate and

learnt sensory valence signals within interconnected short- and long-term memory units of

the mushroom body jointly regulate memory formation and expression via modulation of

dopamine teaching signals. By using time-lapse, in vivo optical voltage imaging to record
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neural spiking with millisecond-resolution in flies undergoing olfactory associative

conditioning, we found that PPL1 dopamine neurons (PPL1-DANs) heterogeneously and

bi-directionally encode punishment, reward, and innate and learnt odor-valence cues.

Learning modulates these representations in a way that combines innate and learnt valence

information and allows the PPL1-DANs to regulate memory storage in their downstream

targets, mushroom body output neurons (MBONs). PPL1-γ1pedc and PPL1-γ2α’1 neurons

control short-term memory formation. After repeated conditioning, feedback signals

carrying short-term memory data from MBON-γ1pedc>α/β to PPL1-α’2α2 and PPL1-α3

allow these dopamine cells to encode previously learnt valences and promote long-lasting

memory formation. A computational model constrained by the mushroom body

connectome and our spiking data explains how dopamine signals integrate innate and

learnt valence data to regulate memory storage, extinction, and the interactions between

short- and long-term memory traces. The model yields non-intuitive predictions about the

effects of different training protocols, which our experiments confirm. Overall, the

mushroom body achieves flexible learning through dopamine-mediated integration of

innate and learnt valences in parallel sets of DAN/MBON learning units with feedback

interconnections. This hybrid physiologic-anatomic mechanism may be a general means by

which ecological information regulates learning and memory in other species and brain

structures relying on dopaminergic signaling, including the vertebrate basal ganglia10.

Introduction

When navigating changing environments, animals evaluate the innate valences of sensory cues

against learnt valence information acquired from past experiences. Innate valence data convey

predictions, such as about predatory threats or food sources, that are usually trustworthy and
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often vital to survival. Learnt valence information arises through experiences that modify a

sensory cue’s innate valence11. In many species, innate and learnt valence data are processed by

distinct neural pathways, an arrangement that may benefit the reliability and flexibility of animal

behavior1–7. For example, in flies and mice, early-stage olfactory centers send odor information

to separate higher-order centers that control innate and learnt behaviors; these are, respectively,

the lateral horn and mushroom body in the fly brain7,12,13 and the olfactory amygdala and piriform

cortex in the mouse brain1,2,4,14. However, it remains unknown whether innate valence data also

shape the acquisition of learnt valence information, and, if so, what functional benefits this

interaction between innate and learnt data might provide.

One plausible way by which innate valence data could modulate learning is via dopamine

teaching signals that may carry both innate and learnt information. Mammalian dopamine

neurons (DANs) often respond to reward-predicting cues and signal reward prediction errors that

encode the discrepancies between expected and received rewards15–18. However, some DANs

encode the novelty or identities of unfamiliar cues, showing that the mammalian learning system

represents certain innate facets of sensory cues16,19–21.

Likewise, in Drosophila, the dopamine learning system also processes innate and learnt

valence data. Two distinct clusters of DANs (PPL1 and PAM) send negative and positive

reinforcement signals, respectively, to the mushroom body (MB) where they drive learning22,23.

For instance, the co-activation of DANs and MB Kenyon cells receiving odor information

induces olfactory learning via synaptic plasticity in compartmentalized MB axonal regions24,25.

However, as in mammals, the DANs respond to more than just aversive or rewarding stimuli.

Notably, in naïve flies, most DANs respond to odor cues20,26–28, and some respond preferentially
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to attractive or repulsive odors26. These innate odor responses may be driven, at least in part, by

both Kenyon cell inputs and feedback signals coming from within the MB itself29,30,31.

Supporting this idea, the connections between DANs and MB output neurons (MBONs)

form a parallel-recurrent circuit comprising multiple learning units working in parallel but with

widespread recurrent feedback22,29,30 (Fig. 1a). This architecture implies that multiple memory

traces exist in parallel across the different learning units. In each learning unit, a single or small

cluster of DANs selectively controls plasticity in one or a few MB compartments. However, no

learning unit works in isolation, since the DANs also receive recurrent feedback signals from the

MBONs that convey learnt valence information8,29,30,32. This combination of parallel processing

and recurrence is striking and naturally prompts the hypothesis that the DANs integrate innate

valence signals coming from the sensory system (via the MB) together with learnt valence data

stored in memory (by the MBONs).

Here, we tested this hypothesis by using a chronic preparation for long-term in vivo

optical voltage imaging in behaving flies33. Unlike neural Ca2+ imaging34, voltage imaging

reports individual action potentials with millisecond-resolution and bi-directional modulations of

neural spiking (i.e., both excitations and suppressions of spiking)35,36. This approach enabled us

to study how PPL1-DAN teaching signals encode and integrate innate and learnt valence cues

and to uncover how this valence integration allows short-term memories to shape the formation

of long-term memories via recurrent feedback signals within the MB. We then constructed and

tested a computational model of the parallel-recurrent MB circuitry by using recent data on the

connectivity of the MB and our imaging data to constrain the model’s structure and dynamics.

Notably, this model and its multiple interesting predictions could not have been attained through

Ca2+ imaging, as declines in spiking activity below baseline levels are crucial in the model but
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poorly reported via Ca2+ dynamics. Altogether, our results reveal how innate valence information

regulates memory dynamics and how the integration of innate and learnt valences within

dopamine signals leads to complex interactions between short- and long-term memory traces.

Long-term voltage imaging of neural spiking with 1-ms-resolution in behaving flies

To observe neural spiking dynamics in the PPL1-DAN/MBON circuit with sub-millisecond

resolution, nearly all of our studies used a novel indicator, pAce, in the FRET-opsin class of

fluorescent protein voltage indicators37,38. Like the widely used FRET-opsin, Ace-mNeon37, pAce

is a fusion of the Acetabularia rhodopsin and mNeonGreen, but, unlike Ace-mNeon, pAce has a

positive voltage-sensitivity and responds to membrane polarization by increasing its fluorescence

emissions39. To identify short- (<3 hr) and long-lasting (>24 hr) neural plasticity, we sought to

image odor-evoked neural dynamics before, during, and at least 24 hr after an olfactory

associative conditioning. Thus, we first needed to establish experimental protocols for long-term

voltage imaging in awake behaving flies33,40,41 (Fig. 1a,b; Movie 1; Methods). For these initial

validations and all subsequent studies, we used a set of split-GAL4 fly lines22 that allowed us to

express pAce in 11 different neuron-types, namely 5 subtypes of PPL1-DANs (PPL1-γ1pedc,

-γ2α’1, -α’2α2, -α3 and -α’3) and 6 subtypes of downstream MBONs (MBON-γ1pedc>α/β,

-γ2α’1, -α2sc, -α’2, -α3 and -α’3) (Extended Data Fig. 1a–i; Extended Data Table 1).

Using these fly lines and high-speed (1 kHz) imaging of MB compartments innervated by

PPL1-DANs axons and MBON dendritic arbors, we first recorded spontaneous activity in all 11

neuron-types at single-spike resolution (Fig. 1c; Extended Data Fig. 1a–i). Across all 11

neuron-types, the PPL1-DANs and MBONs showed variable rates of spontaneous spiking and

bursting (Fig. 1d,e). To characterize the reliability of spike detection in the different cell-types,

we used the spike detection fidelity, d′, a signal detection theory metric that is often used to

p. 5

https://paperpile.com/c/Abxb1U/T3Vi+herI
https://paperpile.com/c/Abxb1U/T3Vi
https://paperpile.com/c/Abxb1U/jSqv
https://paperpile.com/c/Abxb1U/faYI+xDCS+151I
https://paperpile.com/c/Abxb1U/aMNh


assess voltage imaging performance37,42 (Methods). Using pAce, PPL1-DANs exhibited d′

values of 7.1–9.5, implying spike-detection error rates of 0.04–0.2 s−1 (Extended Data Fig.

1j,k). MBONs had d′ values of 5.0–8.4 and inferred spike-detection error rates of 0.06–1.8 s−1.

MBON-γ2α’1, MBON-α’2, and MBON-α’3m had lower d′ values than other MBONs and

PPL1-DANs (Extended Data Fig. 1j,k), most likely due to previously identified differences in

the peak depolarization levels of action potentials in the different MBON-types24 (Fig. 1f).

Notably, in MBONs, there were backpropagating spikes that traveled retrogradely from axonal

regions into the dendritic arbors (Extended Data Fig. 2; Movie 2). Further investigation of these

retrograde signals was outside the scope of our study, but they might facilitate spike-timing

dependent plasticity, as do backpropagating spikes in mammalian neurons43,44.

PPL1 dopamine cells encode innate valences in a heterogeneous, bi-directional manner.

To characterize the coding properties of PPL1-DANs, we tracked their evoked responses to

various sensory stimuli, including punishment (electric shock), reward (sugar water), and a range

of aversive, attractive and neutral odors. Electric-shock pulses to the fly thorax elevated the

spiking rates of PPL1-γ1pedc, -γ2α’1 and -α3 neurons after shock onset; spike rates then

gradually declined after shock offset (Fig. 2a). During a shock, spike rates of PPL1-γ1pedc,

-γ2α’1 and -α3 cells rose respectively to 307% ± 52%, 364% ± 49%, and 157% ± 23% of their

baseline rates (mean ± s.e.m.; Fig. 2b). However, the firing rates of PPL1-α’2α2 and -α’3 were

unchanged during shocks (Fig. 2b).

Next, we tested how PPL1-DANs respond to sucrose intake, which is widely used for

reward-based, appetitive conditioning45–47. In contrast to the spiking excitation induced in

PPL1-DANs by electric shocks, when the fly’s proboscis contacted sucrose water and initiated

feeding, spiking was suppressed in the PPL1-γ1pedc, PPL1-γ2α’1, -α’2α2 and -α3 neurons (Fig.
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2c). Their spike rates during the 5-s sucrose exposure declined significantly to 82% ± 5%, 49% ±

6%, 74% ± 5% and 62% ± 7% of their baseline values (mean ± s.e.m.; Fig. 2d).

To study the relationship between the innate valence of an odor and its neural

representation, we tested flies’ behavioral odor preferences while also imaging the odor-evoked

spiking dynamics of PPL1-DAN and MBON neurons. As a fly walked or ran in place on a

trackball with two degrees of rotational freedom, we delivered odors from either the front left or

front right side of the fly. In response to each odor, flies typically made approaching or avoidance

movements by changing their walking direction either towards or away from the odor (Fig. 2e,f).

In particular, we found a set of 5 odors that collectively induced behavioral responses ranging

from vigorous approach to vigorous avoidance (Fig. 2g,h; Extended Data Fig. 3b,c). The nearly

evenly spaced set of evoked behavioral responses suggests that these 5 odors have a

corresponding, evenly spaced set of innate odor valences.

Using the same 5 odors, we next tracked odor-evoked spiking in PPL1-DANs and their

downstream MBONs. Strikingly, unlike the odor-evoked patterns of neural excitation that have

been reported in prior Ca2+-imaging studies in flies25,26,48, voltage imaging showed that

PPL1-DANs have either excitatory or inhibitory innate responses to odor presentation

(Extended Data Fig. 3a). Similarly to the flies’ odor-evoked behavioral responses, 4 types of

PPL1-DANs showed corresponding, bi-directional spiking changes that ranged from excitation

to inhibition (Fig. 2i; Extended Data Fig. 3d–g). An exception was PPL1-α’3 DAN, which

showed chiefly excitatory responses (Extended Data Fig. 3h). By comparison, the downstream

MBONs uniformly showed odor-evoked excitation, with response amplitudes that were

independent of innate odor valences (Extended Data Fig. 4), in accord with past results from

Ca2+ imaging49.
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Notably, cells in the two subsets, PPL1-DANs and MBONs, had odor-evoked responses

that were strongly correlated across the 5 odors tested to the responses of other cell-types in the

same subset, but negatively correlated to those of cells in the other subset (Fig. 2j). An exception

was the MBON-α2sc neuron, whose odor-evoked responses closely resembled those of the

PPL1-DANs (Fig. 2j). Further, the mean odor-evoked firing rates of PPL1-DANs were strongly

correlated to the flies’ behavioral responses to the same odors, with the exception of PPL1-α’3

(Fig. 2j,k). The odor-evoked spiking responses of MBONs were more variable across animals

and more weakly correlated with the flies’ behavioral responses (Fig. 2j,k).

To evaluate and compare odor representations in PPL1-DANs and MBONs, we

conducted a classification analysis using the odor-evoked spiking rates measured across these

two neural populations (Methods). The responses of both cell populations enabled successful

odor categorization at above-chance rates; this shows that each cell population signals

information about odor identity or valence, although PPL1-DAN signals enabled greater

classification accuracies than those of MBONs (Fig. 2l). Overall, PPL1-DANs exhibited

accurate, bi-directional representations of innate odor-valence at the single cell and population

levels. This contrasts with the variable and limited coding capacities of MBONs49,

notwithstanding that both MBONs and PPL1-DANs receive olfactory signals from the same sets

of MB Kenyon cells29.

Learning induces distributed and bidirectional plasticity in PPL1-DANs and MBONs.

Recent connectomic and computational studies of the adult fly brain suggest that PPL1-DANs

receive both direct and indirect feedback inputs from downstream MBONs29,30,50–54. These

feedback connections may have important roles in shaping the predictive, dopaminergic teaching

signals that guide learning and MB plasticity. To probe the neural changes in the MB that
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influence learning, we developed an olfactory aversive conditioning paradigm for head-fixed

flies that could walk in place on a trackball as we performed high-speed voltage imaging of

neural activity (Methods). Like the traditional T-maze learning assay for flies47,55–57, our assay

involved 6 training bouts, each with sequential exposures to a pair of conditioned (CS+ and CS–)

odors; to induce associative conditioning, in each training bout we paired CS+ odor delivery with

an electric shock to the fly (Fig. 3a–e). To capture the time course of learning, we measured the

fly’s behavioral or neural responses to the CS+ and CS– at multiple time points before, during and

after conditioning—instead of assessing the fly’s conditioned response at only one time-point as

in the classic T-maze assay55. After conditioning with CS+ and CS– odors that were both initially

attractive (apple cider vinegar and 1% ethyl acetate), flies reduced their approaches towards the

CS+ but not the CS– odor; this CS+-specific reduction lasted ≥1 hr (Fig. 3b,c).

Next, we systematically evaluated how neural spiking responses were altered by aversive,

associative conditioning using CS+ and CS– odors that were both initially attractive. CS–-evoked

responses in all 5 PPL1-DANs were statistically unaltered by conditioning (Fig. 3f; Extended

Data Fig. 5). However, the CS+-evoked responses of PPL1-α’2α2 and -α3 evolved across 3–6

training bouts from inhibitory to excitatory and then back to their initial inhibitory forms after

1 h of rest (Fig. 3f). The CS+-evoked responses of PPL1-γ1pedc remained inhibitory at all

time-points, with significant amplitude changes at 5 min but not 1 hr after conditioning, whereas

the responses of PPL1-γ2α’1 and -α’3 were unaffected by conditioning (Fig. 3f). At each testing

time-point, we calculated the differences in the spiking rates induced by CS+ and CS– odors,

normalized these values to the pre-training responses in each individual fly, and termed the

resultant the ‘relative CS+/CS– bias’ index (Methods). This bias index resembles the two-way

choice index that is commonly used to characterize flies’ responses in the T-maze behavioral
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assay55. The bias index showed that, after training, spiking responses became biased to the CS+

odor in PPL1-α’2α2 and -α3 but not in PPL1-γ1pedc, -γ2α’1 and -α’3 (Fig. 3f).

