
Page 1/26

Molecular formula discovery via bottom-up MS/MS
interrogation
Tao Huan  (  thuan@scripps.edu )

University of British Columbia https://orcid.org/0000-0001-6295-2435
Shipei Xing 

University of British Columbia
Sam Shen 

University of British Columbia
Banghua Xu 

University of British Columbia

Article

Keywords:

Posted Date: August 11th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1927294/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Nature Methods on April 13th, 2023. See
the published version at https://doi.org/10.1038/s41592-023-01850-x.

https://doi.org/10.21203/rs.3.rs-1927294/v1
mailto:thuan@scripps.edu
https://orcid.org/0000-0001-6295-2435
https://doi.org/10.21203/rs.3.rs-1927294/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41592-023-01850-x


Page 2/26

Abstract
A substantial fraction of metabolic features remains undetermined in mass spectrometry (MS)-based
metabolomics. Here we present bottom-up tandem MS (MS/MS) interrogation to illuminate the
unidenti�ed features via accurate molecular formula annotation. Our approach prioritizes MS/MS-
explainable formula candidates, implements machine-learned ranking, and offers false discovery rate
estimation. Compared to the existing MS1-initiated formula annotation, our approach shrinks the formula
candidate space by 42.8% on average. The superior annotation accuracy of our bottom-up interrogation
was demonstrated on reference MS/MS libraries and real metabolomics datasets. Applied on 155,321
annotated recurrent unidenti�ed spectra (ARUS), our approach con�dently annotated > 5,000 novel
molecular formulae unarchived in chemical databases. Beyond the level of individual metabolic features,
we combined bottom-up MS/MS interrogation with global peak annotation. This approach reveals peak
interrelationships, allowing the systematic annotation of 37 fatty acid amide molecules in human fecal
data, among other applications. All bioinformatics pipelines are available in a standalone software,
BUDDY (https://github.com/HuanLab/BUDDY/).

Introduction
Tandem mass spectrometry (MS/MS) reveals the structural information of chemicals by measuring the
mass-to-charge ratios (m/z) of ions fragmented from a selected precursor ion. MS/MS is essential in MS-
based untargeted metabolomics for metabolite identi�cation. A routine process is to match experimental
MS/MS against reference MS/MS spectra1–4. However, given the great sensitivity of MS instruments, a
considerable amount of uncharacterized chemical signatures (‘dark matter’) remain in untargeted
metabolomics5. These unidenti�ed features might present unique bioactivities and play critical roles in
understanding biological mechanisms. Unfortunately, these features do not have available reference
spectra in spectral databases or even have not been reported in literature (‘unknown unknowns’6). As
such, unknown annotation has become a challenging yet pivotal research topic in metabolomics,
exposomics, and others1, 7–14.

Molecular formula determination is a great starting point to illuminate unrecognized metabolites, as
unambiguous molecular formula annotation can dramatically reduce the number of potential chemical
candidates. A common practice for molecular formula annotation relies on mass searching against
metabolome databases (HMDB15, KEGG16, ChEBI17, etc.) or even larger chemical databases (PubChem18,
ChemSpider19, etc.). However, this approach is signi�cantly affected by the mass accuracy, limiting the
searching scope within existing databases and thus hindering the discovery of novel formulae. Moreover,
it does not fully utilize available information such as MS1 isotope pattern and MS/MS. SIRIUS �rst
overcame the above issues by producing all mathematically possible formulae20, decomposing isotope
patterns21, and integrating fragmentation trees22 into MS/MS analysis. SIRIUS works in a top-down
manner in which formula candidates are �rst generated using MS1 information, and MS/MS explanation
comes last.
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Bottom-up processing represents specifying individual base components separately and assembling
them into a top-level system. Bottom-up approaches have been widely adopted in neighboring �elds such
as shotgun sequencing23, 24 and shotgun proteomics25, 26, where DNA strands and intact proteins are
sheared or digested into shorter sequences for more detailed analyses. Here we propose bottom-up
MS/MS interrogation to enable accurate molecular formula determination with signi�cance estimation10,

27. While a couple of bioinformatics tools have integrated MS/MS analysis into their candidate ranking7,

9, 22, 28 (formula or structure candidates), we �rst prioritize the signi�cance of MS/MS in candidate
generation. The ‘bottom-up’ methodological design dramatically shrinks the candidate searching space
and allows for the broad discovery of unreported biochemically feasible formulae. Implementing
machine-learned ranking (MLR) and false discovery rate (FDR) estimation enhances the annotation
accuracy and enables signi�cance control, respectively. Furthermore, we explored beyond the annotation
of individual metabolic features up to the molecular network level—we present experiment-speci�c global
peak annotation, which reserves reasonable individual peak annotations while revealing peak-peak
relationships on an experimental basis.

Results
BUDDY was created as a standalone platform with an intuitive graphical user interface (Extended Data
Fig. 1), capitalizing on bottom-up MS/MS interrogation and experiment-speci�c global peak annotation
for untargeted metabolomics. Conceptually, bottom-up MS/MS interrogation enables highly accurate
molecular formula determination with signi�cance estimation. On the other hand, experiment-speci�c
global peak annotation aims to construct valid biotic or abiotic metabolic feature connections while
re�ning individual feature annotations. A YouTube video is provided to enable a quick start guide
(https://www.youtube.com/watch?v=Ne_Y0vZ0WKI).

Bottom-up MS/MS interrogation. Figure 1 illustrates the schematic work�ows of top-down and bottom-up
approaches for molecular formula annotation. The top-down approach (e.g., SIRIUS7) generates the entire
potential candidate space using MS1 information, assesses the MS/MS interpretability for each formula
candidate (e.g., fragmentation tree22), and ranks them by heuristically combining MS1 score and MS/MS
score. In comparison, our bottom-up approach has three distinct features, including (1) generation of an
MS/MS-explainable candidate space, (2) machine learning-assisted candidate ranking, and (3) FDR
estimation.

