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Abstract
Land use/land cover is one of the utmost dynamic constituents of the atmosphere that has been altering
abnormally from the time after the industrial revolution at different measures. A good understanding of
the drive and strength of environments needs regular monitoring and quantifying for land use/land cover
alterations. The current research targets to predict the prospect of land use/land cover (LU/LC) alterations;
for the Lesser Zab catchment in the Northern part of Iraq, applying the synergy Cellular Automata-Markov
simulation. The Maximum Likelihood method classified three sequential years of Landsat images (1999,
2010, and 2021). Then, three LU/LC images, with numerous class classifications, were created, and an
alteration identification examination; was performed. With the categorized (1999–2010) and (2010–
2021) LU/LC maps in the hybrid model, the corresponded LU/LC maps; for 2021 and 2041; were modelled,
and the classified 2021 LU/LC maps; were considered to validate the model output 2021. In that order,
agreement accuracy between the classified and the modelled images was Kno = 0.864, Klocation = 0.854,
and Kstandard = 0.785. Prospect likelihoods validate that between 2021 and 2041, the urban area would
rise by 78% (from 1118 to 5200 km2). However, bare lands/light, agricultural lands, water bodies, bare
lands/dark, and forest lands would decrease by 3% (from 6983 to 6736 km2), 12% (from 7992 to 7036
km2), 15% (from 141.03 to 119.86 km2), 30% (from 7 to 4 km2), and 76% (from 3810 to 904 km2),
correspondingly. This study’s conclusions are priceless for policymakers, urban managers, and ecological
researchers.

Introduction
Land use/land cover (LU/LC) alteration has become an international problem,   causing rising distress
among managers and policymakers regarding the potential impact of such change on the environment
(Oliver & Morecroft,  2014; Padmaja & Giridhar, 2022). The modelling and prediction of LU/LC change
patterns have become essential to the protection of the ecosystem and maintainable improvement (Saleh
& Ahmed, 2021). Compared with the past, the LU/LC concentration, quickness, and amount of alteration
are currently quicker caused by public development. The fast growth in inhabitants has disturbed the
Globe (Saleh & Ahmed, 2021; Mahdi & Mohammed, 2022). Thus, simulating present and prospective
LU/LC alteration would be essential to the policy-making of ecological management and future
development. Due to their capability to offer recurrent statistics at changed spatiotemporal coverage,
there has been raising concern about applying remote sensing (RS) information for observing LU/LC
variations. The RS information is considered vital data to the LU/LC classification and modification
exposure simulation. Landsat images are freely available, access to four eras of world recording data, and
moderately areal resolution, to investigate LU/LC change; were considered (Sakthivel et al., 2021; Shteiwi
et al., 2021; Padmaja & Giridhar, 2022). To simulate LU/LC changes patterns, different methodologies,
using RS and GIS, were applied (Saleh & Ahmed, 2021). RS and GIS approaches are inexpensive, provide
suitable visual analysis, and have updatable spatial and temporal databases. They are helpful tools for
aiding planners and policymakers in developing sustainable policies. Consequently, planners and
policymakers have recently considered such techniques to simulate LU/LC change patterns.
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Currently, different models and strategies, using RS and GIS techniques, are using to simulate LU/LC
changes and model broad urban growth trends (Wang et al., 2018). Several researchers have applied
conventional models, such as the cellular automata (CA) models and logistic regression (Wang et al.,
2018). However, others have depended on linking various models, such as the CA and Markov chain (MC)
models, to achieve accurate and realistic results (Wang et al., 2018). The CA model has an open
framework and can be linked with other models to simulate and predict LU/LC changes patterns (Wang et
al., 2018). Due to its adaptability, intuitiveness, and capacity to combine spatial and temporal dimensions
of numerous processes, the model has found extensive use in simulating future LU/LC changes and
urban growth patterns. Furthermore, the CA model has a high spatial resolution; and computational
efficiency as the model can be linked with the GIS environs (Wang et al., 2018). The Markov chain model
is commonly applied to simulate and predict the LU/LC changes pattern (Yi et al., 2022). Although, the
Markov chain model cannot predict changes in spatial trends. However, it is still a powerful model and
capacity to predict to which extent land has changed (Wang et al., 2018). Incorporating the CA and
Markov Chain models is sufficient for modelling spatiotemporal dynamics of LU/LC since equally are GIS
and RS models that can be competently combined (Wang et al., 2018). Linking CA, a dynamic simulation
model, with a Markov chain, which is a statistical and empirical model, would overcome the inherent
shortcomings in each. Markov model and cellular automata have portable profits in the investigation of
land use variations. The CA-Markov simulation can incorporate the data of geographic information
systems (GIS) and remote sensing well. Therefore, it is a strong and appropriate technique for simulating
spatiotemporal change of LU/LC (Wang et al., 2018; Yi et al., 2022). Recently, the CA Markov model has
effectively been applied to simulate the spatiotemporal change patterns of LU/LC by numerous studies
(Hailu et al., 2018; Gidado et al., 2019; Msofeet al., 2019; Dibaba et al., 2020; Hishe et al., 2020; Munthali et
al., 2020; Cui et al., 2021; Wang & Zheng, 2022; Yi et al., 2022). Accordingly, considering the ability of the
model to expand understanding of the difficulty of spatial system components, the current study
considered the CA-Markov simulation to examine prospect LU/LC variations within Lesser Zab River
Catchment (LZRC), north part of Iraq. During the past decades, LU/LC in Iraq has been harmfully affected
by the anthropogenic intervention and climate changes, such as wars and droughts (UN, 2013). A
comprehensive estimation of LU/LC in the country is unavailable, and the formal Iraqi administration data
may be undependable (Khwarahm et al., 2021a). Nevertheless, numerous studies have used classification
methods that are founded on remote sensing data to estimate LU/LC at the local scale (Degife et al., 2019;
Juliev et al., 2019; Yesuph & Dagnew,  2019; Kan-In & Khunrattanasiri, 2020; Maury & Sharma, 2020;
Sakthivel et al., 2021; Padmaja & Giridhar, 2022). Nearly all the earlier research works in Iraq have
concentrated either on present or on historical LU/LC variations, and there has been limited research work
on the prediction of spatial future LU/LC variations in the country (Mohammed, 2013; Omar et al., 2014;
Al-Saady et al., 2015; Alzamili et al., 2015; Alkaradaghi et al., 2018; Mustafa & Ismail, 2019). Thus, the
current research aims to address the past, present, and future changes of LU/LC for the LZRC by CA-
Markov simulation. The outputs would offer valuable materials for protection ecologists to defend the
ecosystems integrity, city manager and policymakers.