Unlike the DANs, after training the MBONs-γ1pedc>α/β and -γ2α’1 showed decreased

CS+-evoked responses (Fig. 3e,g; Extended Data Fig. 6), which returned to baseline values after

1 hr of rest, consistent with prior electrophysiological recordings19. In contrast, MBON-α3

exhibited decreased CS+-evoked responses for at least 1 hr after conditioning. However, in

MBON-α2sc, -α’2 and -α’3m neurons, odor-induced spiking was statistically unchanged by

training (Fig. 3g; Extended Data Fig. 6).

MBON-α3 plasticity is crucial for long-lived memory and depends on innate odor valence.

Prior behavioral studies have suggested that the γ and α compartments of the MB have distinct

roles in the regulation of short- and long-term memories23,58–62. To assess the duration of

learning-induced plasticity, we performed voltage-imaging at 3 hr, 24 hr and 48 hr after

associative conditioning. The resulting data revealed that conditioning led to a short-lasting

depression (<1 hr duration) of the CS+-evoked responses of the γ MBONs, as well as a

long-lasting depression of the CS+-evoked responses of MBON-α3 that persisted for >3 hr and in

some flies for 24–48 hr (Extended Data Fig. 7a). To test the necessity of this long-lasting

plasticity for long-lasting memory, we used the tetanus toxin light chain (TnT)63 to block

synaptic vesicle release from MBON-α3; this impaired memory performance at 3 hr but not 5

min post-training, showing the selective importance of MBON-α3 for long-lasting memory

(Extended Data Fig. 7b –e).

Next, we examined how innate odor valences influence the long-lasting plasticity in

MBON-α3 by comparing flies trained with an attractive CS+/CS– odor pair (ACV and 1% EtA)

to those trained with repulsive odors (1% OCT and 0.3% BEN) (Fig. 4a–d). In flies trained with
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attractive odors, after 3 training bouts the CS+-evoked responses of MBON-α3 switched from

spiking increases to spiking decreases, which became further pronounced after another 3 bouts of

training (Fig. 4a,c). This spiking plasticity gradually decayed with time but still remained at

24 hr after training. By comparison, CS–-evoked responses remained stable throughout (Fig.

4a,c). In accord with these results, after training the CS+/CS– bias index was significantly below

its pre-training level for all post-conditioning time points, except at 24 hr afterward (Fig. 4c).

Notably, MBON-α3 plasticity was very different in flies trained with repulsive odor pairs.

CS+ and CS– presentations both evoked marked suppressions of spiking after only 3 training

bouts, and these effects persisted for at least 3 hr (Fig. 4b,d). CS+ presentations induced

significant suppressions of spiking even at 24 hr post-conditioning, whereas CS–-evoked

responses became excitatory again by 3 hr post-conditioning, albeit not at baseline levels (Fig.

4b,d). Due to the concurrent declines in CS+- and CS–- evoked responses, the CS+/CS– response

bias was unchanged until 24 hr after training (Fig. 4d). Taken together with the results obtained

using attractive odor pairs, these findings show that innate odor valence greatly influences

MBON-α3 spiking dynamics and plasticity.

Feedback from MBON-γ1pedc>α/β to PPL1-α3 sculpts long-lasting plasticity in MBON-α3.

To better understand the plasticity of MBON-α3, we studied the dopamine teaching signals it

receives from PPL1-α3 that bi-directionally signal punishment, reward, and both innate and

learnt odor valences (Fig. 2b,d,i; Fig. 3f). First, we tested how PPL1-α3 responds to pairs of

concurrently presented sensory stimuli with valences of either the same or opposite sign. Paired

presentations of electric shocks (5× 0.2-s pulses; 0.5 Hz; 60V) and odor (10-s-presentations of

either attractive ACV or repulsive 1% OCT) evoked PPL1-α3 spiking dynamics that combined

the responses elicited by the odor or shocks individually (Fig. 4e–h). The onset and offset times
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of the odor presentation, as well as the pulsatile spiking responses to the individual shock pulses,

were all visible in the spiking responses to the paired presentations (Fig. 4e,g). The presence of

attractive odor reduced the mean spiking rate evoked by the shock pulses, whereas repulsive

odor had the opposite effect, and the magnitudes of these effects were consistent with PPL1-α3

linearly summing its responses to the individual stimuli (Fig. 4e–h). These observations suggest

that spiking and dopamine teaching signals from PPL1-α3 convey the net valence of jointly

presented stimuli, which explains why associative conditioning with attractive versus repulsive

odor pairs leads to very different plasticity in MBON-α3.

The finding that PPL1-α3 conveys the net valence of two concurrently presented stimuli

led us to consider the possible circuit mechanisms that shape how PPL1-α3 encodes valence. The

neural connectome of the adult fly brain30 shows that PPL1-α3 receives inhibitory feedback from

the GABAergic MBON-γ1pedc>α/β neuron, excitatory feedback from the cholinergic

MBON-α2sc and MBON-α3 neurons, and a glutamatergic feedback signal from the

MBON-β1>α neuron that is putatively inhibitory64. We hypothesized that, among these feedback

connections, the inhibitory feedback from MBON-γ1pedc>α/β was likely to have a central role

in the regulation of innate and learnt odor-valence coding by PPL1-α3. The main clue motivating

this hypothesis was the observation that the learning-induced depression in MBON-γ1pedc>α/β’s

odor-evoked responses and the short-lasting potentiation of PPL1-α3’s odor-evoked responses

seem matched in duration (Fig. 3f,g). This temporal concordance is consistent with the idea that

a depression of the inhibitory feedback from MBON-γ1pedc>α/β disinhibits PPL1-α3’s

odor-evoked responses.

We first tested this idea in the context of innate valence coding by using RNAi to

downregulate the expression of the GABA-A receptor in PPL1-α3. This manipulation disrupted
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the dynamic range and bi-directional coding of innate odor valence in PPL1-α3 (Extended Data

Fig. 8a –d). Odor-evoked spiking was generally increased, especially for attractive odors

(Extended Data Fig. 8e), whereas spontaneous spiking was unaltered (Extended Data Fig. 8f).

Next, we tested the role of feedback inhibition from MBON-γ1pedc>α/β in the context of

associative conditioning. We used two distinct expression systems (GAL/UAS and LexA/

LexAop) to block neurotransmission from MBON-γ1pedc>α/β as we imaged PPL1-α3’s spiking

dynamics during training with attractive odors (Fig. 4i). With MBON-γ1pedc>α/β signaling

blocked, PPL1-α3 exhibited slight increases in spiking in response to odor presentation, and

these spiking responses were unaffected by training (Fig. 4j). These results stand in sharp

contrast to those from control flies, which exhibited the normal reduction in PPL1-α3 spiking in

response to attractive odors and temporary conversion of these responses to odor-evoked spiking

increases after associative conditioning (Fig. 4k). These results suggest that, during learning, the

rapidly induced depression of CS+-evoked responses in MBON-γ1pedc>α/β increases the

CS+-evoked responses of PPL1-α3, which in turn shape the formation of long-lasting plasticity in

MBON-α3 and therefore long-lasting memory.

To test this interpretation, we used optogenetic excitation of MBON-γ1pedc>α/β to

artificially maintain its inhibitory feedback signals at a high level during conditioning with an

attractive odor pair (Fig. 4l). Although the control groups showed reduced attraction to the CS+

odor at 5-min and 3-hr after training (Fig. 4m,n), flies in which MBON-γ1pedc>α/β was

activated during conditioning had a subsequent, selective memory impairment at 3 hr after

training (Fig. 4m). This delayed memory impairment shows that removal of the strong feedback

from MBON-γ1pedc>α/β is indeed crucial for the formation of a long-lasting memory.
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A computational model captures valence integration and memory trace interactions.

To capture the interaction dynamics of innate and learnt valence signals, we created a

computational model with 3 interconnected DAN/MBON learning modules (γ1, α2, and α3) that

exhibited both short- and long-term plasticity (Methods; Fig. 5a), jointly constrained by the fly

connectome30 and our voltage-imaging results. We excluded DANs and MBONs in the γ2 and

α’3 modules as well as the MBON-α’2 neuron from the model, because they do not directly

connect to the 3 interconnected learning modules.

The model has 9 different types of neurons (open circles; Fig. 5a): Dγ1, Dα2, Dα3, Mγ1,

Mα2, and Mα3, which respectively represent PPL1-γ1pedc, PPL1-α’2α2, PPL1-α3,

MBON-γ1pedc>α/β, MBON-α2sc, and MBON-α3; Kenyon cells (KC1 and KC2) that receive

olfactory CS+ and CS– signals and transmit them to downstream DANs and MBONs via

KC→DAN and KC→MBON connections; and a shock-sensing neuron (SN) that sends electric

shock-related input to Dγ1 and Dα3. The DANs integrate this shock-related input with olfactory

signals arriving via the KC→DAN connections and feedback signals sent via the MBON→DAN

connections. We set the signs of the various neural inputs according to the neurotransmitters used

in actuality by each neuron.

To depict neural plasticity in the MB, the concurrent activation of a KC and its

postsynaptic DAN in the model modifies the synaptic weight of the KC→MBON connection

according to an anti-Hebbian learning rule (Supplementary Appendix; Fig. 5b). The initial

connection strengths of the KC→DAN and MBON→DAN connections determine the innate

representations of odor valence in the DANs. The learning-induced changes of the KC→MBON

weights allow learnt valence information to influence DAN dynamics via the MBON→DAN

feedback inputs. To determine the values of all model parameters, including those setting the
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rates of plasticity, we optimized the model to fit our voltage-imaging measurements of neural

spike rates across multiple time points in the learning process (Supplementary Appendix;

Fig. 5c; Extended Data Fig. 9a,b).

We first assessed how the innate valences of hypothetical odors influence plasticity and

the efficiency of learning in the 3 different MBONs of the model. We quantified the innate

valence of each hypothetical odor via the change in DAN spiking that it evoked prior to

conditioning; thus, hypothetical odors that inhibited spiking were considered attractive, whereas

those that increased spiking represented repulsive odors. As in our real experiments, we studied

associative conditioning using odors of equal innate valences prior to conditioning. After a single

bout of associative conditioning, all 3 model MBONs exhibited plasticity in their responses to

both CS+ and CS– odors. Simulated conditioning with attractive odors led to a weak depression

or even a potentiation of the odor-evoked responses of all 3 MBONs. Simulated conditioning

with repulsive odors led to more substantial depressions of odor-evoked MBON spiking (Fig.

5d). Consistent with these initial findings of innate valence-dependent conditioning, the model

exhibited valence-dependent plasticity dynamics across the immediate 24 hr after 6 bouts of

conditioning. This valence dependence was especially notable in the dynamics of the CS+ vs. CS–

response biases of MBON-α2sc and -α3 (Extended Data Fig. 9c; Extended Data Fig. 10).

Thus, in the model, as in the empirical results, innate odor valences regulate the efficiency of

neural plasticity.

Next, we explored how learnt odor valences in the model influence subsequent bouts of

conditioning. As in our experiments, we were particularly interested in the role of inhibitory

feedback from MBON-γ1pedc>α/β to the DANs. We used the bias of CS+- and CS–-evoked

MBON spiking as a measure of plasticity, and we determined bias values in the model after
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varying numbers of training bouts (3–15) in the presence or absence of the MBON-γ1pedc>α/β

feedback (Fig. 5e). In the absence of this feedback, plasticity in MBON-γ1pedc>α/β fell by only

3–9%, but in MBON-α2sc it was fully eliminated (Fig. 5e). In MBON-α3, there were

time-dependent plasticity effects; a lack of feedback from MBON-γ1pedc>α/β reduced plasticity

by 0.1 –27% at 15-min after conditioning and by 33–58% at 3 hr after conditioning (Fig. 5f).

Thus, in the model as in the real data, previously learnt odor valences facilitate the formation of

long-lasting plasticity in MBON-α3 owing to feedback signals from MBON-γ1pedc>α/β.

In addition to replicating key experimental findings, the model also yielded several

unexpected but experimentally testable predictions. First, the model predicted that the

magnitudes of learning-induced depressions in MBONs should depend on the inter-stimulus

interval (ISI) between conditioning stimuli; this prediction resembles the ‘spacing effect’ that has

been observed in many memory tasks and animal species, such that learning protocols that are

repeated at greater temporal separations are more effective in inducing long-term memories65. In

our model, when we increased the training ISI from 60 s to 900 s, the amplitude of short-term

(5-min) depression in MBON-γ1pedc>α/β gradually declined. Moreover, the model exhibited a

striking ISI-dependence of plasticity in MBON-α2sc and MBON-α3 at 3 hr and 24 hr after

conditioning, with the greatest levels of plasticity induced by an ISI of about 360 s (Fig. 5g;

Extended Data Fig. 9d). This effect was greatest in MBON-α3 and depended upon the

MBON-γ1pedc>α/β feedback (Extended Data Fig. 9e,f). To test this prediction of the model, we

verified experimentally that 6 bouts of training using an ISI of 360 s induced significantly

stronger depression at 24-hr depression in MBON-α3 than training with an ISI of 60 s (Fig. 5h),

showing the embodiment of the ‘spacing effect’ within the neural activity of the long-term

memory module of the MB.
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The model also predicted that the extinction of plasticity in MBON-α3 should depend on

innate odor valence as well as the elapsed time since conditioning. After repeated pairings of

odor and shock, the CS+-evoked responses of PPL1-α3 in the model initially increased but then

gradually faded away by 1 hr after conditioning. In other words, within the first hour after

conditioning, the CS+ has not only been associated with the US within the short-term learning

unit but also acts like a reinforcer in the long-term learning units (Extended Data Fig. 10c,e).

Consequently, re-exposures to the CS+ and CS– odors at different time points after conditioning

differentially influenced the plasticity of MBON-α3 (Fig. 5i,j; Extended Data Fig. 9g). For

simulated attractive odors, extinction sessions starting within 30 min after training led to little to

no effect on MBON-α3 plasticity levels, whereas extinction sessions that started at 60 min or

longer after training successfully erased the training-induced depression in MBON-α3 (Fig. 5j;

Extended Data Fig. 9g; Extended Data Fig. 11). This effect depended on the feedback from

MBON-γ1pedc>α/β (Extended Data Fig. 9g). In contrast, for simulated repulsive odors,

extinction sessions led to only modest and transient changes in the CS+ vs. CS– response bias of

MBON-α3 that recovered soon afterward (Fig. 5j; Extended Data Fig. 9g; Extended Data Fig.

11). To test these predictions, we experimentally measured the CS+ vs. CS– response biases of

conditioned flies that received no extinction sessions and those of flies that had extinction

sessions at 10 min or 2 h after conditioning. The results were strikingly consistent with those

from the model and revealed both the predicted valence- and time-dependent aspects of

extinction (Fig. 5k). Overall, the model’s quantitative, non-intuitive predictions that are

experimentally verifiable show the power of jointly using voltage-imaging and connectomic data

to construct neural circuit models whose dynamics capture essential features of learning and

memory.
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Discussion

Our results show that the fly MB uses a dopamine-based valence integration mechanism to

actively modulate the efficiency of memory formation and extinction. The impact is most

pronounced for the regulation of long-term memories, which makes sense from a functional

perspective, as it helps reserve long-lasting memories (which may be costly energetically66) for

associations that may be highly reliable and occur frequently in an animal’s environment.