Bottom-up MS/MS interrogation starts with decomposing the query MS/MS into multiple fragment-
neutral loss pairs. The masses of each pair are searched against the well-curated formula database
archiving > 3.5 million unique molecular formulae from 26 chemical databases (Methods, Supplementary
Fig. 1) to produce possible subformula candidates. Notably, the database search here does not limit the
generation of molecular formulae from extending beyond the current chemical space but actually allows
us to prioritize discovering unreported (bio)chemically feasible molecular formulae. During the search,
both even-electron and odd-electron (radical) ion species are considered equally through searching
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against either the hydrogen-adjusted formula database (e.g., C6H7) or the original neutral molecular
formula database (e.g., C6H6). This approach enables a broader recognition of radical ions, especially in

collision-induced dissociation-based MS/MS spectra29 (Methods). Next, the subformula candidates for
each fragment-neutral loss pair are stitched together to add a unique dimension to the formula candidate
space. Candidate spaces of all dimensions are merged, dereplicated, and then subjected to SENIOR
rules30 to �lter out chemically implausible formulae (e.g., CH5). The above processes create a pooled
MS/MS-explainable candidate space in which any candidate can explain at least one peak in the query
MS/MS. MS1 isotope pattern matching is conducted optionally to generate MS1 isotope similarities. The
following machine-learned ranking (MLR) assesses both intrinsic properties of candidate formulae and
their performance in MS/MS interpretation, and an MLR prediction score is assigned to each candidate.
MLR scores are then converted into estimated posterior probabilities using Platt calibration31, and FDR
estimates are calculated accordingly (Methods).

Candidate space shrinkage. The �rst key feature of the bottom-up approach lies in its capability to
drastically shrink the candidate space for lower computational cost and higher annotation accuracy. To
demonstrate this, we performed a repository-scale candidate space comparison between the top-down
and bottom-up approaches using the curated NIST20 library (21,976 unique chemicals, Methods). For
each query MS/MS, we generated both its entire potential candidate space and its MS/MS-explainable
candidate space via mathematical mass decomposition20 and bottom-up MS/MS interrogation,
respectively.

The results show that a narrower searching space can be obtained in 87.8% of total queries by prioritizing
MS/MS-explainable candidates (Fig. 2a). Compared to the top-down approach, the bottom-up approach
shrinks the candidate space by 4.2% to > 99.9%, 42.8% on average (median of 40.8%). To further explore
the candidate space shrinkage in the domain of precursor mass, we plotted the candidate counts of all
queries in both spaces as in Fig. 2b. Overall, both candidate spaces expand as precursor mass increases,
but the MS/MS-explainable candidate space grows at a drastically lower rate. As estimated by LOWESS,
the MS/MS-explainable candidate space is 7.9-fold narrower than the entire space at m/z 400, 12.2-fold
at m/z 600, and 20.7-fold at m/z 800. A more obvious size difference between the two spaces can be
observed at higher m/z. Even for m/z < 200, a statistical signi�cance was found between the space sizes
(P < 2.2×10− 16).

Additionally, the MS/MS-explainable candidate space can be shrunk further by applying cutoffs on
MS/MS explanation qualities, such as the total fragment intensity explained (normalized, in percentage).
However, the process of candidate space shrinkage is always accompanied by the risk of mistakenly
disposing of correct answers outside the candidate space, which we term misdisposition. This means
that there are extreme cases where the correct formula cannot explain a single fragment-neutral loss pair
in its MS/MS. The chance of misdisposition remains as low as 0.05% (1 out of 2000 annotations). With a
higher threshold of the total fragment intensity explained, the candidate count reduces further at the cost
of a higher misdisposition rate (Fig. 2c). In our bottom-up approach, we do not include any additional
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MS/MS-related cutoffs for candidate removal as experimental MS/MS can be informative to varying
extents or even be contaminated due to collision energy or precursor window width selections32, 33.
Hence, we prioritize a more accurate candidate ranking process while reserving a relatively reasonable
fraction of formula candidates.

Accuracy of bottom-up molecular formula annotation. The method performance was evaluated �rst on
four reference MS/MS spectral libraries: MassBank, GNPS, Fiehn HILIC, and Vaniya-Fiehn Natural
Products Library (VF-NPL). Data curation ensured structure-disjoint evaluation in each reference library
(Methods). In total, 24,216 MS/MS spectra representing 11,667 unique molecules were reserved. These
molecules cover 19 chemical superclasses and 263 classes34 (Fig. 3a, Supplementary Table 1),
embracing a diverse range of structures. For method comparison, we chose SIRIUS21, a benchmarking
tool for molecular formula determination. The same parameter set was applied in both tools. The results
are summarized in Fig. 3b (spectra from Orbitraps) and Extended Data Fig. 2 (spectra from QTOFs).
Overall, BUDDY outperforms SIRIUS in all tested MS/MS libraries, improving the top 1 accuracy by an
average of 30.1% (Supplementary Table 2); the largest accuracy increase was found in VF-NPL (Orbitrap,
positive mode spectra) at 68.7%. We further investigated BUDDY’s performance from two aspects,
precursor mass and spectral quality. As shown in Fig. 3c, the annotation accuracy remains high (93.0%)
for m/z < 400 (67.4% of total queries) but drops as precursor mass increases (63.8% accuracy for m/z
≥400). From the perspective of spectral quality, we herein used spectral entropy35 to refer to the extent of
MS/MS fragmentation (chaos). In brief, a more informative MS/MS with more diverse fragments
generally receives a higher spectral entropy and is thus anticipated to have a higher chance of being
correctly annotated. We inspected annotation accuracy as a function of spectral entropy for compounds
of m/z 300 to 400 and 400 to 500 (Fig. 3d) and found that while an increasing trend is observed for m/z
400 to 500 (r = 1.0), the relationship is unclear for m/z 300 to 400 (r = 0.2).