Materials And Methods
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Study area 

Lesser Zab River Catchment (LZRC); is placed in Erbil governorate, the north-east of Iraq, upstream of
Tigris River, and north-west Iranian lands. It placed within latitudes 35°00'00"-36°60'00" N and
43°20'00"-46°20'00"E longitudes, cover a drainage area of almost 20,000 km2 (Mohammed & Scholz,
2018). The catchment is designated by high topographic relief, with altitude changing from 306 to 1356
m.a.s.l. (Mohammed & Scholz, 2016). Nearly 24% of the catchment area is located in Iran, and the rest is
in Iraq, Figure 1. Lesser (Lesser/Little) Zab river or Al-Zab Al-Saqeer is the major tributary of the Tigris
River. Dokan, a multipurpose dam, was built in the Iraqi part of LZRC (35°57'14'' N and 44°57'10'' E), and
Iran is lately constructing one and designing two more. 

The catchment has a semi-arid continental climate in the north and north-east parts and an arid climate in
the south and south-east parts with hot summer, occasionally, the maximum temperature reaches 42.2 °C
and cool, wet winter (Mahdi & Mohammed, 2022). In that order, annual average air temperatures might
range between 25.2 °C and 13.9 °C. The north and east portions of the catchment are generally
mountainous areas; therefore, the yearly rain is considerably greater compared to the plain west and south
portions (375-724 mm). 