To enable this active regulation of memory, dopamine signals from PPL1-DANs encode

the summed value of jointly presented stimuli. This net value comprises innate and learnt

valences and can be positive or negative, contrary to prior descriptions of PPL1-DANs that

emphasized their signaling of negatively-valued stimuli67–70. During initial cycles of associative

conditioning, PPL1-DANs sum the innate valences of both the cue and the reinforcer; this leads

to depression of KC→MBON connections, especially in the faster-acting, short-term (γ1 and γ2)

learning units of the MB. The use of the net valence as the teaching signal limits learning about

contradictory cue-reinforcer associations that may not be ecologically reliable—e.g. an innately

attractive cue paired with a punishment—since such pairings evoke smaller dopamine signals

that are less effective at driving KC→MBON plasticity. Whereas, pairing an innately aversive

cue with a punishment will evoke greater dopamine signals that drive greater plasticity levels.

After repeated conditioning cycles, attenuation of feedback inhibition from the γ1

short-term learning unit allows the PPL1-DANs of the slower-acting, long-term (α2 and α3)

learning units to undergo a short-lived potentiation of their sensory-evoked responses, which

encodes the acquired valence of the CS+ and promotes the formation of long-lasting memory

traces in the α2 and α3 compartments. Thus, the MB circuit architecture enacts a feedback by

which short-term memory traces gate the formation of long-term memory traces, thereby
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ensuring that only repeated and reliable associations induce stable long-lasting memories. Future

work should test if the PAM-DAN/MBON system, which has mainly been implicated in the

learning of rewarding associations23,71,72, operates according to analogous principles.

While our data show the importance of sensory cues’ innate valences to memory

formation, it remains unclear how PPL1-DANs gain their representations of innate odor valence.

Multiple neuron-types send olfactory data to PPL-DANs, including MB anterior paired lateral

neurons, olfactory projection neurons, Kenyon cells and MBONs22,29,30,32, suggesting innate

valence coding might arise from an elegant balance of multiple excitatory and inhibitory inputs.

Longstanding conceptions of dopamine-driven learning in the mammalian brain posit that

dopamine teaching signals convey reward prediction errors15–18. Recent work suggests that

dopamine may also encode information about value73, not just errors in value prediction. Most

models of dopamine-based learning in the Drosophila MB involve synaptic plasticity rules in

which plasticity of KC→MBON connections is gated by coincident activations of KC and DAN

neurons in the same MB compartment74–76. Several models also incorporate reward prediction

error signaling via MBON→DAN feedback connections8,50–52. However, no prior model has fully

explained MB neural dynamics or provided quantitative, testable predictions.

Our computational model is constrained by the fly connectome plus our spike imaging

data. It quantitatively captures the dynamics of 3 MB compartments, makes novel predictions,

reveals key features of the parallel-recurrent PPL1-DAN/MBON learning system, and

incorporates a hybrid of two different dopamine-mediated learning rules. First, there is a

coincidence-based learning rule that operates within a fast-acting, short-term (γ1) learning

module; within this module, dopamine signaling is not changed across learning. Second, there is

a prediction-driven learning rule that operates within two slower-acting, long-term (α2 and α3)
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learning modules; in these modules, dopamine signals rise over repeated cycles of conditioning

to convey the learnt valence of the CS+. The model shows how the joint encoding of innate and

learnt valences in the long-term memory units shapes memory dynamics, yielding non-intuitive

predictions about long-lasting plasticity that we subsequently verified experimentally.

First, the model predicts that long-lasting plasticity is enhanced when association events

are spaced at certain optimal time intervals, rather than massed in quick succession. This

‘spacing effect’ has been observed in behavioral studies of many different memory tasks77–79 and

animal species80,81, including Drosophila56,82. Our modeling and imaging results reveal a neural

embodiment of this ‘spacing effect’ and open the door to finer dissections of its underlying

mechanisms. Second, the model shows that the successful extinction of long-lasting plasticity

depends on both the timing of extinction bouts and the innate valence of the sensory cue.

Illustrating this point, in flies that had been conditioned with attractive odors, the timing of

subsequent unpaired re-exposures to the CS+ odor strongly influenced the level of plasticity in

MBON-α3 at 3 hr after conditioning, such that extinction bouts at 10 min but not 2 hr after

conditioning were ineffective. This difference in efficacy arises from a dynamic competition

between the innate appetitive and learnt aversive odor valences, which are both encoded by

PPL1-α3 but at relative amplitudes that vary over time and different phases of learning.

Notably, in contrast to prior models of the MB8,50–54,83, our model could not have been

constructed based on Ca2+ imaging data. Unlike Ca2+ imaging34, voltage imaging allows

high-fidelity detection of individual action potentials and reports rises and declines in spiking

equally well35,36. Using FRET-opsin voltage indicators39, we uncovered the decreases in

PPL1-DAN spiking evoked by attractive odors and food rewards, neither of which had been seen

in Ca2+ imaging studies25,26. Our own Ca2+ imaging studies did reveal the encoding of stimulus
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valence by PPL1-DANs, but the Ca2+ responses poorly reported spiking decreases and the

encoding of net valences when two stimuli were present concurrently (Extended Data Fig.

12a–h). Thus, constructing our model based directly on observations of neural spiking was

important for the model to be able to provide its quantitative, empirically verifiable predictions.

Overall, the parallel-recurrent DAN/MBON learning system uses dopamine-based

valence integration to dynamically regulate memory formation and extinction in a way that

accounts for both the innate and learnt valences of sensory stimuli. Within the MB circuitry, the

interactions between sensory data, a heterogeneous set of dopamine teaching signals, and both

short- and long-term memory traces collectively allow complex memory dynamics to emerge

(Extended Data Fig. 12i). The resulting stored memories guide downstream circuits to enact

efficient and flexible decision-making over multiple time-scales. Given the many facets of

dopamine-based learning systems that were preserved across evolution, the circuit and

computational mechanisms used by the MB may provide key insights into how heterogenous

dopamine signaling within recurrent neural architectures, such as in the vertebrate basal

ganglia10, shape learning and memory dynamics in other species.
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Fig. 1 | In vivo voltage imaging of PPL1-DANs and downstream MBONs in Drosophila.

a) A diagram of PPL1-DAN/MBON connectivity, showing the parallel-recurrent structure. The 5

PPL1-DANs innervate 8 compartments, synapse onto MB axons, and thereby modulate the 6

downstream MBONs. 5 parallel learning modules are shown in different colors. Kenyon cells

and their axons are shown in gray. Solid lines indicate feedforward connections; dashed lines

indicate feedback connections.

b) Left, Schematic of the high-speed optical voltage imaging setup for awake behaving flies. The

flies are free to walk or run on a trackball, which records their locomotor responses before,

during and after odor delivery. Right, A mean fluorescence image, averaged over 15 s of a

voltage movie, showing the pAce voltage indicator expressed in the PPL1-γ1pedc, -γ2α’1, and

-α’2α2, neurons (MB504C-GAL4 fly line). Scale bar: 10 μm.

c) Left, Example optical voltage traces from live flies, showing spontaneously fired action

potentials in individual PPL1-DANs and MBONs. Black open circles mark identified spikes.

Right, Mean optical waveforms for the spikes in each individual cell.

d–f) Mean firing rates, d, spontaneous burst ratios, e, and optical spike amplitudes, f, from

PPL1-DANs (top graphs) and MBONs (bottom graphs). Burst ratio was computed as the number

of spikes occurring <20 ms after the preceding spike, divided by the total number of spikes in the

trial. Data are shown as mean ± s.e.m. Gray dots denote data from individual flies.

Kruskal-Wallis ANOVA showed that all 6 graphs exhibited significant differences across

neuron-types (n = 20 flies per neuron-type). Horizontal lines and asterisks mark specific pairwise

comparisons that yielded significant differences in post-hoc Mann-Whitney U-tests performed

with a Holm-Bonferroni correction for multiple comparisons (*P<0.05, **P<0.01, and

***P<0.001).
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Fig. 2 | PPL1-DANs heterogeneously and bidirectionally encode punishment, reward, and

odor valence.

a) Top, Raster plots of spiking by individual PPL1-DANs on 36 different trials (n = 12 flies per

neuron-type, 3 trials per fly) on which the fly received a 20-V-electric shock. Vertical dashed

line: shock onset. Gray shading covers the 200-ms-duration of the shock. Bottom, Traces

showing the time-dependent mean spiking rates before, during and after the shock, averaged over

all 36 trials. Shading on the time traces: s.e.m.

b) Mean spiking rates of each type of PPL1-DAN during the 200-ms-electric-shock, normalized

to the baseline rates of spiking in the same individual neurons. Dashed horizontal line denotes

baseline spiking rates (y = 1). (Data are shown as mean ± s.e.m.; **P<0.01, ***P<0.001; n = 12

flies per neuron-type; Wilcoxon signed-rank test comparison of the shock-evoked to baseline

spiking rates in each neuron).

c) Top, Raster plots of spiking by individual PPL1-DANs on 10 different trials (n = 10 flies per

neuron-type, 1 trial per fly) on which the fly received a 5 s sucrose feeding. Vertical dashed line:

Onset of sucrose availability. Gray shading covers the 5-s-duration of the feeding. Bottom, Traces

showing the time-dependent mean spiking rates before, during and after feeding, averaged over

all 10 trials. Shading on the time traces: s.e.m.

d) Mean spiking rates of each type of PPL1-DAN during the 5-s-sucrose-feeding, normalized to

the baseline rates of spiking in the same individual neurons. Dashed horizontal line denotes

baseline spiking rates (y = 1). (Data are shown as mean ± s.e.m.; *P<0.05, **P<0.01; n = 10 flies

per neuron-type; Wilcoxon signed-rank test comparison of the feeding-evoked to baseline

spiking rates in each neuron).

e) A schematic showing the measurement of a fly’s odor-evoked behavioral responses using a
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trackball. We delivered odors to the fly’s antenna at a 45 deg. angle in the horizontal plane. The

sign and amplitude of the fly’s evoked rotational motion indicate either approach behavior to an

odor of positive valence or avoidance behavior in response to an odor of negative valence.

  f) Mean changes in rotational speed of wild-type flies (w1118) in response to 3 different odors

(either apple cider vinegar (ACV) or 0.3% or 3% benzaldehyde dissolved in mineral oil), each

presented for a duration of 5 s. Shading on the time traces: s.e.m. over 36 total trials in 12 flies.

Dashed vertical line: onset of odor delivery. Gray shading covers the duration of odor delivery.

g) Fly’s rotational responses to odor delivery. Each row in the plot shows an individual fly’s

change in rotational speed (averaged over 3 trials per odor; plotted using 50-ms time bins and

smoothed with a rolling averaging over 6 time bins) for the 5 specific odors shown (n = 12 flies).

Dashed lines mark odor delivery onset (red line) and offset (black line). 1%OCT: 1% 3-octanol

in mineral oil. 1%EtA: 1% ethyl acetate in mineral oil. In this plot and panel i, odors are

arranged from top to bottom progressing from the most aversive to the most appetitive odor,

respectively.

h) Mean ± s.e.m. changes in rotational speed in response to the same 5 odors as in g, averaged

over the 5 s of odor presentation and 36 trials per odor (n = 12 flies, 3 trials per fly). Individual

points denote data from individual flies. Odor data are plotted in order from left to right on the

x-axis from the most repulsive to the most attractive odor.

i) Top, Odor-evoked changes in spike rates in PPL1-DANs, relative to the mean baseline spiking

rate on each trial (averaged over the 5 s on each trial prior to odor delivery; n =12 flies, 1 trial per

odor per fly). Dashed lines mark odor delivery onset (red line) and offset (black line). Bottom,

Scatter plots of the mean ± s.e.m. changes in spike rates measured during odor exposure (5 s

duration) relative to baseline spike rates (data and flies from above graphs), plotted as a function
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of the mean ± s.e.m. odor-induced changes in rotational speed (data and flies of h. Gray circles

show data from individual flies. As in h, odor data are plotted from left to right on the x-axis

from the most repulsive to the most attractive odor. Dashed lines are linear regressions (R = 0.79,

0.72, 0.77, 0.8 and 0.40 for PPL1-γ1pedc, -γ2α’1, -α’2α2, -α3 and -α’3 respectively; P = 1 ×

10–14–2 × 10–3). Extended Data Fig. 4 has comparable data for the MBONs.

j) Odor-evoked behavior vs. odor-evoked neural activity tuning curves for the different types of

PPL1-DANs (left) and MBONs (right), with the data for each cell-type shown in a distinct color

(colors are the same as those in panel k). Each data point is for a given odorant. As in h and i,

odor data are plotted from left to right on the x-axis from the most repulsive to the most attractive

odor. Mean odor-induced changes in neural spiking rate (y-axis) for each cell-type and odorant

are plotted against the flies’ mean changes in rotational speed induced by the same odorant

(x-axis). Solid and dashed lines: Linear regressions for PPL1-DANs and MBONs, respectively.

Error bars: s.e.m.; n = 12 flies per cell-type; R = 0.99, 0.99, 0.97, 0.99, 0.85 for PPL1-γ1pedc,

-γ2α’1, -α’2α2, -α3 and -α’3 respectively, P = 3 × 10–4–0.07; R = 0.73, 0.97, 0.78, 0.81, 0.29,

0.82 for MBON-γ1pedc>α/β, -γ2α’1, -α2sc, -α’2, -α3 and -α’3m, respectively; P = 0.005–0.64).

k) A 12 × 12 matrix of correlation coefficients, computed across the different neuron-types using

either each of the 11 neuron-types’ mean odor-evoked responses to the same 5 odors used in

panel i, or the flies’ mean rotational response to each of the 5 odors (data from panel h).

l) To estimate the extent to which a fly might be able to distinguish the different odorants used in

our study based solely on the odor-evoked patterns of neural activity across the 5 PPL1-DANs or

6 MBONs, we performed a classification analysis using a collection of neural recordings from

117 total flies, in which the dynamics of each neuron-type was recorded in 12 different flies

(Some fly lines allowed us to record from more than 1 cell-type at once; Methods; Extended
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Data Table 1). The box-and-whisker plot shows the accuracy of odor classification using the set

of mean odor-evoked changes in neural activity across either the 5 PPL1-DANs or the 6

MBONs. Notwithstanding that there are fewer PPL1-DANs than MBONs, odor classification

was significantly more accurate based on PPL1-DAN activity patterns. We compared the results

to those attained using shuffled datasets, in which odor identities were randomly permuted.

Boxes span the 25th–75th percentiles, horizontal lines denote median values, whiskers span 1.5

times the interquartile distance, and circles are outlier data points. Gray dashed line indicates

chance level (***P < 0.001; Wilcoxon ranked sum test).
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Fig. 3 | Learning induces distributed, bidirectional neural plasticity in PPL1-DANs and

MBONs.

a) Bottom, Timeline for our behavioral assay of olfactory associative learning and memory, for

head-fixed awake flies on a trackball. Each fly first underwent 3 bouts of odor-testing before

conditioning (Pre), in which we examined the animal’s initial behavioral responses to the 2 odors

to be used during conditioning (CS+ and CS–). Next, we subjected each fly to 6 bouts of training,

in each of which the fly received a paired presentation of the CS+ and the unconditioned stimulus

(US, a pulse-train of electric shocks), plus an unpaired presentation of the CS–. At 5 min after the

end of the last training bout, each fly underwent 3 bouts of testing to assess its odor-evoked

behavioral responses post-conditioning. At 1 hr after the end of training, the fly underwent

another 3 testing bouts. Top, Timelines for individual bouts of training (left) and testing (right).