Bottom-up molecular formula annotation was also evaluated on experimental data using four public LC-
MS/MS-based metabolomics datasets collected from various sample matrices, MS instruments, and
ionization polarities (Supplementary Table 3). The metabolites identi�ed via spectral matching (level
2a36) were used as ground truths (Fig. 3e). Again, the bottom-up molecular formula annotation
consistently outperforms the top-down approach in all datasets from top 1 to 3 accuracies (Fig. 3f,
Supplementary Tables 4–7). The slightly worse performances in the American gut project (88.0%) and
Chagas disease (85.9%) datasets could be respectively attributed to MS instrumental mass resolution
(only the American gut project dataset was collected on QTOF and not Orbitrap) and precursor mass
distribution (Fig. 3e). Additionally, we tested how MS/MS spectra aid in formula annotation and
generated annotation results without using MS/MS (Fig. 3g). In all cases, the employment of MS/MS
was positive, and the most signi�cant improvement occurred in the Chagas disease dataset (34.2%).
Moreover, BUDDY offers an option to use meta-scores37 (e.g., appearance in chemical databases) for the
bottom-up annotation. In reanalyzing the above metabolomics datasets with meta-scores, an increased
annotation accuracy (up to 6.2%) was observed in three of the datasets (Fig. 3h).
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Platt calibration and FDR estimation. MLR prediction scores are transformed into calibrated probabilities,
on top of which FDR estimation can be achieved (Methods). Using MassBank4 as an initial validation, we
explored MLR score distributions of both correct and incorrect annotations (Fig. 4a). Corresponding
curves for calibrated probabilities show that 88.0% of correct annotations receive calibrated probabilities
of > 0.5, and 97.7% of incorrect annotations have calibrated probabilities of < 0.5. The receiver operating
characteristics (ROC) curve for differentiating correct and incorrect annotations (Fig. 4b) yields an area
under the curve (AUC) of 0.985. Next, the performance of FDR estimation was assessed in all of the
above-mentioned reference MS/MS libraries through Q-Q plots (Fig. 4c-d, Extended Data Fig. 3); the
estimated FDR consistently shows correlations of > 0.98 with exact FDR. However, note that FDRs are
inclined to be overestimated to varying extents in real metabolomic datasets (Supplementary Fig. 1) due
to MS/MS contamination.

Bottom-up MS/MS interrogation for unreported formula annotation. As an initial test of bottom-up
MS/MS interrogation to unravel unrecognized metabolites, we collected MS/MS spectra of �ve novel
compounds discovered in references10, 11, three of which were con�rmed by nuclear magnetic resonance
(NMR) experiments. In all cases, BUDDY ranked the correct molecular formulae as top 1 (Extended Data
Fig. 4), with the estimated FDR ranging from 0.6% (C33H49NO5, m/z 540.3690) to 16.3% (C14H20N4O2S,
m/z 309.1383).

As a repository-scale application, we retrieved MS/MS libraries of annotated recurrent unidenti�ed
spectra (ARUS)38 collected from human plasma and urine samples. Data preprocessing led to 155,321
unidenti�ed spectra (Methods). Overall, bottom-up MS/MS interrogation resolved 153,079 spectra
(98.6%) and determined 5,191 formulae unarchived in HMDB or KEGG at < 5% of the estimated FDR
(Fig. 5a, Supplementary Tables 8–11). In particular, we discovered 173 and 53 completely novel
molecular formulae absent from PubChem in plasma and urine, respectively. We manually inspected the
MS/MS of a novel formula (m/z 674.4387, C35H64NO9P, Fig. 5b) and annotated its structure as
PC(18:2/9:0(CHO)) using characteristic fragmentation patterns (Supplementary Note 1). Moreover, to
demonstrate the biochemical feasibility of newly discovered formulae, we tried to connect them with
existing formulae via common biochemical transformations (Fig. 5c, Supplementary Table 12).
Transformations with up to two steps can link 95.4% (plasma) and 100% (urine) of novel formulae to
known formulae (Supplementary Table 13). The remaining unlinked formulae are large-mass formulae
with > 60 carbons and could all be represented as homologues of known lipids with different acyl side
chains.

We additionally performed an orthogonal validation against MS/MS matching-based structural analog
search (Supplementary Note 2), and consistent formula annotation results were obtained on 97.9% of
tested spectra (Supplementary Table 14). We showcased an HMDB-absent annotation of glycine-
conjugated 12-ketolithocholic acid (Fig. 5d). Searching this MS/MS against the entire public data
repository using MASST39, this bile acid derivative was detected broadly in 28 metabolomic datasets
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collected from humans, mice, and bacteria. Another example of xenobiotic compounds detected in
humans is depicted in Fig. 5e, where zolpidem is known as a hypnotic drug for patients with insomnia.

Experiment-speci�c global peak annotation. Inspired by references11, 13, we extended the bottom-up
MS/MS interrogation method beyond individual feature annotations up to the molecular network level to
reveal peak-peak relationships on an experimental basis (Methods). In brief, the goal of global peak
annotation is to select the optimal molecular network while considering both candidate posterior
probabilities of individual features (node) and valid feature interrelationships (edge). This process
updates the low-con�dence peak annotations with the aid of MS/MS similarity-based peak mutual
connections. Notably, BUDDY incorporates an additional step of experiment-speci�c mass deviation
estimation to boost its annotation performance (Supplementary Note 3). We reanalyzed the tomato
dataset (Supplementary Fig. 2) using three mass tolerances (5, 10, and 15 ppm). Even when the mass
tolerance tripled to 15 ppm, the top 1 annotation accuracy only dropped by 0.4–93.2%. This distinct
feature allows BUDDY to capture the actual mass deviations better and, on the other hand, provide more
accurate FDR estimates.