 

Data availability                                                                                    

Landsat satellite images of three historic sequential years (1999, 2010, and 2021) have been considered
in the current research. The imagery scenes, of 30 m areal resolution and the minimum raincloud
protection proportion, were obtained after the USGS (USGS, 2022) Earth Explorer portal
(https://earthexplorer.usgs.gov), Table 1. After mosaicking the image parts of identical time frames and
years, the area has been extracted. After that, and to correctly detect surface topographies before creating
exercise data or spectral signature data for the organization, different band combinations have been
exhibited, such as RGB 5, 4, 3 for OLI and RGB 4, 3, and 2 for TM. Before defining the scene feature
classes depending on the training samples, historical and recent skilled information on the study area
physiography, and valuable auxiliary records have been considered, for each LU/LC class recognized.
Specifically, forest, agricultural land, plantation, urban area, barren land/dark, barren land/light and water
body, Table 2, about 200 exercise trials in small polygons layout have resulted from the mosaicked
imageries per required year (Lin et al., 2018). To classify each consecutive year image, the maximum
likelihood method was used. Consecutively, three LU/LC maps with a spatial resolution of 30 m were
produced. 

 

Classification valuation 

It is vital to measure the degree of agreement between automatic classification; with reference data (Li et
al., 2018). An autonomous data comprising 30 per cent of the exercise data per class, for example, 30 per

https://earthexplorer.usgs.gov/


Page 5/22

cent of the 200 spectral autograph trials for every feature class equal to 60 points, was achieved by the
ArcMap tool (Khwarahm et al., 2021b(. The accuracy of 1999, 2010, and 2021 LU/LC maps, which
resulted from the maximum likelihood method, were assessed by employing that dataset. A matching
arbitrary sampling procedure was applied by producing 198 points scattering through every LU/LC map
for every year. The 198 random points denote 34 points for water bodies class, 31 points for forest lands
class, 35 points for agricultural lands class, 33 points for barren lands/dark class, 35 points for bare
lands/light class, and 30 points for urban lands class for the categorized data (Gidado et al., 2019). Then,
these points were transferred as shapefiles into Google Earth’s historic images (reference plan) to be
recognized and considered. To create an error matrix, the labelled points have been transferred back to the
ArcMap tool (Hishe et al., 2021; Sakthivel et al., 2021). After that, producer and user accuracy; and the
whole Kappa index of the agreement were calculated, depending on the error matrix. The quantification of
the changing aspects of modification; during the time was then explored by computing the zone of
specific classification each time frame (i.e., every year 1999, 2010, and 2021) (Juliev et al., 2019) after
evaluating the produced LU/LC map's accuracy between 1999 and 2021.

 

C  Cellular automata-markov chain simulation 

Markov chain is one of the commonly known simulations to measure the degree of alteration during time
through functioning the changing likelihood (transition probability) matrix, transition area matrix between
t0 and t1 use/land cover time period maps (binary). Based on these matrices and their pixel-wise status,
some restricted probability class classifications are expected (Khwarahm et al., 2021b). Although the
Markov model is verified capable of mimicking the LU/LC modification (Cui et al., 2021; Hyandye & Martz,
2017). Still, the model is inadequate in mimicking the areal circulation of the class classifications in the
LU/LC maps (Omar et al., 2014).