Both odors were initially attractive and were either apple cider vinegar (ACV) or 1% ethyl

acetate; assignments as CS+ and CS– were counterbalanced across 12 flies. Red dashed line

indicates the end of the training session.

b) Traces showing the mean time-dependent rates of the fly’s rotational speed on the trackball,

illustrating responses to the CS+ and CS– odors for testing bouts pre-training (Pre; top row), at 5

min after conditioning (middle row), and at 1 hr after conditioning (bottom row). Each trace

shows the mean response averaged over 12 different flies and the 3 testing bouts within each

testing period (see panel a).

c) Flies exhibited behavioral conditioning to the CS+ but not the CS– odors. Plots show mean ±

s.e.m. changes in rotational speed induced by CS+ and CS– odors in the pre-training (Pre), 5 min,

and 1 hr testing sessions. (*P<0.05; n = 12 female flies; Friedman ANOVA followed by post-hoc

Wilcoxon signed-rank tests with Holm-Bonferroni correction). Gray lines denote individual flies.
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d) Bottom, Timeline for our optical voltage imaging assay of olfactory associative learning and

memory in head-fixed awake flies. Each fly first underwent 1 bout of imaging before

conditioning (Pre), in which we examined the neuronal spiking responses to the 2 odors to be

used during conditioning (CS+ and CS–). Next, we subjected each fly to 3 bouts of training, in

each of which the fly received a paired presentation of the CS+ and the unconditioned stimulus

(US, a pulse-train of electric shocks), plus an unpaired presentation of the CS–. At 5 min after the

end of the training bouts, each fly underwent a mid-training (Mid) imaging bout to assess the

odor-evoked spiking responses. At 5 min after the end of the Mid imaging bout, we subjected

each fly to 3 more bouts of training. Then, the fly underwent another 2 imaging bouts at 5 min

and 1 hr after the training, respectively. Top, Timelines for individual bouts of training (left) and

imaging (right). Both odors were either apple cider vinegar (ACV) or 1% ethyl acetate;

assignments as CS+ and CS– were counterbalanced across 12 flies. Red dashed line indicates the

end of the training session.

e) Example optical voltage traces acquired of MBON-γ1pedc>ɑ/β neuron spiking responses,

immediately before, during and after 5-s exposures to either the CS+ (orange shading) or the CS–

(blue shading) odors during the pre-training (Pre), mid-training (Mid), 5-min or 1-hr imaging

periods (see panel d).

f, g) Left, Mean ± s.e.m. odor-evoked changes in spike rates of PPL1-DANs (f), or MBONs (g),

induced by the CS+ and CS– odors in the pre-training (Pre), mid-training (Mid), 5-min, and 1-hr

imaging periods. Right, Changes in the CS+ vs. CS– bias in evoked spiking responses relative to

that of the pre-training session (Methods). Gray lines denote data from individual flies.

(*P<0.05, **P<0.01 and ***P<0.001; n = 12 flies per neuron-type; Friedman ANOVA followed

by post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni correction).
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Fig. 4 | Both innate and learnt valences influence long-lasting plasticity and behavior.

a, b) Optical voltage imaging reveals plasticity at 24 hr after behavioral conditioning in

MBON-α3 neurons trained with a pair of attractive odors, ACV and 1% ethyl acetate (EtA), (a),

or a pair of repulsive odors, OCT and 0.3% benzaldehyde (BEN), (b). We followed the training

and imaging protocol of Fig. 3d, but with additional imaging sessions at 3 hr and 24 hr

post-training. Top, Traces show the time-dependent mean spiking rates of MBON-α3,

immediately before, during and after 5-s exposures to either the CS+ (orange) or the CS– (blue)

odors during the pre-training (Pre), mid-training (Mid), 5-min, 1-hr, 3-hr, and 24-hr imaging

sessions. Bottom, Odor-evoked changes in spike rates of MBON-α3 neurons, relative to baseline

spiking rates, in 12 individual flies. Each row shows a single trial of data from each fly.

c, d) Left, Mean ± s.e.m. odor-evoked changes in spike rates (relative to spike rates in the 5 s

before odor presentation) of MBON-α3 neurons trained with attractive odors (ACV and EtA),

(c), or repulsive odors (OCT and BEN), (d), induced by the CS+ and CS– odors in the

pre-training (Pre), mid-training (Mid), 5-min, 1-hr, 3-hr, and 24-hr imaging sessions. Right,

Changes in the CS+ vs. CS– bias in evoked spiking responses relative to that of the pre-training

session (Methods). Gray lines denote data from individual flies. (*P<0.05 and **P<0.01; n = 12

flies per neuron-type; Friedman ANOVA followed by post-hoc Wilcoxon signed-rank tests with

Holm-Bonferroni correction).

e) Attractive odor attenuates punishment-induced spiking response in PPL1-α3. Top, Changes in

spike rates in the PPL1-α3 neuron relative to baseline spiking rates, immediately before, during

and after exposures to either 10-s-exposures to apple cider vinegar (ACV; blue shading; left),

5 electric-shock pulses (each 0.2 s in duration with 1.8 s interval between pulses; red tick marks;

middle), or the paired presentation of ACV and shocks (right) to n = 16 flies (1 trial per fly for
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each of the 3 stimulation conditions). Bottom, Traces showing the time-dependent mean spiking

rates, averaged over all 16 trials for each stimulus. Dashed lines mark the mean baseline spiking

rates, averaged over the first 5 s of recording. Gray shading on the time traces: s.e.m.

f) Mean ± s.e.m. odor-evoked changes in the spike rates of the PPL1-α3 neuron, relative to

baseline levels, as measured during 10-s exposures to either ACV (blue bar), 5 electric shocks

(red bar), or the paired presentation of ACV and shocks (purple solid bar). (**P<0.01; n = 16

flies; Friedman ANOVA followed by post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni

correction). The changes in spiking in response to the paired presentation of ACV and shocks

were indistinguishable from the sum of the changes induced by the two stimulus-types, when

each was presented independently (purple hollow bar; n = 16 flies; Wilcoxon rank sum test).

Gray lines denote data from individual flies.

g) Repulsive odor enhances punishment-induced spiking responses in PPL1-α3. Top, Changes in

spike rates, immediately before, during and after 10-s-exposures to either 1% 3-octanol (OCT;

green shading), 5 pulses of 200-ms-electric-shock (red lines), or the joint presentation of OCT

and shock (n =16 flies, 1 trial per fly for each of the 3 stimulation conditions). Bottom, Traces

showing the time-dependent mean spiking rates, averaged over all 16 trials for each stimulus.

Dashed lines: mean baseline spiking rates, averaged over the first 5 s of recording. Gray shading

on the time traces: s.e.m.

h) Mean ± s.e.m. odor-evoked changes in the spike rates of PPL1-α3 relative to baseline levels,

measured during 10-s exposures to either OCT (green bar), electric shocks (red bar), or joint

presentation of OCT and shocks (purple solid bar). (*P<0.05 and **P<0.01; n = 16 flies;

Friedman ANOVA followed by post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni

correction). The spiking responses to the joint presentation of OCT and shocks were
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indistinguishable from the sum of the changes induced by the two stimulus-types, when each was

presented independently (purple hollow bar) (n = 16 flies; Wilcoxon ranked sum test). Gray lines

denote data from individual flies.

i) A connectivity diagram showing the feedback connections from the MBON-γ1pedc>ɑ/β

neuron to the PPL1-α3 neuron. To assess the influence of MBON-γ1pedc>ɑ/β feedback on

PPL1-α3, we blocked the synaptic transmission of MBON-γ1pedc>ɑ/β neuron by expressing the

tetanus toxin light chain and then performing voltage imaging on PPL-α3 using the pAce

voltage-indicator ((TH-LexA/13×LexAop-pAce;MB085C/UAS-TnT).

j, k) Left, Mean ± s.e.m. odor-evoked changes in PPL1-α3 spike rates in the blocking

(TH-LexA/13×LexAop-pAce;MB085C/UAS-TnT), (j), or control (TH-LexA/13×LexAop-pAce)

groups, (k), induced by the CS+ and CS– odors in the pre-training (Pre), mid-training (Mid),

5-min, and 1-hr imaging sessions. Right, Changes in the CS+ vs. CS– bias in evoked spiking

responses relative to that of the pre-training session (Methods). Gray lines denote data from

individual flies. (*P<0.05 and **P<0.01; n = 12 flies per neuron-type; Friedman ANOVA

followed by post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni correction).

l) Bottom, Timeline for 3-hr behavioral assay of memory with optogenetic activation, for 4

distinct groups of head-fixed awake flies on a trackball. An experimental group of flies

(MB085C/UAS-CsChrimson-tdT) expressed the CsChrimson opsin in MBON-γ1pedc>ɑ/β.

Control flies (MB085C/+) lacked the opsin. Each of these two genotypes was subdivided into

groups that either did (Light-on) or did not (Light-off) receive optogenetic illumination (red

shading) during the same period as odor presentation. Each fly first underwent 3 bouts of

odor-testing before conditioning (Pre), in which we examined the animal’s initial behavioral

responses to the 2 odors to be used during conditioning (CS+ and CS–). Next, we subjected each
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fly to 6 bouts of training, in each of which the fly received a paired presentation of the CS+ and

the unconditioned stimulus (US, a pulse-train of electric shocks), as well as an unpaired

presentation of the CS–. Flies of either genotype in a ‘Light-On’ group also received 30 pulses of

0.5-s red-light (625 nm, 0.5Hz) during CS+ and CS– presentations. At 5 min after the end of the

last training bout, each fly underwent 3 bouts of testing to assess its odor-evoked behavioral

responses post-conditioning. At 3 hr after the end of training, each fly underwent another 3 bouts

of memory testing. Top, Timelines for individual bouts of training (left) and testing (right). Both

odors were initially attractive and were either ACV or EtA; assignments as CS+ and CS– were

counterbalanced across 12 flies. Experimental results are shown in m, n. Red dashed line

indicates the end of the training session.

m, n) At 3-hr-post-conditioning, flies in the Light-on experimental group

(MB085C/UAS-CsChrimson-tdT) had impaired 3-hr memory performance as compared to flies

with the same genotype in the Light-off group, (m). Flies in the control group (MB085C/+) had

normal memory performance at 3 hr after conditioning, regardless of whether they received

optogenetic illumination, (n). Plots show mean ± s.e.m. changes in rotational speed induced by

CS+ and CS– odors in the pre-training (Pre), 5 min, and 1 hr testing sessions. (*P<0.05; n = 12

flies per neuron-type; Friedman ANOVA followed by post-hoc Wilcoxon signed-rank tests with

Holm-Bonferroni correction). Gray lines indicate individual flies. Solid and open bars denote

data from the Light-on and Light-off groups, respectively.
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Fig. 5 | A computational model of the mushroom body constrained by the fly connectome

and optical voltage recordings captures the interactions between learning units and

yields testable predictions about memory storage and extinction.

a) Diagram showing the connectivity of the 3 interconnected learning modules (γ1, ɑ2 and ɑ3) in

our computational model, which is constrained by both the voltage imaging data of this paper

and the fly connectome30. Each of the 3 modules is shown in a distinct color. There are 9

different types of neurons (open circles) in the model. Solid lines with arrowheads denote

feedforward synaptic connections; dashed lines with arrowheads indicate feedback synaptic

connections; dotted lines with arrowheads indicate feedback synaptic connections; solid lines

with circular heads indicate sites of presynaptic dopaminergic modulation. Kenyon cells (KC1

and KC2) receive olfactory CS+ and CS– signals and transmit them to the downstream DANs and

MBONs via KC→DAN and KC→MBON connections, respectively. DANs integrate shock input

from a shock-sensing neuron (SN), olfactory information conveyed via the KC→DAN

connections, and feedback signals from the MBONs via the MBON→DAN connections.

Concurrent activation of a KC and its postsynaptic DAN modifies the synaptic weight of the

KC→MBON connection according to an anti-Hebbian learning rule (see panel b and Methods).

Supplementary Table 1 in the Supplementary Appendix lists all 25 parameters in the model

and the parameter values that led to an optimal fit to the experimental voltage-imaging data taken

across multiple time points in the learning process. Specifically, we found the optimal parameter

values by fitting the spiking rates in the model to the 64 measurements of mean ± s.e.m spike

rates and odor-evoked changes in spiking for the 3 PPL1-DANs and 3 MBONs during

pre-training (Pre), mid-training (Mid), 5-min, and 1-hr imaging periods (40 data points from

Fig. 3g,h) and the 24-hr recordings in MBON-ɑ3 (24 data points from Fig. 4c,d). SN:

Shock-sensing neuron; KC: Kenyon cell; Dγ1: PPL1-γ1pedc; Dɑ2: PPL1-ɑ’2ɑ2; Dɑ3: PPL1-ɑ3;
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Mγ1: MBON-γ1pedc>α/β; Mɑ2: MBON-ɑ2sc; Mɑ3: MBON-ɑ3.

b) A graph showing the timing dependence of the dopamine-mediated, anti-Hebb rule governing

plasticity of the KC→MBON connections in the computational model. Δt denotes the time

difference between DAN and KC activation. When a DAN activates before its presynaptic KC,

this increases the strength of the downstream KC→MBON synaptic connection. In contrast,

when a KC activates before its presynaptic DAN, this decreases the strength of the KC→MBON

connection.

c) After finding the optimal parameter values for the computational model, we examined how

well the model’s predictions matched the data used to train it. We compared the mean ± s.e.m.

odor-evoked changes in spiking for the 6 DAN and MBON neuron-types, as found empirically

from voltage-imaging data (solid lines), to the model predictions (dashed lines) for time points

before, mid-way through, and at 5 min and 1 hr after associative conditioning. For both the

empirical and computational studies, we followed the full protocol for associative conditioning

shown in Fig. 3d. For the empirical studies, we used two odorants of approximately equal innate

valences, ACV and EtA, for the CS+ and CS– (with CS+ and CS– assignments counterbalanced

across 12 flies as in Fig. 3f,g). Black horizontal dashed lines mark zero change in spiking upon

odor presentation. For the modeling studies, we used CS+ and CS– odors of equal valences,

matched in value to the average innate valence of ACV and EtA, as determined using

odor-evoked changes in DAN spiking prior to conditioning. As the plots show, the model well

captures the patterns of odor-evoked spiking at all phases of associative conditioning.

d) We used the optimized computational model to examine how the innate valences of 9 different

hypothetical odors influence the learning-induced changes in odor-evoked spiking for the 3

different MBONs in the model. Within each of the individual plots shown, each row presents
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data for a single hypothetical odor. The innate valence of each odor is specified by the change in

DAN spiking that it evokes (y-axis values), relative to baseline spiking levels and prior to any

associative conditioning. Using the model, we simulated a single training bout of associative

conditioning, according to the protocol of Fig. 3d, using each of the 9 odors as either the CS+

(top 3 plots) or the CS– (middle 3 plots); these 6 plots show, as a function of time after the

training bout, the resulting changes in the odor-evoked rates of MBON spiking. The bottom 3

plots show how the biases between CS+-evoked and CS–-evoked MBON spiking change as a

function of time after the training bout. After a single training bout, all 3 MBONs exhibit

plasticity in their responses to both the CS+ and CS–. The MBON-γ1pedc>α/β exhibits

short-lived depression, MBON-ɑ2sc undergoes longer-lived plasticity that can be either a

potentiation or a depression depending on the odor’s innate valence, and MBON-ɑ3 exhibits the

longest-lasting plasticity, which also can be bi-directional. Extended Data Fig. 9 has additional

results.

