Research on Personnel Performance Evaluation Model Based on Neural Wireless Network Data Mining Algorithm



In order to effectively evaluate personnel performance, a distributed data mining algorithm for spatial networks based on BP neural wireless network is proposed. In the cloud computing environment, an excavator is used to construct multiple input multiple output spatial network data, analyze the data structure, and perform redundant data compression of massive data through time-frequency feature extraction. Combined with adaptive matching filtering method, the characteristics of the data are matched. The spatial frequency feature extraction method is used to locate the features of the multiple-input multiple-output spatial network data, and the fourth-order cumulant slice is used for reorganization. Data in time series. In order to improve the accuracy of data mining, the BP neural network is used to classify and identify the extracted data features to achieve the optimization of data mining. This algorithm improves the accuracy of personnel performance evaluation, and simultaneously establishes a hierarchical analysis and quantitative evaluation model for the performance of government managers, and adjusts the results of hierarchical statistical analysis on government administrators as needed. The performance evaluation and optimization of government administrators were introduced. The empirical analysis results show that the method has higher accuracy for government managers' performance evaluation, higher efficiency of big data processing and better integration.


Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.