Alternatively, the Cellular Automata (CA) model (Khwarahm et al., 2021b) fills the gap of the spatial
dimension constraint. Based on pre-defined conversion situations over time, the CA model calculates the
LU/LC class classification new status built on the previous LU/LC status and those of its adjacent class
classifications (Omar et al., 2014; Li et al., 2018; Kan-In & Khunrattanasiri, 2020). Integrating Markov chain
simulation with the CA model delivers a distinctive prospect to calculate and simulate the spatiotemporal
alteration of LU/LC regularly. This interaction model is capable of predicting and simulating difficult
LU/LC classes (Hyandye & Martz, 2017). The CA-Markov model has been applied to predict LU/LC
alteration during 2041, based on the (1999–2010) and (2010–2021) and the maximum likelihood
classification, Fig. 2. This was achieved by the following main steps. Firstly, the maps of built-up and non-
built-up areas were arranged and loaded into the ArcGIS 10.7 software. The maps of land use for the
years 1999, 2010, and 2021 were re-classified to suit the objective of predicting urban development in
LZRC. The land use maps were converted from vector to raster and then to ASCII files using conversion
tools within the ArcGIS environment. Then, the IDRISI_Selva environment was used to re-classified and
converte the ASCII files to a raster format. Accordingly, they can be considered to predict prospect urban
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development. Markov chain model was applied to identify the transition probability matrix and transition
rules for land use and land cover. Accordingly, the future LU/LC alteration was modeled, i.e., the transition
probabilities for 1999 to 2010 were applied to predict the variations in 2021 and to calibrate and validate
the model. Meanwhile, urban and non-urban maps of 2010 and 2021 were considered to predict future
urban development in 2041. Markov simulation was firstly applied to produce transition probability
matrices of zones and therefore conditional probability images for (1999–2010) and (2010–2021) LU/LC
maps, in that order, Fig. 2. Model settings allowable just 15% related error for input imageries is suggested
(Sakthivel et al., 2021). Secondly, a map of LU/LC for 2021 was modeled by the probability of transition
and conditional images as input to the CA-Markov simulation. Then, to calibrate the model, the resulted
image was validated with the real 2021 image. Next, a 2041 LU/LC map  was simulated from the present
(2010–2021) maps.

 

Model validation 

It is essential to authorize the results of the model before simulating the LU/LC map for 2041. The
validation was achieved by using an internal frame of the categorized data as reference data (categorized
2021 LU/LC image) compared to the modeled LULC map of 2021. IDRISI 17.0 has a fixed VALIDATE
module that was used to compare the degree of the agreement between the classified and the modeled
image. The agreement catalogues are founded on the typical KIA (Kappa Index of Agreement with
particular areal relationship differences, which namely include; KlocationStrata (Kappa for location Strata),
Klocation (for location), Kno (for no data), and Kstandard (standard) (Viera & Garrett, 2005; Khwarahm et al.,
2021a; Khwarahm et al., 2021a; Yi et al., 2022). Kappa locationSrata and location specify the aerial
extents precision of the extent and positions of the grid-cells of a definite class classification of the LU/LC
images. Kappa no, designates the overall agreement between the reference and simulated images parts,
irrespective of having data on the amount and position of definite class categories. Kappa standard
signifies the ratio of properly relating a class category compared to the ones that are linked properly
through accidental. The values of Kappa for these differences vary from 0 to 1; the nearer the number to 1,
the well is the agreement precision (Khwarahm et al., 2021a).

Results And Discussion
Assessment of the classification 

Error matrices were considered to assess the accuracy of the maximum likelihood cataloguing, Tables 4
and 5. The agreement whole Kappa index for the three considered, 1999, 2010, and 2021 were 0.90 (90%),
0.95 (95%), 0.85 (85%), correspondingly. The user’s and producer’s precisions for every class classification
were varied between 0.87 and 1.00 (Tables  3), which designate that the figure of pixels properly
categorized in Google Earth. Historical images and local understanding of the catchment extent’s
physiography were suitable for correctly mining class classes. General, six class groups were recorded
from the Landsat images, which recorded throughout the initial and late July of 1999, 2010, and 2021.
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Alteration figures established between 1999 and 2010, the dense vegetation, bare lands, agricultural lands,
urban lands, and water bodies have increased by 5.52, 3.45, and 0.19%, respectively, Table 4. These
alterations are comparative concerning the total cover of the land categories between the two periods. The
expansion in the urban area between 1999 and 2010 (11 years) is moderate. However, one may reflect on
the instability of the financial and the essential circumstances in that period. The battle between Iran and
Iraq, which lasted eight years, was just stopped in 1988; the gulf battle was happening and followed by
the economic agreements of the United Nations. The expansion in bare lands may denote restricted
farming action by agriculturalists in 2010, or the terrestrial has been recorded. 