Application of BUDDY in untargeted metabolomics. As a complete application of BUDDY in untargeted
metabolomics, we analyzed the NIST human fecal material standards dataset (MSV000086989), as
shown in Fig. 6a. In total, out of 6,215 extracted metabolic features, 213 features (3.4%) were identi�ed
(level 2a) via an MS/MS library search against NIST20. BUDDY further annotated 5,733 unidenti�ed
features (92.2%); global peak annotation linked 5,092 annotated features (81.9%) to identi�ed
metabolites directly or indirectly, paving the way for downstream annotation propagation. At < 5%
estimated FDR, we discovered 134 formulae absent from HMDB and 215 formulae absent from KEGG
(Extended Data Fig. 5).

Next, we investigated the impact of global peak annotation from two aspects, individual peak
annotations (node) and peak interconnections (edge). The global peak annotation process updated
individual peak annotations for 1,348 (21.7%) features (Fig. 6b). Further analyses indicate that the
annotation-changed peaks have comparably larger m/z values than unchanged peaks. Also, there were
more MS/MS-unassigned peaks (65.7%) in annotation-changed peaks than in unchanged peaks (45.0%).
This agrees with our intuition that higher m/z features without MS/MS spectra tend to be annotated with
low con�dence and are thus prone to be corrected in global peak annotation. On the other hand, global
peak annotation increased the total count of peak interconnections by 53.7%. Focusing on the edges with
MS/MS similarity ≥ 0.6 (MS/MS edges), 16.6% more MS/MS edges were constructed with updated
formula annotations. We speci�cally showcased one annotation-changed peak in Fig. 6c. After global
peak annotation, this peak was successfully connected to �ve identi�ed metabolites and eight formula-
annotated peaks via MS/MS edges. Corresponding biochemical transformations further reveal the
structural insight, a dihydroxylated long-chain fatty acid, supported by subformula annotations of
MS/MS fragments (Supplementary Fig. 3).
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Finally, we systematically explored novel fatty acid amide (FAA) molecules in human feces. FAAs are
essential signaling compounds that can be synthesized both endogenously and by the gut microbiota.
Bacteria in the gut microbiota produce structural mimics of endogenous FAAs to interact with human
cellular targets and thus modulate their hosts40. We generated 1,325 plausible FAAs using the fatty acids
and amines present in the human gut41 and searched their molecular formulae against BUDDY
annotations. Putative FAAs were �rst re�ned via characteristic fragmentation patterns. Further
con�rmation was performed by matching MS/MS against reference MS/MS of the corresponding fatty
acids or amines using the reverse dot product (Supplementary Table 15). This exploration resulted in 37
annotated FAA molecules (Fig. 6d), and nine were molecular formulae absent from HMDB and KEGG. We
manually investigated the feature annotated as N-valeryl histamine, which has an MS/MS spectrum that
shows a reverse dot product of > 0.99 with histamine (Extended Data Fig. 5). The local molecular network
surrounding N-oleoyl ethanolamine (Fig. 6d) helps further unravel other N-acyl ethanolamine analogs
through MS/MS similarities and biochemical transformations. Using a fold change cutoff (> 1.2) and
statistical analysis (adjusted P < 1×10− 3), thirty FAA molecules were found to be signi�cantly altered
between omnivores and vegans (Fig. 6e), showing great potential for revealing the mechanisms of host-
gut microbiota interactions and inter-individual differences in dietary response from the perspective of
small molecules.

Discussion
In bottom-up processing, individual base blocks are speci�ed and assembled into a top-level system.
Herein, we propose an MS/MS interpretation strategy in a bottom-up fashion, where each fragment ion
and neutral loss pair offers a unique dimension to aid formula annotation. In the bottom-up approach, the
MS/MS-explainable candidate space could be substantially narrower than the entire candidate space
(e.g., ~ 20 folds at m/z 800). This design considerably reduces the computational cost for large-mass
features from hours to seconds per query. More importantly, incorporating MLR and FDR estimation
signi�cantly improves the performance of bottom-up interrogation compared to the top-down approach
(up to 68.7% accuracy increase) in uncovering both known and unknown molecular formulae while
informing estimates of annotation con�dence.

A more distinguished advantage of the bottom-up strategy is that it allows novel formulae exploration
beyond the current chemical space while focusing on biochemically feasible ones. Although metabolome
databases such as HMDB and KEGG often serve as reference repositories for biochemical studies, we
con�dently discovered > 5,000 database-unarchived molecular formulae in human samples and implied
their potential biological interests. These novel formulae could also complement molecular-formula-
oriented data acquisition approaches, such as HERMES42. At the same time, it remains controversial
whether to integrate meta-scores (e.g., citation frequency) in unraveling metabolic identities or not; meta-
scores can help annotate known molecules37 at the cost of potentially discarding novel metabolites10. To
this end, we offer an option of meta-score inclusion in BUDDY.
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Our MLR module is dedicatedly designed to automatically integrate MS1 and MS/MS scores and rank
formula candidates. One challenge is that the training data are insu�cient to cover the entire range of
MLR features. For example, the maximum double-bond equivalent (DBE) value within the training data is
40, and there could be unreported formulae with DBE > 40. To allow the discovery of completely novel
formulae, we mapped each MLR feature onto a distribution curve and used the two-sided P value for MLR
training (Methods). Other careful considerations went into mimicking experimental conditions and
improving the generalization of trained models, including precursor m/z shifting and MS1 isotope
simulation (Methods). Last but not least, data augmentation employed in training MS/MS spectra further
enhances the model robustness.

Certainly, MS/MS spectral quality is essential for annotation performance. Contamination fragments
diminish the annotation con�dence by lowering MS/MS explanation coverage or, even worse, generating
incorrect candidate formulae that misguide subsequent interpretation. In this regard, annotation of
unidenti�ed features may bene�t from targeted MS/MS pro�ling42 or more advanced data-driven spectral
deconvolution approaches43–45. We also highly recommend that metabolomics practitioners consider
mixed or ramped collision energies to collect information-rich experimental MS/MS in an untargeted
manner.