e) To explore how neural feedback from MBON-γ1pedc>α/β to the DANs influences the

associative conditioning process, we used the optimized model to simulate the biases between

CS+-evoked and CS–-evoked MBON spiking after different numbers of training bouts (y-axis

values) occurring in immediate succession, with the feedback pathway shown in panel a either

active (top row of plots) or inactivated (bottom row of plots). These computational studies used

hypothetical odors with no innate valence for either the CS+ or CS–. The 6 plots show, as a

function of time after the last training bout, the resulting biases between CS+-evoked and

CS–-evoked MBON spiking, for simulations with (top row) or without (bottom row) feedback

signals from MBON-γ1pedc>α/β. The removal of feedback has little net effect on the plasticity

of MBON-γ1pedc>α/β (left column), obliterates the plasticity of MBON-ɑ2sc (middle column),
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and decreases the longevity of plasticity in MBON-ɑ3 (right column).

f) To evaluate the functional importance of feedback signals from MBON-γ1pedc>α/β, we used

the optimized model to compare the levels of plasticity that arise in each MBON in the presence

or absence of the feedback. The differences between these values provide assessments of the

feedback’s impact. The plot shows the percentage differences in the mean CS+ vs. CS– spiking

bias with vs. without MBON-γ1pedc>α/β feedback, for 3–15 training bouts, and at 15-min and

3-hr after the last training bout (n = 10,000 simulations; error bars span the 16%–84% C.I.

percentiles).

g) We used the computational model to evaluate how the inter-stimulus-interval (ISI) between

CS+ and CS– presentations within a training bout influences MBON plasticity at different time

points after training. The plots show the mean CS+ vs. CS– spiking bias in each of the 3 MBONs

in the model, at 5 min, 3 hr or 24 hr after 10 bouts of training using different ISI values (n =

10,000 simulations per ISI value; error bars span the 16%–84% C.I. percentiles). These

computational studies used hypothetical odors with no innate valence for either the CS+ or CS–.

h) To test the model’s predictions for the training protocols used in our experiments, we

examined how the inter-stimulus-interval (ISI) between CS+ and CS– presentations affected

MBON plasticity at different time points after 6 training bouts (the protocol of Fig. 3d) in both

the simulations and the real data. The plot shows model predictions (solid bars; mean values) and

measured values (open bars; mean ± s.e.m.) for the CS+ vs. CS– spiking bias in MBON-α3 at

5 min and 24 hr after the 6th training bout, using an ISI of 60 s, 135 s or 360 s. Gray dots: data

from individual flies. Real data: *P<0.05; n = 14 flies; Kruskal-Wallis ANOVA followed by

post-hoc Mann-Whitney U-tests with Holm-Bonferroni correction. Modeling data: n = 10,000

simulations per ISI value; error bars span the 16%–84% C.I. percentiles.
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i) Bottom, Timeline for extinction training in both our optical voltage imaging experiments and

computational simulations. Each fly first underwent 1 bout of imaging before conditioning (Pre),

in which we examined the neuronal spiking responses to the 2 odors to be used during

conditioning (CS+ and CS–). Next, we subjected each fly to 3 bouts of training, in each of which

the fly received a paired presentation of the CS+ and the unconditioned stimulus (US, a

pulse-train of electric shocks), and an unpaired presentation of the CS–. At 5 min after the end of

the training bouts, each fly underwent another imaging bout (5-min) to assess the odor-evoked

spiking responses. At different time points after the end of the training bout, we subjected each

fly to 3 bouts of extinction, in each of which the fly received CS+ and CS– presentation but no

shock presentation. Then, the fly underwent another imaging bout at 3 hr after the training. Top,

Timelines for individual bouts of training (left) and extinction (right). Red dashed line indicates

the end of the training session.

j) To examine the effects of extinction training, we used the optimized model to simulate the

effects of extinction training (3 bouts of CS+ and CS– presentation but no shock presentation)

occurring at different times after the last conditioning bout. The plots show model predictions for

the CS+ vs. CS– spiking bias in MBON-α3 across a 3-hr duration following 3 bouts of classical

conditioning; the different rows of each plot show the results for extinction sessions (marked

with black squares) occurring at distinct times after the last training bout; the bottom row marks

the result has no extinction. The simulations used pairs of odors that both had attractive innate

valences (left plot; valences matched to those of apple cider vinegar, ACV, and 1% ethyl acetate,

EtA) or both had aversive innate valences (right plot; valences matched to those of 1% 3-octanol,

OCT, and 0.3% benzaldehyde, BEN). For the innately attractive odors, extinction training has the

greatest effect when it occurs at substantial intervals after the end of conditioning. For the
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innately aversive odors, the effect of extinction training is less dependent on its time of

occurrence.

k) To test the predictions of panel j, we compared the simulated (solid bars; mean values) and

experimentally measured (open bars; mean ± s.e.m.) values of the CS+ vs. CS– spiking bias in

MBON-α3 at 3 hr after training, with either no extinction training, or with extinction training (3

bouts) at either 10 min or 2 hr after the end of classical conditioning (3 training bouts). The

graph shows these values of the bias, normalized by the bias value at 5 min after classical

conditioning. Training and extinction used either innately attractive odors (ACV and EtA; blue

data) or repulsive odors (OCT and BEN; red data). Gray dots: data from individual flies. Real

data: *P<0.05, **P<0.01; n = 10 flies; Kruskal-Wallis ANOVA followed by post-hoc

Mann-Whitney U-tests with Holm-Bonferroni correction. Modeling data: n = 10,000 simulations

per ISI value; error bars span the 16%–84% C.I. percentiles.
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Extended Data Fig. 1 | Voltage imaging of neural spiking activity using split-GAL4 lines to

label PPL1-DANs and their downstream MBONs.

a–h) Example data from voltage imaging experiments of 5 different types of PPL1-DANs and 6

different types of MBONs. Left panels, Mean fluorescence images (averaged over 15 s of voltage

movies), showing the patterns of pAce expression in 9 different split-GAL4 lines. Dashed boxes

demarcate regions-of-interest (ROIs) from which we aggregated fluorescence signals to

determine fluorescence traces of transmembrane voltage activity in individual neurons. Middle

panels, Spatial maps of the mean fluorescence responses (ΔF/F) of individual neuron-types at

the peaks of their action potentials, averaged over all spikes detected (open circles) within the

selected 15-s-intervals. Dashed boxes enclose the same regions as in the left panels. Right

panels, Traces of each neuron’s relative fluorescence changes (ΔF/F) during the same

15-s-intervals used to create the spatial maps. All scale bars are 10 μm.

j,k) Mean ± s.e.m. values of the spike detection fidelity (d′), j, and spike detection error rate, k,

for PPL1-DANs (top graphs) and MBONs (bottom graphs). For each neuron-type, we collected

data from 20 different flies; gray dots are data points from individual flies. All 4 graphs exhibited

significant differences across neuron-types (n = 20 flies per neuron-type; Kruskal-Wallis

ANOVA). Horizontal lines and asterisks mark pairwise comparisons that yielded significant

differences in post-hoc Mann-Whitney U-tests performed with a Holm-Bonferroni correction for

multiple comparisons (*P<0.05, **P<0.01, and ***P<0.001).
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Extended Data Fig. 2 | Axonally initiated spikes in MBONs backpropagate into the

dendritic arbors.

a–d) Example data from 4 different types of MBONs showing the backpropagation of spikes into

the dendritic tree. Left panels, Mean fluorescence images (each an average over a 15-s-interval

of a voltage movie), showing the spatial pattern of pAce expression within an individual

MBON-type. Dashed boxes demarcate regions-of-interest (ROIs) that enclose either axons (blue)

or dendrites (red) of the selected cell. Scale bars are 10 μm. Left middle panels, Fluorescence

traces of transmembrane voltage activity from each cell’s axonal ROI (blue traces) and dendritic

ROI (red traces). Triangles mark the peak of detected action potentials. Right middle panels,

Mean waveforms of the axonal (blue traces) and dendritic spikes (red traces), computed by

spline interpolation of the fluorescence traces determined from the 1-kHz-voltage imaging data.

Vertical dashed lines mark the peaks of these spike waveforms and reveal the temporal offsets

between axonal and dendritic spikes. Right panels, Histograms of the temporal offsets between

axonal and dendritic spikes, assessed relative to the time of the dendritic spike.
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Extended Data Fig. 3 | PPL1-DANs bidirectionally encode innate odor valences.

a) Mean ± s.e.m. changes in spike rates measured during odor exposure (5 s duration), relative to

baseline spiking rates, in PPL1-γ1pedc, -γ2α’1, -α’2α2, -α3 and -α’3 neurons (n = 4  –6 flies per

odor, 2 trials per fly). Odorants: Apple cider vinegar (ACV), 0.3% or 3% benzaldehyde in

mineral oil (0.3% or 3% BEN), 1% or 10% 3-octanol in mineral oil (1% or 10% OCT), 1% or

10% ethyl acetate in mineral oil (1% or 10% EtA), 1% or 10% 1-octen-3-ol in mineral oil (1% or

10% 1O3O). The different PPL1-DANs exhibit different degrees of sensitivity to odor valence.

b) Mean time-dependent changes in the rotational (upper panels) and forward walking speeds

(lower panels) of wild-type flies (w1118) in response to 5 different odors (3% BEN, 1% OCT,

0.3% BEN, 1% EtA, and ACV), each presented for a duration of 5 s. Gray shading marks the

duration of odor delivery. Shading on the time traces: s.e.m. over 36 total trials in 12 flies.

c) Mean ± s.e.m. changes in the rotational (upper panel) and forward walking speeds (lower

panel) of wild-type flies (w1118) in response to the 5 odors used in b, averaged over the 5 s of odor

presentation and 36 trials per odor (n = 12 flies, 3 trials per fly). Individual points denote data

from individual flies. (*P<0.05 and *P<0.01; n = 12 flies per neuron type; Friedman ANOVA

followed by post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni correction)

d–h) Upper left panels, Example optical voltage traces showing PPL1-DAN responses to the

presentation of the same 5 odors as in b. Gray shading covers the duration of odor delivery.

Lower left panels, Mean time-dependent spike rates in response to each odor, averaged over 12

flies for each neuron-type, 1 trial per odor. Right panels, Mean ± s.e.m. odor-evoked changes in

spiking rates relative to baseline levels in the different PPL1-types, averaged over 12 flies per

neuron-type, 1 trial per odor, and the 5 s of odor presentation. All PPL1-types except for

PPL1-α’3 exhibited significantly different responses to the different odors (Friedman ANOVA).
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Horizontal lines and asterisks mark pairwise comparisons that were significantly different in

post-hoc tests (Wilcoxon signed rank tests with Holm-Bonferroni correction for multiple

comparisons; *P<0.05 and *P<0.01).
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Extended Data Fig. 4 | The odor-evoked responses of MBONs do not vary much across

odors with different innate valences.

a–f) Left panels, Example fluorescence voltage traces (top rows), time-dependent mean spiking

rates (middle rows), and odor-evoked changes in 12 individual flies’ spike rates relative to

baseline rates (bottom rows), for 6 different MBON-types during 5-s-presentations of 5 different

odors. Red vertical dashed lines mark the onsets of odor presentation, and black vertical dashed

lines mark the offsets. The mean spike rates shown in each graph of the middle rows are

averages over the same 12 flies, for which data is shown individually in the corresponding graph

of the bottom row. Right panels, Bar graphs showing the mean ± s.e.m. changes in spike rates

measured during 5-s-odor presentations, determined relative to baseline spiking rates. None of

the bar graphs exhibited significant differences in the MBON responses to different odorants

(Friedman ANOVA; P > 0.05).
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Extended Data Fig. 5 | Olfactory conditioning with an attractive odor pair increases

CS+-evoked responses in PPL1-α’2α2 and PPL1-α3 but not PPL1-γ1pedc, PPL1-γ2α’1 and

PPL1-α’3.

a–e) Example fluorescence voltage traces (top rows), time-dependent mean spiking rates (middle

rows), and odor-evoked changes in spike rates relative to baseline rates in 12 individual flies

(bottom rows) for PPL1-γ1pedc (a), PPL1-γ2α’1 (b), PPL1-α’2α2 (c), PPL1-α3 (d), and

PPL1-α’3 (e) neurons in response to CS+ and CS– odors in the pre-training (Pre), mid-training

(Mid), 5-min post-training, and 1-hr post-training periods (as defined in Fig. 3d). Red vertical

dashed lines mark the onsets of odor presentation, and black vertical dashed lines mark the

offsets. The mean spike rates shown in each graph of the middle rows are averages over the same

12 flies, for which data is shown individually in the corresponding graph of the bottom row. For

each conditioning experiment, we used apple cider vinegar (ACV) and 1% ethyl acetate and

assigned them as CS+ and CS– in a counterbalanced manner across 12 flies.
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Extended Data Fig. 6 | Olfactory conditioning with an attractive odor pair increases CS+

responses in MBON-γ1pedc>α/β, MBON-γ2α’1 and MBON-α3.

a–e) Example fluorescence voltage traces (top rows), time-dependent mean spiking rates (middle

rows), and odor-evoked changes in spike rates relative to baseline rates in 12 individual flies

(bottom rows) for MBON-γ1pedc>α/β (a), MBON-γ2α’1 (b), MBON-α2sc (c), MBON-α’2 (d),

MBON-α3 (e) and MBON-α’3m (f) in response to CS+ and CS– odors in the pre-training (Pre),

mid-training (Mid), 5-min post-training, and 1-hr post-training periods (as defined in Fig. 3d).

Red vertical dashed lines mark the onsets of odor presentation, and black vertical dashed lines

mark the offsets. The mean spike rates shown in each graph of the middle rows are averages over

the same 12 flies, for which data is shown individually in the corresponding graph of the bottom

row. For each conditioning experiment, we used apple cider vinegar (ACV) and 1% ethyl acetate

and assigned them as CS+ and CS– in a counterbalanced manner across 12 flies.
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Extended Data Fig. 7 | MBON-α3 exhibits long-lasting plasticity after olfactory

conditioning and is required for 3-hr memory.

a) Example fluorescence voltage traces showing odor-evoked spiking responses of MBON-α3

neurons to 5-s presentations of an innately attractive CS+ (1% ethyl acetate, red) or CS– odor

(apple cider vinegar, blue) in the pre-training (Pre) period, or at 5-min, 1-hr, 3-hr, 24-hr or 48-hr

after aversive olfactory conditioning using the training protocol of Fig. 3d.

b, c) Traces showing the mean time-dependent rates of the rotational speed on the trackball for

w1118>UAS-TnT (b) or MB093C>UAS-TnT (c) flies, illustrating behavioral responses to the CS+

and CS– odors during testing bouts pre-training (Pre; top row), and at 5 min (middle row) or 3 hr

after conditioning (bottom row). Each trace shows the mean response averaged over 10 different

flies and the 3 testing bouts within each testing period (see Fig. 3a).

d,e) Plots show mean ± s.e.m. changes in rotational speed induced by CS+ and CS– odors in the

pre-training (Pre), 5 min and 3 hr testing sessions for w1118>UAS-TnT (d) or MB093C>UAS-TnT

(e). Both CS+ and CS– odors were initially attractive and were either apple cider vinegar (ACV)

or 1% ethyl acetate; assignments as CS+ and CS– were counterbalanced across 10 flies.

w1118>UAS-TnT flies exhibited behavioral conditioning to the CS+ but not the CS– odors at 5-min

and 3-hr after training. (*P<0.05; **P<0.01; n = 10 female flies per genotype; Friedman

ANOVA followed by post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni correction).