The increase in the density and magnitude of the forest areas; in the remote high lands; is revealed in
Figure 5. Remarkably, the water bodies raised from 95.4 km2 to 132.9 km2 (0.2). However, agricultural
land, barren lands/dark and light have decreased by 8.15, 0.4, and 0.78%, respectively. Between 2010 and
2021, change statistics established agricultural land, bare lands dark and bare lands light have reduced by
0.96, 0.28, and 1.23%, in that order. However, the urban area, forest and water bodies increased by 0.82,
1.57 and 0.04%, respectively. Through that period, the bare land displayed a constant reduction of about
11.9% of the entire area, while the extent of the built-up land raised from 240 to 1118 km2, Table 4. The
growth of the urban area denotes the growth of the population and expansion of the organizations
(Khwarahm et al., 2021a(. Population development is considered one of the main factors that cause
LU/LC alterations (Wang & Zheng, 2022). Over the past two eras, Iraq has seen substantial population
development and limited economic progress (UN, 2017).

 

Model validation

The actual LU/LC map of 2021 has been used to validate the modelled map of 2021. Generally, there was
an excellent degree of fitting between the simulated and real images, Table 5. The overall Kappa
numerical differences of Kno = 0.8635, Klocation = 0.8541, Klocation Strata = 0.8541, and Kstandard = 0.7853
were accomplished, which are measured suitable to the extent that the model justification consistency is
concerned for more use (Khwarahm at al., 2021a). The model is implemented reasonably in expecting the
water bodies, bare land, urban areas, cultivated lands, and forest lands, Table 4. Yet, the model has
overestimated the barren lands and agricultural lands by 2.73 (6990 km2) and 8.28 (7992 km2), and water
bodies by 0.22 (90 km2), respectively of the actual area. In contrast, the model has underestimated the
forest and urban land by 7.01 (3810 km2) and 4.22 % (1118 km2)  of the actual land, respectively. 

The underestimation most possible resulted from the disagreement amount assessment, Table 5, which
has, to some extent, affected the total model performance. Additionally, the difference between the
classified and the modelled LU/LC map of 2021 has resulted from underestimating specific class
classifications, mainly farming bare and urban areas, Table 5. As there is an evident interval variance from
2010 to 2021, during which the speed and number of LU/LC alteration dynamics have altered associated
with the period from 1999 to 2010. Conversely, the total model performance in modelling a prospect
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scenario depending on the transition probability matrix of 1999–2010 established dressed precision,
Table 5 and Fig. 3. Earlier research within the study region has stated several Kappa coefficient difference
values for the CA-Markov method. For example, Khwarahm et al., 2021a reported the Kno = 0.8339,
Klocation = 0.8222, Kstandard = 0.7491,  in that order. Fig. 3 demonstrated that there is a good agreement

between the anticipated and classified LU/LC maps with a coefficient of determination value of R2 = 0.95,
Fig. 3. This outcome agrees with the outcome of the (Khwarahm et al., 2021a) study, which stated that the
R2 = 0.98 between actual and predicted LU/LC maps.

 

LULC change modeling

The classified LU/LC maps for the 1999–2010 and 2010–2021 were considered to model 2021 and 2041
LU/LC maps, in that order. The results of LU/LC maps prediction revealed that between 2021and 2041
urban areas would increase by 364.79% (from 1117.1 to 5192.2 km2). However, bare lands/light,
agricultural lands, water bodies, bare lands/dark, and forest lands would decrease by 3% (from 6921.34 to
6723.70 km2), 12% (from 7972.85 to 7023.60 km2), 15% (from 141.03 to 119.86 km2), 30 (from 4.80 to
3.37 km2), and   76 (from 3808.86 to 903.20 km2), in that order, Table 5 and Fig. 4. These alterations
(increases/declines) are comparative variations with respect to LU/LC class classifications. For example,
a 365% increase in the urban area during 2041 would be at the cost of decreasing other class categories
extent. 

Additionally, variations ration in each class category area during the period from 2021 to 2041 designated
that the maximum active class cover categories were urban lands, forest lands, and bare lands/dark.
While, the least dynamic cover types were water bodies, agricultural lands, and bare lands/light. In 2041,
the area of the bare lands/light would decline by only 3%, while the forest lands area with greater than
76.27% with respect to other land cover categories, Fig. 4. The utmost substantial alteration that balances
out the total activity of the class classifications will be the agricultural lands and bare lands/light. These
classes cover a significant area in comparison to the other classes. This result shows that particular
zones, which were enclosed by water bodies in 2021, will be changed by urban lands, sequentially, further
water bodies will arise. The appearance of water bodies will be utmost possibly be in the arrangement of
catchments and minor scale lakes from fishery events, Figs. 5 and 6.