Efforts have been made to control FDR on MS/MS spectral matching-based metabolite identi�cation27, 35,

46, yet the FDR estimation for unknown annotation10 remains elusive. In our approach, Platt scaling
monotonically maps MLR prediction scores onto a probability scale. However, note that accurate FDR
estimates are expected only when experimental data quality is comparable to that of reference data. This
means that both explicit MS1 isotope patterns and informative MS/MS spectra are responsible for
reliable FDR estimates. We argue that accurate FDR control in untargeted metabolomics is still in its
infancy, and both heuristic insights and statistical approaches should be involved.

Furthermore, we integrate bottom-up MS/MS interrogation with global optimization, aiming to
synergistically resolve all the individual metabolic features on an experimental basis. For a more
comprehensive and con�dent global annotation in untargeted metabolomics, combining orthogonal
information, such as retention time47–49 and collision cross-section50, will be considered for future
improvements. Meanwhile, molecular networking should embrace a variety of MS/MS similarity
measures8, 51–53 for structural analog search to construct faithful connections among MS/MS spectra.
Finally, in the pursuit of unambiguous structure annotation, the next generation of global networking may
rely on a more convincing level of molecular substructures54 beyond molecular formula. With the advent
of cheminformatics tools for in silico generation of hypothetical metabolites55, 56, we anticipate more
structural insights into the undiscovered biosphere in recognition of a broad scope of unreported small
molecules and their biological functions.

Methods
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BUDDY software. BUDDY can perform three major tasks: (1) MS/MS library search, (2) bottom-up
MS/MS interrogation, and (3) experiment-speci�c global peak annotation. For MS/MS library search,
BUDDY offers three MS/MS matching algorithms: dot product, reverse dot product, and spectral entropy
similarity. Users can upload and search against any MS/MS spectral library in MSP format. For bottom-
up MS/MS interrogation, automated MS/MS preprocessing procedures are provided, including MS/MS
noise peak elimination (Supplementary Note 4) and MS/MS deisotoping (Supplementary Note 5). Other
settings regarding formula annotation include elemental restriction, chemical database restriction,
elemental ratio restriction57, etc. Experiment-speci�c global peak annotation is modeled as an integer
linear programming (ILP) problem, and it is a parameter-free module. BUDDY supports the import of both
single and batch queries (metabolic feature table, MGF, or mzML �le).

On the technical aspect, BUDDY was written in C# on the Universal Windows Platform. To speed up
computation, BUDDY automatically invokes multiple processing cores and performs parallel
programming. More details can be found in the user manual (https://github.com/HuanLab/BUDDY).

Formula database construction and curation. To construct the neutral formula database, a total of 26
chemical repositories were downloaded, combined, and curated. These chemical repositories cover small
molecules of metabolites, lipids, natural products, xenobiotics, drugs, toxins, contaminants, and so on
(Supplementary Fig. 4, Supplementary Table 16). Currently, the neutral formula database embedded in
BUDDY has 3,514,066 unique valid molecular formula records in total, incorporating ANPDB (2,157),
BLEXP (27,531), BMDB (3,577), ChEBI (18,044), COCONUT (64,404), DrugBank (8,508), DSSTOX
(150,250), ECMDB (1,528), FooDB (8,310), HMDB (10,968), HSDB (3,425), KEGG (8,550), LMSD (7,397),
MaConDa (254), MarkerDB (561), MCDB (688), NORMAN (40,322), NPASS (10,009), Plantcyc (1,685),
PubChem (3,507,371), SMPDB (2,467), STOFF-IDENT (7,753), T3DB (827), TTD (2,303), UNPD (28,899),
and YMDB (1,060); the unique molecular formula record count in each repository is shown in
parentheses. All of the above-mentioned chemical repositories were downloaded after December 2020.
For each repository, we retrieved the following chemical information if provided: chemical name,
molecular formula, CAS number, PubChem CID, KEGG ID, HMDB ID, SMILES, InChI, and InChIKey. The
PubChem Identi�er Exchange Service (https://pubchem.ncbi.nlm.nih.gov/idexchange) was used for
conversion among various chemical identi�ers. Chemical elements were restricted to C, H, N, O, P, S, F, Cl,
Br, I, Si, B, Se, Na, and K. Charged and radical formulae were neutralized by a proton or hydrogen
adjustment. Formulae with double-bond equivalent (DBE) values ≥-5 and monoisotopic masses ≤ 1500
were reserved. All formula strings were normalized using the Hill system and dereplicated. The �nal
neutral formula database serves as (1) the original formula searching database, (2) the candidate
formula database when database restriction is applied, and (3) the formula database for distribution
analyses assisting MLR feature generation (see below).

Radical fragment ion. An important feature of BUDDY lies in its automatic recognition of radical fragment
ions in MS/MS spectra. BUDDY shows no bias in recognizing odd-electron (radical) fragment ions and
even-electron fragment ions. Similar approaches are also applied to neutral loss searching. Details are
discussed in Supplementary Note 6.
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Adduct form. BUDDY allows numerous adduct forms for both ion modes, including [M + H]+, [M + NH4]+,

[M + H – H2O]+, [M + Na]+, [M + K]+, [M – H]−, [M + Cl]−, [M + Br]−, [M + HCOOH – H]−, [M + CH3COOH – H]−,
etc. When importing MGF �les or metabolic feature tables into BUDDY, prede�ned adduct forms in the
imported �les can be automatically loaded and synchronized for downstream analysis. Users can change
the adduct form for each MS/MS spectrum in the BUDDY graphical user interface. Users are also allowed
to customize new adduct forms. Speci�cally, for adducts containing sodium or potassium atoms (e.g.,
[M + Na]+, [M + K]+, [M + Na – 2H]−), BUDDY also considers sodiated and potassiated fragment ions in
addition to (de)protonated fragment ions and radical fragment ions58.