MB093C>UAS-TnT flies exhibited behavioral conditioning to the CS+ odor at 5-min but not at

3-hr after training. Gray lines indicate data from individual flies. Thus, the inhibition of synaptic

vesicle release in MBON-α3 impedes the longevity but not the formation of the associative

memory.
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Extended Data Fig. 8 | The GABA-A receptor (RDL) is required for bidirectional encoding

of innate odor-valence in the PPL1-α3 neuron.

a, b) Top panels, Time-dependent mean spiking rates of the PPL1-α3 neuron in control flies

(MB065B-GAL4>20×UAS-pAce), a, and flies in which expression of the GABA-A receptor was

selectively inhibited in PPL1-α3 using RNAi (MB065B-GAL4,20×UAS-pAce>UAS-RDL-RNAi),

b, in response to 5 different odors (3% BEN, 1% OCT, 0.3% BEN, 1% EtA, and ACV). Bottom

panels, Odor-evoked changes in spike rates, relative to baseline rates, in 12 individual flies, with

each row showing single-trial data from an individual fly. Red vertical dashed lines mark the

onsets of odor presentation, and the black vertical dashed lines mark the offsets.

c, d) Mean ± s.e.m. changes in spike rates measured during odor exposure (5 s durations) relative

to baseline rates in PPL1-α3, in control flies (MB065B-GAL4>20×UAS-pAce), c, and flies in

which GABA-A receptor expression was selectively inhibited in PPL1-α3 using RNAi

(MB065B-GAL4,20×UAS-pAce>UAS-RDL-RNAi), d. (**P<0.05; 12 flies per group; Friedman

ANOVA followed by post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni correction).

e) Mean ± s.e.m. changes in spike rates measured during odor presentation (5 s duration) relative

to baseline rates in the PPL1-α3 neuron in control flies (MB065B-GAL4>20×UAS-pAce) and the

RNAi group (MB065B-GAL4,20×UAS-pAce>UAS-RDL-RNAi). (**P<0.01 and ***P<0.001; n =

12 flies; Mann-Whitney U-tests). Data points show measurements from individual flies.

f) Rates of spontaneous spiking by PPL1-α3 in the control group of flies

(MB065B-GAL4>20×UAS-pAce) and the RNAi knockdown group

(MB065B-GAL4,20×UAS-pAce>UAS-RDL-RNAi). (n.s. implies P > 0.05; n = 12 flies per group;

Mann-Whitney U-tests).
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Extended Data Fig. 9 | A computational model of the mushroom body captures the

interactions between learning units and yields predictions about the dynamics of

memory storage and extinction.

a, b) Mean CS–- and CS+-evoked changes in spiking in MBON-α3 at different time points before,

during and after olfactory conditioning, based on our experimental data (solid bars) or the

computational model of the MB (open bars), for conditioning with attractive odor pairs (ACV

and EtA), a, and repulsive odor pairs (OCT and BEN), b. For the experimental data, error bars

show s.e.m. values over n = 12 flies. For the computational data, error bars span the 16%–84%

C.I. based on results from 10,000 simulations (Methods).

c) We used the optimized computational model to examine conditioning-induced changes in

odor-evoked spiking for the 3 PPL1-DANs and 3 MBONs in the model, following conditioning

with one of 17 different hypothetical pairs of odors with varying innate valences as the CS– and

CS+. Within each odor pair, the two odors have equivalent innate valences. In each of the plots,

each row presents data for a single hypothetical odor or odor pair. The innate valence of each

odor is specified by the change in DAN spiking that it evokes (y-axis values), relative to baseline

spiking levels and prior to any associative conditioning. Using the model, we simulated 6 bouts

of associative conditioning according to the protocol of Fig. 3d, using each of the 17 odors as

either the CS+ (top 6 plots) or the CS– (middle 6 plots); these 12 plots show, as a function of time

after training, the odor-evoked rates of PPL1-DAN and MBON spiking. The bottom 6 plots show

how the biases between CS+- and CS–-evoked spiking change as a function of time after training.

d) We used the computational model to evaluate how the inter-stimulus-interval (ISI) between

CS+ and CS– presentations within a training bout influences MBON plasticity at different time

points after training. Plots show the CS+- (top row) and CS–-evoked (bottom row) spike rates in
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each of the 3 MBONs in the model, at 5 min, 3 hr or 24 hr after 10 bouts of training using

different ISI values (n = 10,000 simulations per ISI value; error bars span the 16%–84% C.I.

percentiles). These computational studies used hypothetical odors with no innate valence for

either the CS+ or CS–.

e) To explore how sensory adaptation and neural feedback from MBON-γ1pedc>α/β to the

DANs influence the ISI-dependent plasticity, we used the optimized model to simulate the biases

between CS+- and CS–-evoked MBON-α3 spiking at 24 hr after different numbers of training

bouts (y-axis values) occurring in immediate succession with different ISI values (x-axis values).

These studies used hypothetical odor pairs with no innate valence. Plots show results from

simulations in which the MB circuitry was intact (top), sensory adaptation was absent for both

the CS+ and CS– odors (middle), or in which feedback signals from MBON-γ1pedc>α/β were

absent (bottom).

f) We used the optimized model to simulate the biases between CS+- and CS–-evoked MBON-α3

spiking at 24 hr after 10 training bouts of conditioning with one of 9 different hypothetical odors

pairs with varying innate valence values (y-axis values). Plots show results from simulations in

which the MB circuitry was intact (top), sensory adaptation was absent for both the CS+ and CS–

odors (middle), or in which feedback signals from MBON-γ1pedc>α/β were absent (bottom).

g) To examine the effects of extinction training and the role of feedback signals from

MBON-γ1pedc>α/β to the DANs, we used the optimized model to simulate extinction training (3

bouts of CS+ and CS– presentation but no US presentation) occurring at different times after the

last conditioning bout. The plots show the model’s predictions for the learning-induced changes

in odor-evoked spiking in MBON-α3 across a 3-hr-duration following 3 bouts of conditioning.

The different rows of each plot show the results for extinction sessions (marked with black
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squares) occurring at distinct times after the last training bout; the bottom row shows results for

simulations without extinction training. The simulations used pairs of odors that both had

attractive innate valences (matched to those of apple cider vinegar, ACV, and 1% ethyl acetate,

EtA) or both had aversive innate valences (matched to those of 1% 3-octanol, OCT, and 0.3%

benzaldehyde, BEN). For the innately attractive odors, extinction training has the greatest effect

when it occurs at substantial intervals after the end of conditioning. The left two columns show

results from simulations using the intact model. The right two columns show results from

simulations in which the feedback pathway from MBON-γ1pedc>α/β was inactivated.
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Extended Data Fig. 10 | Synaptic weight changes and stimulus-evoked spiking rates in

the computational model of the mushroom body after 6 bouts of conditioning with

attractive or repulsive odor pairs.

a–f) We used the optimized computational model to simulate the learning-induced changes in

odor-evoked spiking rates and synaptic weights after 6 bouts of conditioning in the PPL1-γ1pedc

(a), MBON-γ1pedc>α/β (b), PPL1-α’2α2 (c), MBON-α2sc (d), PPL1-α3 (e), and MBON-α3 (f)

neurons. The simulations used pairs of odors that either both had attractive innate valences (top

two rows of each panel; valences matched to those of apple cider vinegar, ACV, and 1% ethyl

acetate, EtA) or both had aversive innate valences (bottom two rows of each panel; valences

matched to those of 1% 3-octanol, OCT, and 0.3% benzaldehyde, BEN). The plots show model

predictions for the learning-induced changes in odor-evoked spiking and synaptic weights at

pre-conditioning (Pre) and during each of the 6 conditioning bouts (left plots), and across a

3-hr-interval after conditioning (right plots). The labels of the synaptic weights refer to the cell

names, as defined in Fig. 5a. For the 6 conditioning bouts, we simulated neural responses to the

paired presentation of the CS+ odor and the US, whereas responses to CS–- odor were simulated

in the absence of the US.

PPL1-γ1pedc elevated its spiking rate during paired presentations of the CS+ and US, a,

which led to reduced CS+-evoked spiking by MBON-γ1pedc>α/β for up to 1 hr after training, b.

Notably, CS–-evoked spiking by MBON-γ1pedc>α/β also decreased during conditioning, mainly

due to sensory adaptation. In contrast, the CS+-evoked spiking rates of the PPL1-α’2α2 and

PPL1-α3 neurons, c and e, gradually increased across the 6 conditioning bouts and remained

higher than CS–-evoked spiking rates up to 1 hr after training, due to the inhibitory feedback

from MBON-γ1pedc>α/β. Under the combined influence of the innate and learnt odor valences
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encoded by the PPL1-α’2α2 and PPL1-α3 neurons, the downstream MBON-α2sc and MBON-α3

neurons, d and f, exhibited valence-dependent spiking plasticity that persisted for an hour or

more.
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Extended Data Fig. 11 | Neural dynamics in short- and long-term memory modules during

associative conditioning and extinction.

a,b) We used the optimized model to simulate the effects of different extinction training

protocols (3 bouts of CS+ and CS– presentation but no US presentation; see Fig. 5i), in the

short-term memory module (PPL1-γ1pedc and MBON-γ1pedc>α/β), a, and the long-term

memory module (PPL1-α3 and MBON-α3), b. The simulations used pairs of odors that had

attractive innate valences (matched to those of apple cider vinegar, ACV, and 1% ethyl acetate,

EtA). The plots show model predictions for the learning-induced changes in odor-evoked spiking

at a pre-conditioning time point (Pre) and during 3 successive training bouts (left column), across

a 3-hr-duration after conditioning with either no extinction training (middle left column), or with

extinction training at either 10 min (middle right column) or 2 hr (right column) after the end of

conditioning. Vertical orange lines mark the times of 3 successive bouts of extinction training.

c,d) Plots analogous to those of panels a and b except that the odor pair used for conditioning

had an aversive innate valence.

Notably, extinction training that occurs soon after associative conditioning can paradoxically

extend the longevity of plasticity induced in the long-term memory by the associative

conditioning. This effect arises due to the learnt valences that are encoded by PPL1-α3, which in

turn result from the inhibitory feedback sent from the short-term memory module by

MBON-γ1pedc>α/β. Owing to the learnt valence of the CS+, an isolated presentation of an

unpaired CS+ soon after conditioning promotes extinction of the plasticity within the short-term

memory module but reinforces the plasticity previously induced by associative conditioning

within the long-term memory module.
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Extended Data Fig. 12 | Unlike voltage imaging, Ca2+ imaging does not accurately report

decreases in spiking and thereby fails to capture the integration of valences encoded by

the spiking of PPL1 dopamine neurons.

a,b) Top plots, Time-dependent mean fluorescence Ca2+ signals (ΔF/F) evoked in the

PPL1-α’2α2 (R82C10-LexA>13×LexAop-jGCaMP7b), a, and PPL1-α3 cells

(MB065B>20×UAS-jGCaMP7b), b, by 5 different odors (3% BEN, 1% OCT, 0.3% BEN, 1%

EtA, and ACV). Gray shading marks the duration of odor presentation. Bottom plots,

Odor-evoked changes in Ca2+ activity in 12 individual flies. Each row shows data from a single

fly. Vertical dashed lines mark the onset (red) and offset (black) of odor presentation.

Comparison to Extended Data Fig. 3f,g shows that Ca2+ imaging poorly captures the

bidirectional encoding of innate odor valences.

c,d) Mean changes in odor-evoked Ca2+ activity relative to baseline levels in PPL1-α’2α2, c, and

PPL1-α3, d, averaged across the 5 s of odor presentation. Error bars: s.e.m. across 12 flies per

neuron-type. (*P<0.05; n = 12 flies; Friedman ANOVA followed by post-hoc Wilcoxon

signed-rank tests with Holm-Bonferroni correction).

e) Top, Changes in Ca2+ activity (ΔF/F) in the PPL1-α3 neuron immediately before, during and

after 10-s-exposures to apple cider vinegar (ACV; horizontal blue line; left), 5 electric-shock

pulses (each 0.2 s in duration with 1.8 s interval between pulses; red ticks mark the times of the

individual shock pulses; middle), or the paired presentation of ACV and shocks (right) to n = 14

female flies (MB065B>20×UAS-jGCaMP7b; 1 trial per fly for each of the 3 stimulation

conditions). Bottom, Traces showing the time-dependent mean Ca2+ activity, averaged over all

14 trials for each stimulus. Blue shading covers the periods of odor presentation. Gray shading

on the time traces: s.e.m over 14 flies. Comparison to the data of Fig. 4e,f shows that Ca2+
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imaging poorly captures the ACV-evoked suppression of spiking and the encoding of the net

valence of shocks paired with ACV presentation.

f) Mean ± s.e.m. odor-evoked changes in the Ca2+ activity of the PPL1-α3 neuron, as measured

during 10-s-exposures to ACV (blue bar), 5 electric shocks (red bar), or the paired presentation

of ACV and shocks (purple bar). (*P<0.05; n = 14 flies; Friedman ANOVA followed by

post-hoc Wilcoxon signed-rank tests with Holm-Bonferroni correction).

g,h) Plots analogous to those of panels e and f, except that the odor presented (1% OCT) was

innately repulsive.

i) Schematic showing how the parallel-recurrent circuitry of the mushroom body (MB) may

allow the integration of innate and learnt valence signals in a heterogeneous manner across the

different learning units. PPL1-DANs innervate different compartmentalized regions on Kenyon

cells (KC) axons and form parallel learning units together with their corresponding downstream

mushroom body output neurons (MBONs). Sensory stimuli with innate negative valences, such

as punishments (red) and repulsive odors (orange), heterogeneously excite PPL1-γ1pedc,

PPL1-γ2α’1, PPL1-α’2α2, and PPL1-α3. Whereas sensory stimuli with positive valences, such as

rewards (blue) and attractive odors (green), inhibit the 4 PPL1-DANs. During associative

conditioning with an aversive US, each individual PPL1-DAN may integrate the valences of

stimuli presented concurrently and provide a distinctive teaching signal that drives a depression

of KC→MBON synapses. Plasticity in MBON-γ1pedc>α/β lasts for ~1 hr and reduces the

strength of the inhibitory feedback from MBON-γ1pedc>α/β to PPL1-α’2α2 and PPL1-α3, which

in turn facilitates the formation of long-lasting plasticity in those learning units. In addition, the

PPL1-γ2α’1 neuron is modulated by the fly’s movement25,62, whereas PPL1-α’3 seems to encode

odor novelty48. Owing to the integration of the innate and learnt valences encoded by PPL1-DAN
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spiking and to the varying durations of MBON plasticity, the MB’s parallel-recurrent circuitry

can enact diverse plasticity patterns that shape fly behavior in a flexible manner.
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Video 1 | High-speed voltage imaging at single spike resolution in a behaving fly.

Bottom left, Video of a fly running in place on a trackball under the microscope objective lens

that we used for high-speed fluorescence voltage imaging of the fly’s neural activity. The frame

acquisition rate of the fly behavior movie was 30 fps. Bottom right, Time traces of the fly’s

forward running speed and rotational speed on the trackball. Top left, Voltage-imaging movie,

recorded simultaneously with the behavioral video, showing the fluorescence changes of the

Ace2N-mNeon-v2 voltage indicator in a pair of MBON-γ1pedc>ɑ/β neurons located in opposite

hemispheres of the fly brain. The voltage movie was recorded at a frame rate of 500 fps. To

synchronize playback with the behavior movie, we subsampled 1800 frames out of the 30,000

frame-long voltage movie and displayed it at 30 fps. Top right, Fluorescence traces and spike

raster plots show the spiking dynamics of the two MBON-γ1pedc>ɑ/β neurons.