Conclusions
Lesser Zab River is one of the main Tigris River tributaries. The catchment of the Lesser Zab River is
considered one of the essential biodiversity hot spots in the Kurdistan Region/Iraq. During the past 15
years, the croplands of the region has been altering at a linear speed. Developing procedures to measure
spatially historical, present, and prospect alterations make available helpful material for policy-makers;
and biodiversity ecologists and support in detecting environmentally degraded zones regarding the
landscape’s overall variety. For predicting the dynamics of LU/LC classes during 2040, the current study
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has applied a combined method of GIS, remote sensing, and CA-Markov (earth surface modeller).
Integrating remote sensing with GIS provides an excellent chance to monitor and measure LU/LC
spatiotemporal variations regularly. Since 1999, there have been substantial variations in LU/LC,
especially in urban areas, mainly in the neighbourhoods of the chief highways and near, west, south-east,
and south-west of the metropolitan. Agricultural lands in the catchment have revealed a notable drop from
1999 to 2021, and future predictions established that this tendency would remain (i.e. from 2021 to 2041).
Administration actions should emphasis protecting the agricultural zones as part of the ecological
expansion. Besides, the more active LU/LC kind that raised the greatest over the last two decades was an
urban area, which increased by four times from 1.20 to 5.59% from 1999 to 2021. Future predictions
demonstrated that this trend would continue to increase from 5.59% (2021) to 26.01% (2041) (i.e. by
almost four times). Urban areas would continue to expand mainly at the cost of agricultural, barren and
forest areas. The results of this study offer vigorous reference point material for prospect use of the land
surface landscapes with less effect on biodiversity and land reliability. The map of 2041 would be used as
a standard for decision making, preparation, ecological management of the atmosphere, and biodiversity
protection.
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Tables
Table 1 Sensor and date/time of the scene acquisitions from Landsat 5 Thematic Mapper (TM) and
Landsat 8 (OLI_TIRS)

Path Row Date/time (Sensor_TM) Date/time (Sensor_TMa) Date/time (Sensor_OLIb_TIRSc)

168 35 20.7.1999 (TM) 02.7.2010 (TM) 16.7.2021 (OLI)

168 36 20.7.1999 (TM)   16.7.2021(OLI)

169 35 27.7.1999 (TM)  09.7.2010 (TM) 23.72021(OLI)

169 36   09.7.2010 (TM) 23.7.2021(OLI)

170 36     30.7.2021(OLI)

 

 

 

Path/row=168/35, 168/36, 169/35, 169/36, 170/35, 170/36

Note: spatial resolution of 15m is used for the panchromatic band 8 for Landsat 8

aThematic Mapper; bOperational Land Image;cOperational Land Image and Thermal 
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Infrared Sensor

 

 

Table 2 Description of the land use/land cover classes

Class  Description 

Forest      Very densely vegetated areas, mostly forest and dense shrub lands. 

Agricultural
land

Presently cropped area with noticeable greenness

Urban area      
               

Synthetic Structure

Bare land/light Lands with no apparent/or negligible plants, specially no evident covers of trees or
shrubs, wasteland, rocky mounts and bare open lands

Bare
Land/dark

Lands with no evident/or negligible plants, particularly no noticeable covers of trees
or plants. Rocky mounts, bare rocks, hills, and soil

Water bodies  
                    

Any water bodies such as rivers, lakes, and fishponds 

 

 

Table 3 Transition probability matrix resulting from land use maps for the period from 1999 to 2010 and
2010 to 2021
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  Matrix 2021