MS1 isotope similarity. To compare experimental MS1 isotopes and theoretical isotopes of formula
candidates, the isotope similarity calculation is implemented in BUDDY. Here we adopted and modi�ed
the isotope similarity algorithm from ref. 28 (Supplementary Fig. 5) for its broad scalability and low
computational cost. We tested the validity of the isotope similarity algorithm (Supplementary Note 7,
Supplementary Fig. 6), and the results show that experimental isotopes have statistically signi�cantly
higher similarity scores with theoretical isotopes of ground-truth molecular formulae than other formulae
generated within a 5-ppm mass tolerance.

Machine-learned ranking (MLR). In BUDDY, formula candidates are ranked automatically through MLR.
Here we describe the MLR feature design, training data preparation, data augmentation, model training,
and hyperparameter optimization.

MLR feature design. Both MS1- and MS/MS-related features were incorporated into the MLR task. In brief,
MS1-related MLR features re�ect the degree of similarity between experimental MS1 data and theoretical
values; the features include m/z deviation, MS1 isotope similarity, and the intrinsic properties of
candidate formulae (e.g., DBE and hydrogen-to-carbon ratio). MS/MS-related features indicate the
performance of candidate formulae in explaining MS/MS spectra; these features include total intensities
of explained fragments, DBEs of explained fragments, etc. Currently, a total of 38 MLR features are
included in BUDDY, 14 of which are MS1-related and 24 are MS/MS-related. A complete list of MLR
features and their descriptions are shown in Supplementary Table 17. Noting that the training data are
insu�cient to cover the entire range of MLR features, we thus mapped each MLR feature onto a
distribution curve and used the two-sided P value for MLR training (Supplementary Note 8). We
systematically analyzed the large-scale formula (MS1-related MLR features) and NIST20 (MS/MS-related
MLR features) databases and �t all distribution curves individually with skew normal distribution.
Relevant results are shown in Supplementary Tables 18–19 and Supplementary Figs. 7–8.

Training data preparation. NIST20 was purchased from the National Institute of Standards and
Technology (NIST) through Isomass Scienti�c Inc. The high-resolution NIST20 database contains
1,026,717 MS/MS spectra for 27,613 unique compounds. For model training purposes, NIST20 was
curated as follows. First, we removed MS/MS spectra with isotopic adducts (e.g., MS/MS spectra for M + 
1 ions), multiply charged adducts, or adducts containing chemical elements beyond the aforementioned
elemental list (e.g., [M + Li]+). MS/MS spectra without InChIKey information were also discarded. To
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ensure structure-disjoint training, we performed spectral merging next (see references7, 9, 13 for the
importance of structure-disjoint training). For each unique compound in NIST20 (identi�ed by InChIKey),
we chose its most frequent adduct form and performed spectra merging for MS/MS collected under
different collision energies. Both fragment m/z values and ion intensities were averaged. The above
curation processes led to 25,456 positively ionized and 11,583 negatively ionized unique chemicals in
NIST20.

Another training data preparation step was precursor m/z shifting. All precursor m/z values provided in
NIST20 are recalibrated theoretical values and cannot be directly used for model training; the resulting
trained models would be highly dependent on the MLR feature ‘precursor m/z error’. An intuitive
explanation is that the candidate formula with the smallest absolute precursor m/z error (an absolute
m/z error of 0) will always be the correct answer. Hence, we shifted the theoretical precursor m/z values
within a speci�c range for experimental simulation. As described in ref. 21, mass deviations usually
conform to the Gaussian distribution with a standard deviation that is 1/3 of the relative mass tolerance.
However, we found lower real-case mass deviations, where the standard deviations of Gaussian curves
are closer to 1/5 of the common relative mass tolerance for high-resolution MS data. We thus randomly
sampled mass deviations from Gaussian curves within the mass tolerance range and shifted precursor
m/z values from their theoretical values by the preselected mass deviations. The following mass
tolerances were used: Orbitrap, 5 ppm; QTOF, 10 ppm.

Similarly, MS1 isotope simulation was performed to mimic the experimental conditions. We designed an
MS1 isotope simulation work�ow and validated its credibility (Supplementary Note 9, Supplementary
Figs. 9–10, Supplementary Table 20). These simulated isotopic patterns were later compared with
theoretical isotopic patterns of candidate formulae to compute the isotope similarity scores used for
model training.

Data augmentation. As MS/MS spectra from multiple collision energies in NIST20 were merged for
unique chemical compounds before training, there can be many more fragments in the merged MS/MS
than the experimental MS/MS. Training data were thus augmented to enhance the robustness and
generalization of trained MLR models (Supplementary Note 10).

Model training and hyperparameter optimization. MLR models were trained using LightGBM in the
ML.NET framework for its superior performance on the structured data. Both data sub-sampling and MLR
feature sub-sampling were applied to avoid over�tting. Data sub-sampling fraction was set as 0.9 and
performed every 5 iterations. MLR feature sub-sampling fraction was set as 0.8. We set the learning rate
as 0.005, and normalized discounted cumulative gain (NDCG) was used as the evaluation metric
(Supplementary Note 11). Hyperparameters were optimized on the validation dataset (20% of the total
training data) via grid search. These hyperparameters include L2 regularization term weight, number of
iterations, maximum bin count per feature, and maximum number of leaves in one tree (Supplementary
Table 21).
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Platt calibration and false discovery rate (FDR) estimation. In classi�cation problems, probability
calibration helps scale the distorted class probability distributions predicted by various classi�cation
models so that uninterpretable model prediction scores can be converted into corresponding class
probabilities. Similarly, our MLR task can be simpli�ed as a binary classi�cation problem to some extent
by dividing all the candidate formulae into two groups, correct and incorrect answers. Thus, probability
calibration can also be applied to an MLR score to estimate its posterior probability 

, the probability that a candidate is correct given the MLR prediction score.
Platt calibration31 (or Platt scaling) is a common approach for probability calibration that learns a
logistic regression model which maps scores  onto a scale of . We completed Platt
calibration using the Platt calibrator of ML.NET in C#.