Video 2 |  Spike backpropagation into the dendritic tree of an MBON-γ1pedc>ɑ/β neuron.

A movie of the spike-triggered average fluorescence responses (ΔF/F) before, during and after

firing of an action potential in the MBON-γ1pedc>ɑ/β neuron of Extended Data Fig. 2a,

imaged using the pAce voltage indicator in a behaving fly. The movie shows the time-dependent,

mean fluorescence changes averaged over 846 identified spikes from –3 ms to 3 ms relative to

the time of the action potential peak within the dendritic tree. Depolarization starts at about

–1.5 ms in a region adjacent to one of the axon branches, propagates to the soma and other axon

branches, and backpropagates into the dendritic tree. The interval between successive image

frames is 50 μs, which we achieved through spline interpolations from the original 1000 fps

acquisition rate. The playback speed is 10 fps. Scale bar: 10 µm.
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Methods

Fly stocks

The FlyLight Project Team at Janelia Research Campus kindly provided the split-GAL4

MB504B-GAL4, MB502B-GAL4, MB065B-GAL4, MB304B-GAL4, MB085C-GAL4,

MB093C-GAL4, MB080C-GAL4, MB077B-GAL4, and MB542B-GAL4 flies. We obtained

R82C10-LexA (#54981), 20×UAS-jGCaMP7b (#79029), 13×LexAop-jGCaMP7b (#80915),

UAS×RDL-RNAi (#52903), and UAS-TnT (#28838) flies from the Bloomington Stock Center.

Ron Davis (Scripps Institute) kindly provided TH-LexA flies, and David Anderson (Caltech)

provided 20×UAS-CsChrimson-tdTomato flies. We outcrossed all strains with w1118 wild-type

flies for 5 generations to minimize differences in genetic background.

To create 20×UAS-Ace2N-mNeon-v2, 20×UAS-pAce and 13×LexAop-pAce flies that

express the Ace2.0 and pAce FRET-opsin voltage indicators37,38, we synthesized

codon-optimized Ace2N-mNeon-v2 and pAce genes (GeneScript Biotech) with a Drosophila

Kozak sequence before the start codon. We then sub-cloned the Ace2N-mNeon-v2 and pAce

cDNA into the XbaI and XhoI restriction sites of the pJFRC7-20×UAS-IVS-mCD8::GFP and

pJFRC19-13×LexAop2-IVS-myr::GFP vectors (Addgene #26220 and #26224). After verifying

the constructed plasmids pJFRC7-20×UAS-IVS-Ace2N-mNeon-v2, pJFRC7-20×UAS-IVS-pAce,

and pJFRC19-13×UAS-IVS-pAce with sequencing, we used a commercial transformation service

(Bestgene Inc) to create two transgenic fly lines for each construct by inserting them into two

phiC31 docking sites, the attP40 on the second chromosome and VK00027 on the third

chromosome, for further combination with GAL4 or LexA driver lines.

We performed all imaging and behavioral experiments using female flies (3–8 d old at the

time of laser surgery). We raised flies on standard cornmeal agar media with a 12 hr light/dark
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cycle at 25°C and 50% relative humidity. Before surgery or behavioral tests, we chose flies

informally in a random manner from a much larger group raised together for all studies; there

was no formal randomization procedure for selecting flies. Extended Data Table 1 contains the

lists of transgenic fly lines we created for this study, as well as the genotypes and total number of

flies used in each imaging and behavior experiment and for each figure panel. When imaging

flies with more than one fluorescently labeled neuron-type, in most cases we focused on one

neuron-type per fly in order to achieve recordings with a sufficiently high signal-to-noise ratio

(SNR). However, in a subset of flies we were able to image 2 or even 3 neuron-types

concurrently with satisfactory SNR values. Therefore, the total number of flies that we imaged is

less than the sum of the n-values reported in the figure panels.

Odorants

We tested flies’ responses to the following monomolecular odors: Ethyl acetate (EtA; CAS#

141-71-6, Sigma-Aldrich Inc.), Isoamyl acetate (IAA; CAS# 123-92-2, Sigma-Aldrich Inc.),

Benzaldehyde (BEN; CAS# 100-52-7, Sigma-Aldrich Inc.), 1-octen-3-ol (1O3O; CAS#

3391-86-4, Sigma-Aldrich Inc.) and 3-Octanol (OCT; CAS# 589-98-0, Sigma-Aldrich Inc.). We

diluted EtA, IAA, 1O3O, and OCT into 1% and 10% concentrations and BEN into 0.3% and 3%

concentrations (V/V) with mineral oil. We also tested a natural odor: apple cider vinegar (ACV;

Bragg Inc.).

Mounting of flies for behavioral, voltage-imaging or optogenetic experiments

In brief, to mount flies for on-ball behavioral experiments or in vivo imaging studies, we

anesthetized them on ice for 1 min. We then transferred them to the cooled surface (∼4 °C) of an

aluminum thermoelectric cooling block. While viewing the fly through a dissection microscope

(Leica MZ6) and by using a multi-axis stage to manipulate the entire cooling block, we brought
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the posterior of the fly’s thorax into contact with a 125-μm-diameter fused silica optical fiber

(Nufern; PLMA-YDF-10/125) on a custom-made plastic fixture that was secured on the

mounting apparatus directly above the fly. We applied ~1 μL of ultraviolet (UV) light-curing

epoxy (NOA 89, Norland) to the contact point between the fiber and the fly’s thorax and cured

the epoxy with UV light for 30 s. Finally, to reduce head motion, we fixed the fly’s head to the

thorax using UV epoxy, after which we considered the fly to be fully mounted.

Laser microsurgery

To create an imaging window in the fly cuticle, we used a laser microsurgery system based on a

193-nm-wavelength excimer laser (GamLaser; EX5 ArF), as detailed in our prior work33,40,41.

After transferring a mounted fly to the surgery station, we created an optical window in the

cuticle by laser drilling a 150-μm-diameter hole (30–4 0 laser pulses, delivered at 100 Hz, 36 mJ

per pulse as measured at the specimen plane). This microsurgical procedure generally removed

the cuticle, air sacs and fat bodies, exposing the underlying brain tissue. Occasionally, further

rounds of laser dissection or manual cleaning of the cuticle were needed due to variations in head

size and fly age. Immediately after surgery, we applied 1 μL of UV epoxy (NOA 68, Norland;

Refractive index: 1.54; Transmission 420 –1000 nm: ~100%) and cured it for 30 s to seal the

cuticle opening; we did this under a dissection microscope while using a desktop ultrasonic

humidifier (Air-O-Swiss; AOS 7146) to keep the local environment around the fly at ~60%

humidity. After mounting the fly, we put a coverslip (22 × 22 mm, No. 0, Electron Microscope

Sciences) above the fly’s head and placed a small drop (~1 μL) of water between the coverslip

and the fly cuticle.

High-speed fluorescence voltage imaging

To image neuronal voltage dynamics, we used a custom-built upright epi-fluorescence
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microscope and a 1.0 NA water-immersion objective 20× (XLUMPlanFL, Olympus). We used a

503/20 nm excitation filter (Chroma), a 518 nm dichroic mirror (Chroma), and a 534/30 nm

emission filter (BrightLine). Using the 500-nm wavelength module of a solid-state light source

(Spectra X, Lumencor), we illuminated the sample with 3–7 mW/mm2 of illumination at the

specimen plane. We acquired images at 1000 Hz, using a scientific-grade camera (Zyla 4.2,

Andor) and 2 × 2 pixel binning. For Ca2+ imaging experiments, we used the same setup and

illumination conditions but acquired images at 100 Hz.

Odor delivery to awake flies

To deliver odors to flies’ antennae, we used a custom-built olfactometer that delivered a constant

airflow (200 mL/min) to the fly via either a control path (air passed through mineral oil) or via an

odor path (air passed through mineral oil with dissolved odorant). Airflow and odors went

through a probe needle (1.7-mm-inner-diameter, Grainger Inc.) placed at a 45 deg. angle in the

horizontal plane and ~3 mm away from the fly’s antennae on the right side (Fig. 2e). Each trial

lasted for 15 s and odor was delivered from the 5 th to the 10th second. For all experiments in

which we studied a fly’s responses to multiple different odors, we presented the odors in a

pseudo-random order with intervals of at least 2 mins between odors. During neural imaging

experiments, as we delivered odors we imaged neuronal voltage dynamics through the

transparent window in the cuticle made above the brain’s right hemisphere by laser microsurgery.

Electric shock and sucrose delivery

To deliver electric shocks to a fly, we glued a pair of electric wires (0.4 mm diameter;

R26Y-0100; OK Industries) to both sides of the thorax with electrically conductive glue (Wire

Glue). After the glue dried, the resistance between the two wires was 10 –30 MΩ. During each

15-s-imaging-trial, we delivered 5 electric shocks (0.2-s-long, 20-V-pulses delivered 1.8 s apart)

p. 78



using a constant voltage stimulator (STM200; Biopac Systems, Inc.) starting 5  s after trial onset.

To image neural responses to sucrose feeding, we positioned the tip of a microliter

syringe (MicroliterTM#701; Hamilton) ~1 mm below the fly’s proboscis. By manually pushing

the microliter syringe to deliver ~1 µL of saturated sucrose solution, we allowed the fly to

sample the liquid with its proboscis, inducing feeding. During each 15-s-imaging-trial, we

delivered the sucrose solution from the 5th to the 10th second.

Measurements of fly locomotion on the trackball

To track the locomotion of individual flies walking on a trackball (Fig. 2e–h; Fig. 3a–c; Fig.

4m,n; Extended Data Fig. 3b,c; Extended Data Fig. 7b–e), we used a setup similar to that of

prior studies84–86. Two optical USB pen mice (Finger System, Korea) were aimed at the equator

of an air-suspended, hollow high-density polyethylene ball (6.35-mm diameter; ~80-mg mass;

Precision Plastic Ball Co.). The pen mice were 2.3 cm away from the ball and tracked the ball’s

rotational motion at a readout rate of 120 Hz. We converted the pair of digital readouts from the

pen mice into a forward displacement on the ball plus a rotational angle for each time bin, and

then we computed the fly’s forward and turning velocities using custom software written in

Matlab (v2018b; MathWorks).

Olfactory conditioning on the trackball

After mounting flies and attaching electric wires to the thorax (see above), we positioned flies on

the trackball using a three-dimensional translation stage. Before olfactory conditioning began,

we allowed the flies to rest on the trackball for at least 30 min to minimize the impact of the cold

anesthesia used during the mounting process. For all conditioning studies, we used two attractive

odors, apple cider vinegar (ACV) and 1% ethyl acetate (EtA), each of which served as either the

CS+ or CS– in a counterbalanced manner across the flies used in each group. A 1-hr memory
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experiment comprised 1 training session and 3 testing sessions (Fig. 3b,c)

In the training session, we delivered 6 bouts of CS+ and CS– odor pairs to flies

sequentially (30 s per odor exposure, with 135 s of fresh air between successive odors). During

delivery of the CS+ odor, we also administered to the fly 16 electric shock pulses of 20 V

amplitude (each pulse of 0.2 s duration, with 1.8 s between successive pulses), starting 3 s after

the onset of the CS+ odor.

In each testing session, we delivered 3 bouts of CS+ and CS– odor pairs to flies (5 s per

odor exposure, with 60 s of fresh air between presentations of the CS+ and CS– odors and also

between bouts). We recorded the flies’ forward and turning velocities on the trackball in the 3

testing sessions (‘Pre’, ‘5-min’, ‘1-hr’). The ‘Pre’ session occurred 5 mins before the training

session and determined the odor-induced behavior of the flies while they were still naïve. The

‘5-min’ and ‘1-hr’ memory testing sessions respectively began 5 mins and 1 hr after the end of

the training session. In a 3-hr memory experiment (Fig. 4m,n; Extended Data Fig. 7b–e), the

third testing session occurred 3 hr after the training session (referred to as ‘3-hr’).

To minimize the bias of flies’ turning behavior on the trackball, we delivered odors to the

left side of flies’ antennae in half of the experiments and to the right side in the other half.

Positive values of the fly’s walking speed represent forward-walking, whereas negative values

represent backward-walking. Positive values of the rotational velocity indicate that the fly turned

toward the direction of odor delivery, whereas negative values indicate the fly turned in the

opposite direction.

Measurements of conditioning-induced neural plasticity

After mounting flies and attaching a pair of wires to deliver electric shocks to the thorax (see

preceding section), we allowed flies to rest for >30 min before training so as to minimize the
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impact of the cold anesthesia we had used during the mounting process. Each 1-hr imaging

experiment to study memory comprised 2 training and 4 testing sessions (Fig. 3d).

Each fly first underwent 1 bout of imaging before conditioning (Pre), in which we

examined the neuronal spiking responses to the 2 odors to be used during conditioning (CS+ and

CS–; each odor presented for a duration of 5 s with an interval of 60 s between successive odors).

Next, we subjected each fly to 3 bouts of training, in each of which the fly received a paired

presentation of the CS+ (30 s in duration) and the unconditioned stimulus (US, 16 pulses of

0.2-s-duration, 20-V-amplitude electric shock spaced 1.8 s apart; the first pulse started at 3-s after

the onset of the CS+), and an unpaired presentation of the CS– (30 s in duration, with 135-s

intervals between successive odors). Five minutes after the end of the training bouts, each fly

underwent a mid-training (Mid) imaging bout to assess the odor-evoked spiking responses. At 5

min after the end of the Mid imaging bout, we subjected each fly to 3 more bouts of training.

Then, the fly underwent another 2 imaging bouts at 5 min and 1 hr after the training,

respectively.

In 24-hr memory imaging experiments (Fig. 4a–d), we used an identical protocol for

odor and shock delivery as that in the 1-hr-experiments, except that we added two more testing

sessions at 3 hr and 24 hr after training. We kept flies glued on the optical fiber across the entire

24 h period and fed them with sucrose water 3 min after the ‘3-hr’ session and again at 30 min

before the ‘24-hr’ session.

In experiments studying memory extinction, we used 3 groups of flies: a control group

that received memory training (3 bouts of CS+/US association as in the training session of

1-hr-experiments), an ‘early’ extinction group that received memory training and then underwent

an extinction session starting 10 min after the end of the training, and a ‘late’ extinction group
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that received training and then underwent an extinction session starting 2 hr after training. For all

3 groups, we imaged the neural activity in 3 testing sessions (‘Pre’, ‘5-min’, and ‘3-hr’). The

‘Pre’ session was 5 mins before the training session; the ‘5-min’ and ‘3-hr’ sessions respectively

started 5 mins and 3 hr after the end of the training session. The extinction session involved 3

bouts of CS+ and CS– odor exposure as in the training session but without electric shocks.