1999 2010

WB1 FL2 AL3 BLD4 BLL5 UL6

WB1 0.8010 0.1989 0.0000 0.0000 0.0000 0.0001

FL2 0.0031 0.5669 0.3796 0.0040 0.0248 0.0215

AL3 0.0041 0.2721 0.5106 0.0068 0.1617 0.0446

BLD4 0.0085 0.2447 0.2358 0.0677 0.4078 0.0356

BLL5 0.0001 0.0618 0.1345 0.0040 0.7384 0.0612

UL6 0.0123 0.1408 0.2614 0.0056 0.3753 0.2047

Ov
* 91.81 (1999)        

Ka
** 90.08          

Matrix 2041

2010 2021

WB1 FL2 AL3 BLD4 BLL5 UL6

WB1 0.7659 0.1592 0.0330 0.0000 0.0087 0.0332

FL2 0.0056 0.3359 0.4866 0.0002 0.1105 0.0613

AL3 0.0009 0.3273 0.5445 0.0001 0.0934 0.0339

BLD4 0.0003 0.1854 0.5716 0.0002 0.1952 0.0473

BLL5 0.0001 0.0474 0.2778 0.0004 0.5636 0.1107

UL6 0.0014 0.1411 0.3465 0.0003 0.2984 0.2123

Ov
* 87.3 (2021) 91.8 (2010)    

Ka
** 84.76 90.08    

1Water Bodies, 2Forest lands, 3Agricultural land, 4Bare land/dark, 5Bare lands/light, 6Urban land; *Overall
accuracy,**Kappa Index
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Table 4 Area and percentage of area of the land use land cover classes alteration 

Class Area

1999 2010 2021 2021
simulated

2041
simulated

(km2) (%) (km2) (%) (km2) (%) (km2) (%) (km2) (%)

WB1 128 0.64 104 0.52 90 0.45 134 0.67 120 0.60

FL2 2394 11.97 3021  15.105 3810 19.05 2408 12.04 904 4.52

AL3 9800 49 9001 45.005 7992 39.96 9648 48.24 7036 35.18

BLD4 140 0.7 41 0.205 7 0.035 238 1.19 4 0.02

BLL5 7298 36.49 7011 35.055 6983 34.915 7298 36.49 6736 33.68

UL6 240 1.2 822 4.11 1118 5.59 274 1.37 5200 26.00

Total 20000 100 20000 100 20000 100 20000 100 20000 100

1Water Bodies, 2Forest, 3Agrucaltural Lands, 4Bare Lands Dark, 5Bare Lands Light, Urban Lands

 

Table 5 Coefficients of agreement between the real and modeled land use and land cover 2021 map 
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                                                     Classification agreement/disagreement

                                             According to the ability to specify accurately quantity and allocation

Information of Allocation Information of Quantity

No [n] Medium [m] Perfect [p]

P(x)1 0.4996 0.9561 1.0000

K(x)2   0.4996     0.9561     0.9980

M(x)3 0.4163     0.8830     0.8851

H(x)4 0.1429     0.4549     0.4542

N(x)5 0.1429     0.4549 0.4542

Agreement Chance =  0.1429  

Agreement Quantity =  0.3120  

Agreement Strata =  0.0000  

Agreement Grid cell =  0.4281  

Disagree Grid cell =  0.0731  

Disagree Strata =  0.0000  

Disagree Quantity =  0.0439    

Kno =  0.8635  

Klocation =  0.8541  

Klocation Strata =  0.8541  

Kstandard =  0.7853  


 
 
 
 
 
 


1Perfect, 2Perfect Stratum, 3Medium Grid, 4Medium Stratum, 5No 

Figures
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Figure 1

(a) The hydrographical system of the Lesser Zab River Catchment is located in (b) Iraq
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Figure 2

The applied methodology for assessing the implication of land use and land cover (LU/LC) alteration on
the Lesser Zab River Catchment, Northeastern Iraq
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Figure 3

(a) The relationship between the actual and predicted land use and land cover maps of 2021; (b)
Dynamics of land use/land cover for 2021 and 2041. Note: WB=Water Bodies, FL=Forest lands,
AL=Agricultural land, BLD=Bare land/dark, BLL=Bare lands/light, UL=Urban land
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Figure 4

Land use/land cover maps for a) 1999, b) 2010, c) 2021, and d) simulated 2021
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Figure 5

The simulated land cover and land use status of the Lesser Zab River Catchment for the 2041year