Furthermore, inspired by references10, 27, we estimated the FDR using posterior probabilities obtained by
Platt calibration. FDR is de�ned as

where TP and FP stand for true positives and false positives, respectively. Given a score threshold ,
FDR re�ects the percentage of correct hits among all the hits receiving scores ≥ . In our case,
considering the top N hits for a query metabolic feature that are associated with a certain score threshold,
the total number of TP and FP is N ( ). As the posterior probability can be interpreted as
the expected value for a hit to be correct, we can estimate the number of TP within top N hits as the sum

of their posterior probabilities . FDR can thus be estimated as

In practice, both calibrated Platt probability and estimated FDR are output by BUDDY for each hit so users
can export batch results and easily apply FDR control to focus on metabolic features with high-
con�dence predictions. However, we must point out that FDRs can be overestimated due to various
reasons, including but not limited to chimeric experimental MS/MS spectra, insu�cient MS/MS
fragments for annotation, and coeluting peaks that affect MS1 isotope information.

Experiment-speci�c global peak annotation. BUDDY incorporates a global optimization approach for
peak annotation corrections within the same LC-MS experiment, aiming to reveal peak-peak relationships
while reserving reasonable individual peak annotations11, 13. Here a molecular network is constructed,
where each peak is a node and every valid peak connection is an edge. Global peak annotation selects
the optimal network considering both node scores and edge scores, and then some peak annotations
generated by bottom-up MS/MS interrogation are updated. Notably, global peak annotation is completely
free of meta-scores. Global optimization is achieved through integer linear programming via the OR-
TOOLs package developed by Google. Linear constraints are set to guarantee a self-consistent network.
More details are discussed in Supplementary Note 12. Tested on the NIST human feces dataset (6,215
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peaks), global peak annotation took about 3 min on a personal computer (Intel i7-8700K CPU @ 3.70
GHz, Windows 10 64-bit operation system, 6 cores, 32 GB RAM).

Candidate space shrinkage analysis. For candidate space shrinkage analysis, we used the curated
positively ionized NIST20 library. MS/MS spectra with precursor masses larger than 1000 Da were
removed, as the entire candidate space generation for large-mass chemicals can be extremely
computationally expensive (up to hours or even days for a single query). The chemical element set was
restricted to CHNOPSFClBrI. We retained MS/MS spectra of [M + H]+. This resulted in 21,976 unique
chemicals for candidate space shrinkage analysis. In both candidate spaces, formula candidates within 5
ppm of the query precursor mass were retrieved to represent analysis results from high-resolution MS.
Trendlines in Fig. 2b were generated using locally weighted scatterplot smoothing (LOWESS).

Evaluation datasets. BUDDY was evaluated on diverse datasets, including publicly available reference
MS/MS libraries, real metabolomics datasets, and ARUS MS/MS libraries.

Publicly available MS/MS libraries. Four public MS/MS libraries were downloaded in August 2021,
including MassBank, GNPS, Fiehn HILIC, and Vaniya-Fiehn Natural Products Library (VF-NPL). From these
libraries, we selected the reference MS/MS spectra with intact information for MS instrument type,
InChIKey, molecular formula, and precursor adduct type. MS/MS spectra of adduct forms [M + H]+ or [M − 
H]− were reserved. MS/MS spectra with precursor m/z deviations beyond the mass tolerance range were
discarded. Furthermore, given the precursor mass (m/z)pre, we removed fragment ions with masses
above (m/z)pre – 0.5 in each MS/MS spectrum to ensure precursor ion exclusion. We categorized the
reference spectra of each MS/MS library into batches according to their MS instrument type and ion
mode. Within each batch, we kept unique chemical compounds (identi�ed by InChIKey) for structure-
disjoint evaluation. Well-curated MS/MS libraries were written into separate MGF �les that can be directly
imported into BUDDY or SIRIUS (settings in Supplementary Note 13). Evaluation results are summarized
in Supplementary Table 2. For chemical structural diversity analysis, the molecular complexity59 and
natural product (NP)-likeness score60 were computed in Python using RDKit, an open-source
cheminformatics software. All parameters were set as default. We randomly selected one million
molecules in PubChem for computation.

Public LC-MS/MS datasets. We downloaded four metabolomics datasets on MassIVE, covering diverse
sample types collected from different MS instruments in positive or negative ion modes (Supplementary
Table 3). Data preprocessing was conducted as follows. Raw LC-MS/MS data were converted into mzML
�les using MSConvert by ProteoWizard61, with all converted �les in the centroided mode. MS-DIAL44

(version 4.70) was used to perform metabolic feature extraction and alignment, and aligned feature
tables containing MS1 isotopes and MS/MS spectra were exported (see detailed parameters in
Supplementary Note 14). To build up ground truths for formula determination, we conducted metabolite
identi�cation by searching experimental MS/MS against NIST20 using dot product62. We set the dot
product score threshold as 0.7 and the minimum number of shared peaks (other than precursor ions) as 6
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for high-con�dence identi�cation27. For repeatedly identi�ed metabolites, we only reserved the feature
with the highest dot product score (detailed settings are in Supplementary Note 15). This led to a total of
700 identi�ed metabolites (level 2a36) in four datasets. Speci�cally, in the Chagas disease dataset
(murine large intestine samples), more large-mass lipid molecules were identi�ed (m/z > 400 for 33.3% of
identi�ed compounds), which made it more challenging.