Analyses of imaging data

To extract traces of neuronal voltage activity, we first used an algorithm, NoRMCorre87, to

correct computationally the raw (1 kHz) fluorescence videos (see High-speed fluorescence

voltage imaging above) for lateral displacements of the brain. To improve the signal-to-noise

ratios of the videos, we applied a denoising algorithm based on a singular value decomposition

(SVD). This involved first reshaping the raw video into a matrix , where is the

total number of video frames and is the number of pixels in the field of view. We then

decomposed Y as a product, , where U is a set of k low-rank components ,

and are weighting coefficients. The components are assumed to be semi-unitary,

without loss of generality, and were obtained by computing the SVD of . The number, k, of

low-rank components that we retained in was determined by requiring that the set of retained

singular vectors captured >95% of the variance in the raw video. We then calculated the

coefficients as . For each row of the coefficient matrix, after reshaping it back into a

two-dimensional image we applied the BM3D image denoising algorithm88, which applies a

nonlinear thresholding operation to obtain a denoised set of coefficients, . We determined the

denoised video as and reshaped it back to its original dimensions.

After denoising the fluorescence videos, we manually selected 1 to 3 regions-of-interest

(ROIs) that contained the anatomical structures of the targeted cell-types expressing the voltage
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indicator (Extended Data Fig. 1 shows ROIs for all fly lines used for imaging). We then

computed spatially-averaged, time-dependent changes in relative fluorescence intensity,

ΔF(t)/F0, where F0 was the mean fluorescence in the ROI averaged over the entire video. Next,

we computationally corrected the resulting fluorescence traces for photobleaching by

parametrically fitting a sum of two exponential functions to the mean fluorescence trace, F0, and

then normalizing F0 by the parametrically fitted trace. To identify neural spikes, we high-pass

filtered the ΔF(t)/F0 trace by subtracting a median-filtered (40 ms window) version of the trace

and then identifying as spikes the local peaks that surpassed a threshold value. Due to the distinct

spiking rates and signal-to-noise ratios for different cell-types, we used different threshold values

for spike detection in different cell-types (>3 s.d. for PPL1-DANs and MBON-α2sc, >2 s.d. for

MBON-γ1pedc>α/β and MBON-γ2α’1, >2.5 s.d. for MBON-α’2, -α3 and -α3). We calculated the

spiking rate using the number of spikes that occurred over within a sliding 100-ms window.

To computed mean spike waveforms, we temporally aligned each identified spike within

a trial to the time at which its peak value of ΔF(t)/F0 occurred. We then performed a spline

interpolation (10 μs sampling) of the mean waveform and from the resultant determined the

spike amplitude.

We also used a signal detection framework to compute the spike detection fidelity, d′,

which characterizes the ability to correctly distinguish instances of a spike from background

noise fluctuations within the fluorescence trace37,42. As described in our prior work42, when we

use N successive samples from a photodetector, , to detect spikes, the𝐹 = (𝐹1, 𝐹2,  ...  , 𝐹𝑁 )
distribution of F follows Poisson statistics in the shot-noise-limited regime. We can use the

distribution to express two mutually exclusive hypotheses: the null hypothesis, H(0), which posits

the absence of a spike; and the alternative, H(1), which posits that a spike occurred at time zero.
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The d′ value was calculated as , in which and represent the mean and𝑑' = (µ𝐿(1) − µ𝐿(0))/ σ𝐿 µ𝐿  σ𝐿
variance of the distributions of the log-likelihood ratio, , of the two hypotheses.𝐿(𝑓)

The mean, , and variance, , of the distribution of under the null hypothesis H(0)µ𝐿 σ𝐿 𝐿(𝑓)
of no spike having occurred and under the alternate hypothesis H(1) that a spike occurred are

given by:

µ𝐿(0) = 𝐹0ν 𝑛=1
𝑁∑ 𝑙𝑜𝑔(1 + 𝑠𝑛) − 𝐹0ν 𝑛=1

𝑁∑ 𝑠𝑛
µ𝐿(1) = 𝐹0ν 𝑛=1

𝑁∑ (1 + 𝑠𝑛)𝑙𝑜𝑔(1 + 𝑠𝑛) − 𝐹0ν 𝑛=1
𝑁∑ 𝑠𝑛

, σ𝐿 ≈ σ𝐿(1) ≈ σ𝐿(0) = 𝐹0ν 𝑛=1
𝑁∑ 𝑙𝑜𝑔2(1 + 𝑠𝑛)

where denotes the sampling rate, represents the baseline fluorescence intensity from timeν 𝐹0
periods that contained no neural spike, and is the mean fluorescence signal at each time bin𝑠𝑛
within a time period that contains the averaged waveform of the identified spikes for each

imaging trial (N = 51 bins; 1 ms per bin).

Odor classification

For odor classification analysis (Fig. 2l), we used PyTorch89 (version 1.7.1; www.pytorch.org) to

train computational classifiers that identified odors based on patterns of PPL1-DAN or MBON

neural population activity. Since we imaged different cell-types in different flies, we first

constructed datasets of neural population responses from ‘virtual flies’49 by combining data from

the 5 subtypes of PPL1-DANs or the 6 subtypes of MBONs to produce aggregate PPL1-DAN or

MBON population datasets. For each cell-type, we used recordings from 12 different real flies
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and their neural responses to each of 5 odors. To construct a dataset of PPL1-DAN neural

population odor-evoked responses for an individual virtual fly, we randomly selected 1 of the 12

real flies studied for each of the NPPL1 = 5 different PPL1-DAN cell-types and combined their

odor-evoked responses. This enabled us to create response datasets for 125 different virtual

PPL1-DANs, each of which responded to NOdors = 5 different odors. We used an analogous

approach to construct datasets of MBON neural population odor-evoked responses and combined

the data from randomly selected flies for each of the NMBON = 6 different MBON-types. Although

this approach would have allowed us in principle to create 126 different datasets of virtual

MBON population responses, in practice we constructed only 125 such datasets so as to have an

equal number of MBON and PPL1-DAN virtual flies. To create shuffled datasets, we took the

same two sets of 125 virtual flies and within each set we randomly reassigned the neural

responses across the set of odors.

To create classifiers of odor identity based on the odor-evoked neural population

responses of virtual flies, we randomly assigned 90% of the virtual flies to a training set, 5% of

the virtual flies to a validation set, and the remaining 5% to a testing set. We used the validation

set to evaluate trained classifiers and tune hyperparameters, whereas we only used the testing set

at the very end to determine the rate of correct classifications attained with the optimized

classifier. We used linear support vector machines (SVMs)90 to create a multiclass linear

classifier of odor identity. To perform odor classification using the set of all NOdors ⋅ 125 virtual

PPL1-DAN odor-evoked responses, we created a vector classifier function, f, whose value for

the ith odor-evoked neural response (1 ≤ i  ≤  NOdors⋅ 125 ) was

f ,(𝑥𝑖 , 𝑊𝑃𝑃𝐿1−𝐷𝐴𝑁,𝑏) = 𝑊𝑃𝑃𝐿1−𝐷𝐴𝑁 𝑥𝑖 + 𝑏
where is a matrix of size NOdors × NPPL1 , is a vector of size NPPL1 that expresses the𝑊𝑃𝑃𝐿−𝐷𝐴𝑁 𝑥𝑖
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PPL1 responses of a specific virtual fly to one of the odors, and b is a bias vector of size NOdors.

For computational purposes, we rewrote f as

f ,(𝑥'𝑖 , 𝑊) =  𝑊𝑥'𝑖
where W is a matrix of size NOdors × (NPPL1 +1) comprising in its top NPPL1 rows and𝑊𝑃𝑃𝐿1−𝐷𝐴𝑁
the vector b in its last row, and is a vector of size (NPPL1 +1) comprising in its first NPPL1𝑥'𝑖 𝑥𝑖
entries and 1 in its last entry. Given a set of odor-evoked neural responses, the multiclass linear

classifier predicted the odor identity, j (1 ≤ j ≤ NOdors ), as f , i.e. according to𝑎𝑟𝑔𝑚𝑎𝑥𝑗 {  (𝑥'𝑖, 𝑊)}
which entry of the vector classifier function yielded the maximum value.

To train the model, we optimized W by using a hinge loss function that penalized

incorrect odor predictions. For the ith odor-evoked response (1 ≤ i  ≤  NOdors⋅ 125 ), its contribution

to the total loss was found by summing the penalties incurred for all incorrect classifications

,

where the index j runs over the individual odors, refers to the odor that evoked the i’th𝑜𝑑𝑜𝑟𝑡𝑟𝑢𝑒, 𝑖
neural response and which is thus the correct classifier result for the i’th response, and 1 is used

as a margin to help enforce successful classifications. To optimize W, we averaged the loss

function across individual batches of  = 200 odor responses randomly chosen without𝑁𝑏𝑎𝑡𝑐ℎ
replacement from the full set of NOdors⋅ 125 responses, with inclusion of an L2 regularization

penalty to minimize the entries of W:

loss (W) .

Here = 10–4 is an L2 regularization hyperparameter that we optimized empirically using theλ 
validation dataset.  We then used the Adam optimizer to update the matrix elements of W :
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,𝑊 : = 𝑊 − α · 𝐴𝑑𝑎𝑚(∇𝑊𝑙𝑜𝑠𝑠(𝑊))
where  = 5 ∙10–4 is a hyperparameter that specifies the learning rate and that was optimizedα
using the validation dataset, and refers to the Adam optimizer, an extension𝐴𝑑𝑎𝑚(∇𝑊𝑙𝑜𝑠𝑠(𝑊))
of stochastic gradient descent that provides superior convergence through adjustments of the

learning rate during training. (We used the Adam optimizer’s standard parameter values for

adjusting the learning rate91). To train the classifier, we optimized W by updating its matrix

elements across 10 full passes through the entire set of NOdors⋅ 125 odor responses. Empirically,

we found that additional training did not further improve classification accuracy. We used the

same procedures and optimization parameters for training odor classifiers based on the set of

odor-evoked MBON responses.

Finally, to test the performance of our classifiers, we divided the testing dataset of virtual

flies into 120 different sub-testing sets each with 100 different virtual flies, each with 5 different

odor responses. For each sub-testing set, we computed the classification performance as the sum

of the number of correctly identified odors divided by 1000. The box-and-whisker plot of Fig. 2l

shows the distribution of classification performance values across these 120 different datasets.

Optogenetic studies

To provide all-trans-retinal, an essential cofactor for CsChrimson activation92, we dissolved

all-trans-retinal powder in 95% ethanol to make a 20 mM stock and diluted it with fly food to

400 µM. We collected adult female flies (2 days old) and transferred them to the 400 µM retinal

food for 3–5 days before optogenetics experiments (Fig. 4m,n). To the ‘Light On’ group, we

delivered 30 pulses of 0.5-s red-light (625 nm, 0.5Hz, 25µW·mm-2) during CS+ and CS–

exposures by using a collimated LED (M625L4, ThorLabs), whereas the ‘Light Off’ group of

flies did not receive these pulses of illumination.
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Computational Model

We computationally simulated a model of the neural circuitry that controls associative

conditioning-induced aversive behaviors in Drosophila. The model characterizes the interactions

of KCs, MBONs and DANs in the 3 interconnected learning modules (γ1, α2 and α3) of the MB

(Fig. 5a). The KCs sparsely encode the CS+ and CS– odor stimuli, and the DANs encode the

electric shock punishments. Dopamine modulates the strengths of the synaptic connections

between the KCs and the MBONs, thereby altering the strength of the associative memory. The

MBONs gather signals from the KCs to control approach or avoidance motor behaviors

(Fig. 5a). Our model uses a set of ordinary differential equations to capture how the MB neural

activity patterns and synaptic weights change with time. The model thereby describes how

associative information is stored and retrieved in the short-term (γ1 module) and long-term

memory compartments (α2 and α3 modules) of the MB.

The Supplementary Appendix presents the differential equations in the model that

characterize the neural spiking rates and synaptic weights. The network architecture (Fig. 5a) is

based on the synaptic connections present in the fly brain connectome32. If the number of

synapses between two neurons is <10 in the connectome, we set the corresponding synaptic

weight term in the model to be zero. This approximation substantially reduced the number of

parameters used in the model. We inferred the values of non-zero synaptic weights by parametric

fits of the experimental data on neural spiking, without further consideration of the number of

synapses between neurons.

Concurrent activation of KC and DAN modifies the synaptic weight of the KC to MBON

connection according to an anti-Hebbian learning rule. The anti-Hebbian learning rule implies

that the synaptic weight decreases if the punishment appears later than the odor; and the synaptic
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weight increases if the punishment appears earlier than the odor, as shown in Fig. 5b. The

dynamics of synaptic weights from KCs to MBONs can be described by the differential

equations in Section 2 of the Supplementary Appendix.

The differential equations in Sections 1 and 2 of the Supplementary Appendix form a

complete set that models the neural activity and synaptic weights in the three modules (γ1, α2

and α3) of the mushroom body. We simulated these differential equations using the MATLAB

(Mathworks) function ode15s(), which solves the differential equations numerically. However,

this approach is time-consuming and takes ~14 s to obtain results using each set of parameters.

Therefore, we simplified the model using several approximations (see Supplementary

Appendix for details): (1) We approximated the activation functions of KCs and DANs as linear

functions; (2) We assumed that the membrane time-constants of KCs, DANs and MBONs (τKC,i,

τMBON,j, and τDAN,j) are sufficiently brief (~10 ms) to allow the spiking rates of KCs, DANs and

MBONs to attain their steady-state values within associative conditioning and testing bouts;

(3) We assumed that the resting intervals between training and testing bouts or between

successive training bouts are much longer than the duration of the training and testing bouts

(Fig. 3a,d; Fig. 4l; Fig. 5i), which allowed us to focus our analyses on discrete time points

corresponding to the individual training and testing bouts; (4) We used time-averaged values of

KC and DAN spiking rate changes to calculate the changes in the values of the synaptic weights

between KCs and MBONs. With these approximations, we simplified the computational model

into a recurrent set of equations (Section 3 of the Supplementary Appendix). The time needed

to simulate each set of parameters for the simplified model was only ~0.02 s, a ~700-fold

speedup over the time needed to simulate results for one parameter set of the full model.

By inputting the experimental conditions and model parameters (θ) into the simplified
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recurrent equation model, we simulated the neural spiking rates of DANs and MBONs in our

experiments. Then, we optimized the model’s parameters by fitting the model outputs to our

experimental data. (Fig. 5c; Extended Data Fig. 9a,b). We assumed that the measured spiking

rates of neurons, under all experimental conditions, were governed by independent normal

distributions. This assumption allowed us to estimate the optimized values of the model

parameters and their confidence intervals (Section 4 and Supplementary Table 1 in the

Supplementary Appendix). Using the model and its optimized parameters, we predicted the

neural firing rates and their confidence intervals for experiments that had not yet been done.

These predictions well matched the subsequent experimental results (Fig. 5g–k; Extended

Data Fig. 9).

Statistical analyses

We performed all statistical analyses using MATLAB (v2018b and v2020b; Mathworks)

software. We chose sample sizes using our own and published empirical measurements to

estimate effect magnitudes. For statistical testing, we performed non-parametric Kruskal-Wallis

and Friedman ANOVAs, to avoid making assumptions about normal distributions or equal

variances across groups. To perform post hoc pairwise statistical comparisons, we used

two-sided versions of the Mann-Whitney U-test or the Wilcoxon signed-rank test with a

Holm-Bonferroni correction for multiple comparisons.

Data availability

The data that support the findings of this study are available from the corresponding authors

upon reasonable request.
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Code availability

We used open-source image algorithms for motion correction (NoRMCorre87;

https://github.com/flatironinstitute/NoRMCorre) and for image denoising (BM3D88;

https://webpages.tuni.fi/foi/GCF-BM3D). We used the PyTorch89 machine learning framework

(v1.7.1; www.pytorch.org) for classification analysis. Matlab codes underlying the data analysis

and the computation model are available upon request from the corresponding authors.
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