For the application of BUDDY, we used NIST human fecal material standards (MSV000086989). Peak
extraction was completed in MS-DIAL. We then performed blank removal by discarding features with
average intensities lower than twice that of the method blank. The remaining features were imported into
BUDDY for metabolite identi�cation, bottom-up MS/MS interrogation, and global peak annotation
(settings in Supplementary Note 16). MS/MS spectra of putative fatty acid amides were compared
against the reference MS/MS of both their corresponding fatty acids and amines using the reverse dot
product, and we reserved the features with a similarity score > 0.7 in either comparison.

ARUS MS/MS libraries. Annotated recurrent unidenti�ed spectra (ARUS)38 libraries archive recurring
MS/MS spectra of unknown identity in speci�c biological samples. Currently available ARUS libraries
were collected from human plasma and urine using Orbitraps in both ionization polarities
(https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:arus). We carried out spectral clustering for
redundancy removal. Similar MS/MS spectra were identi�ed by precursor mass match (5 ppm) and dot
product score (≥ 0.95). For MS/MS spectra of the same identity, we reserved the spectrum with the most
fragments. This led to a total of 45,803 unidenti�ed spectra from plasma and 109,518 spectra from urine.
Detailed settings in BUDDY can be found in Supplementary Note 17.

SIRIUS analysis. SIRIUS7 (version 4.9.2) was downloaded from https://bio.informatik.uni-
jena.de/software/sirius. For molecular formula determination, we set the timeout for a single molecular
formula (‘Tree timeout’) as 50 sec and the timeout for an MS/MS spectrum (‘Compound timeout’) as 200
sec. All SIRIUS analyses were conducted on an Intel i7-8700K CPU @ 3.70 GHz with 6 cores and 32 GB
memory (Windows 10, 64-bit operating system).
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BUDDY is written in the C# language on the Universal Windows Platform (UWP). It currently works in the
Windows OS (Windows 10 or higher). The standalone software can be freely downloaded from GitHub
(https://github.com/HuanLab/BUDDY/releases/tag/v1.0). Source codes are also available on GitHub
(https://github.com/HuanLab/BUDDY) under the MIT License. 
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Figure 1

Methodological comparison between top-down and bottom-up approaches for molecular formula
annotation. The top-down approach generates candidate formulae from MS1 information, followed by
MS/MS explanation and candidate ranking. Heuristic scoring is applied to combine MS1 and MS/MS
scores to calculate the �nal score. Bottom-up molecular formula determination prioritizes candidate
formulae that can explain MS/MS in a chemically feasible manner. Multi-dimensional annotation
drastically narrows down the candidate searching scope. Machine-learned ranking (MLR) is implemented
for automated and accurate candidate ranking. False discovery rate (FDR) is controlled via Platt
calibration.

Figure 2

Bottom-up approach prioritizes MS/MS-explainable candidates. a, The MS/MS-explainable candidate
space is narrower than the entire potential candidate space in 87.8% of the queries. b, The bottom-up
approach provides a dramatically narrower candidate space, especially for large m/z values. Paired
Mann-Whitney U test, two-sided, P < 2.2×10−16. c, A higher threshold of total explained fragment intensity
further shrinks the candidate space (medians with interquartile ranges shown). The chance of disposing
of correct answers (i.e., misdisposition rate) also increases with a higher cutoff but remains <2% when
the cutoff of total explained fragment intensity is 50%.
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Figure 3

Method performance evaluation. a, Molecular complexity and natural product (NP)-likeness score of
tested compounds in MS/MS spectral libraries and PubChem. Tested compounds cover a broad range of
structural complexity. b, Method evaluation result on four reference MS/MS libraries (Orbitrap MS/MS
spectra shown). ESI (+), electrospray positive ion mode; ESI (−), electrospray negative ion mode. c,
Annotation performance on the m/z domain. d, Annotation accuracy of MS/MS with different spectral
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entropies (Spearman’s rank correlation coe�cient shown). e, Mass distributions of identi�ed metabolites
in four public LC-MS/MS datasets. f, Annotation accuracy (top 1 to top 3) of BUDDY and SIRIUS on tested
LC-MS/MS datasets. g, Annotation with MS/MS spectra provides higher accuracy in all tested datasets.
h, Annotation accuracy increases (top 1) when meta-scores are included for formula determination.

Figure 4

Platt calibration and FDR estimation. a, Density plots of MLR scores and calibrated probabilities for
correct and incorrect annotations using MassBank (Orbitrap, positively ionized MS/MS). b, ROC plot
classifying correct and incorrect annotations using calibrated probabilities. c & d, Evaluation of FDR
estimation using Q-Q plots (Pearson’s correlation coe�cients shown) in electrospray positively and
negatively ionized spectra (MassBank).
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Figure 5

BUDDY discovers novel formulae absent from chemical databases. a, Formula annotation result
summary of ARUS MS/MS libraries (human plasma and urine). b, Manual inspection of a novel formula
absent from PubChem. c, Novel molecular formulae can be linked to existing molecular formulae via
common biochemical transformations. d & e, Illustrations of orthogonal evaluation.
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Figure 6

Experiment-speci�c global peak annotation and its application in untargeted metabolomics. a,
Application of BUDDY on NIST human fecal material standards. In total, 81.9% of extracted metabolic
features can be linked to identi�ed metabolites directly or indirectly. b, Impact of experiment-speci�c
global peak annotation in changing individual peak annotations and constructing metabolic feature
interconnections. c, An illustrative example of experiment-speci�c global peak annotation. The
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biochemical transformations surrounding the target metabolic feature are labeled. Only MS/MS edges
are shown. d, The bubble plot of FAAs annotated in human fecal material standards. ***: P < 1×10−9

(paired Mann-Whitney U test, two-sided, corrected by the Benjamini-Hochberg method). e, A heatmap
showing FAA level differences between omnivores and vegans. FAA names are displayed in “fatty
acid_amine” format. FAAs with fold changes >1.2 and adjusted P values <1×10−3 are included.
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