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Abstract 

Content Delivery Networks (CDNs) distribute most data traffic nowadays by caching the 

contents in a network of servers to provide users with the requested objects, and helping to 

reduce latency when delivering contents to the user. The content caching system performance 

depends upon many factors such as where the objects should be stored, which object to store, 

and when to cache them. The proposed methodology includes two main phases: an admission 

control phase and a cache replacement phase. The admission control phase is responsible for 

accepting or rejecting the incoming request based on training the Reinforcement Learning (RL) 

algorithm to make the best decision in the near future to maximize its reward, which, in this 

case, is the hit ratio. The cache replacement phase estimates the object’s future popularity. This 

is achieved by building a predictive model based on the popularity prediction mechanism, 

where the Long-Short-Term Memory (LSTM) model is used to compute the object’s 

popularity. The LSTM model’s outcome can help decide which objects to cache and which 

objects to evict from the cache. The proposed methodology is tested on a dataset to demonstrate 

its effectiveness in enhancing the hit ratio compared to conventional replacement policies such 

as First-in-First-Out (FIFO), Least Recently Used (LRU), Least Frequently Used (LFU) and a 

recent machine learning-based algorithm. The experimental results on the dataset revealed that 

the proposed methodology outperformed the baseline algorithms by 34.7% to 97.17% with a 

cache size of 130. 

Keywords Smart caching policies; reinforcement learning; deep learning; probability 

prediction; cache hit ratio. 

1 Introduction 

Recent years have witnessed a rapid increase in the traffic caused by mobile devices. For 

example, media shared over the network contain not only text and images but also audio and 

video content, which typically have a larger data size and must be transmitted in high quality. 

As a result, the content that must be streamed in real time has grown rapidly in terms of 
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diversity and size, which cause tremendous traffic at the content server that can affect the user 

experience. The core network’s limited capacity has also caused many problems for content 

providers. Therefore, to improve the Quality-of-Service (QoS) and the Quality-of-Experience 

(QoE) for users with limited network resources, the industry and academia have had to re-

engineer content caching systems to handle this massive data growth more cost-effectively, 

especially for file retrieval applications such as media and video streaming.  

Content caching is a technology that has been used for decades. Most data traffic is 

currently delivered using Content Delivery Networks (CDNs) [1], cluster of servers that cache 

and deliver the media files according to the end-user’s geographical location. Most files are 

stored in a central data center, where users send their requests to the data center to retrieve or 

view the content. However, this mechanism can create a massive load at the data center, and 

the latency in content delivery could increase depending on the distance between the end-user 

and the data center. For example, in 5G networks, the storage capacity in the cellular base 

stations is considered insufficient to cache the requested contents in the base stations. This 

problem leads to implementing additional caching devices that can be placed closer to the end-

users in order to cache more contents. Hence, cloud providers started launching their own 

caching services, and many content providers began to build their own caching systems to 

speed up the content distribution process. 

Caching techniques and storage resources permeate different communication technologies 

in every network area. They allow the network infrastructure to cache the requested contents 

using limited network resources and without increasing the cost to the content provider and 

ensuring QoE for the end-user. The content caching concept can reduce latency since it 

develops caches at routers, which are much closer to the end-user, rather than storing the files 

at the content provider’s servers. Content caching also decreases the load on the origin server 

by reducing the number of requests from end-users to content providers. The caching system 

can serve end-user requests without overwhelming content providers’ servers. In addition, 

caching the contents frequently requested by end-users can increase the hit ratio of requests 

and the users’ QoE. However, designing a reliable caching mechanism that maximizes the hit 

ratio and reduces overall latency can be challenging since the cache size is limited. Deciding 

which content to cache among a vast number of different files can be critical. Consequently, 

building a caching system that can determine what content to cache and when to cache it is a 

significant research challenge.  



A typical content caching system, shown in Fig. 1, consists of three main components: an 

end-user, a cache device represented in the cellular base station, and the origin server. When 

an end-user requests content, the request is sent to the cache device to check if the requested 

content is available in the cache to be directly forwarded to the end-user. This is considered the 

best scenario and is known as a cache hit. If the requested content is unavailable in the cache, 

a cache miss occurs, and the cache device fetches the requested content from the origin server. 

Once the cache device receives the requested content from the origin server, it forwards it to 

the end-user, and then a cache replacement takes place in the cache device. The cache 

replacement process depends on the status of the cache; if there is a space in the cache, the 

requested content will be cached. Otherwise, a replacement policy decides which content to 

remove from the cache to place the newly requested content. 

This work proposes a smart prediction-based content caching system to solve the caching 

replacement problem. It is based on deep-learning mechanisms to maximize resource 

utilization and enhance the hit ratio in cellular networks. The deep-learning mechanism uses 

LSTM to compute content popularity in the future. Admission and eviction algorithms are also 

implemented in the system. The admission algorithm decides whether to cache the content or 

not. It is based on a Reinforcement Learning (RL) mechanism, whereby an agent runs in the 

Fig. 1 Content caching system overview 



environment, observes the rewards of each action, and selects actions that results in the highest 

computed rewards, which, in this case, is the hit ratio. The decision is based on the object’s 

size, its frequency and the recency. Conversely, the eviction algorithm decides which content 

to remove from the cache, whether the cache is full, and whether the requested content must 

be cached. The content’s popularity can be used to dynamically decide which files can be 

evicted from the cache and replaced with more popular content likely to be requested in the 

future. Predicting popularity and managing the cache on this basis can speed up the caching 

process and enhance the hit rate.  

The main contributions of this work are summarized as follows:  

1. To implement a prediction-based algorithm that uses deep learning to efficiently 

estimate object popularity and caches content with the highest popularity; 

2. To implement admission and eviction algorithms that can learn the relationship 

between the content’s future popularity and its access pattern to make the best caching 

decision that maximizes the cache’s hit ratio; and 

3. To analyze the performance, the learning-based approach using a dataset and compare 

the performance, in terms of hit ratio and forecasting accuracy, with existing algorithms 

such as First-in-First-Out (FIFO), Least Recently Used (LRU), Least Frequently Used 

(LFU) and a machine-learning algorithm known as DeepCache.  

The remainder of this article is organized as follows. Section 2 reviews existing 

replacement mechanisms and discusses their approaches and performance attributes. Section 3 

explains the proposed caching mechanism based on the deep learning and Reinforcement 

Learning (RL). Section 4 presents the simulation results for a dataset, and Section 5 concludes 

the paper and describes the future work.  

2 Literature review 

Many researchers have discussed the caching systems and techniques utilizing the caches 

in the best way to maximize the hit rate. Zhao et al. [2] reviewed most of the caching 

techniques recently used in networks such as CDNs. The authors first discussed traditional 

caching strategies, such as LRU, LFU, and size-aware approaches. They then investigated 

several learning-based techniques based on two categories: popularity prediction techniques 

and policy learning. Popularity prediction calculates the content’s future popularity. One such 

caching system is PopCaching, which has two modules, feature updater and learning interface, 

and two databases, feature and learning databases.  

Once an object is requested, its features are updated and stored in the feature database. 



Popularity prediction is being extracted from the learning database and the final decision 

for caching the content depends on the prediction. This method continually updates the 

learning database once the requested object’s actual popularity is revealed. Another   

technique   discussed was using deep learning networks (i.e., DeepCache) to make more 

accurate predictions for traditional caching techniques. Unlike popularity prediction 

techniques, policy learning assumes that future popularity is unknown and bases decisions 

on the current cache performance. A further approach predicts the popularity of historical 

requests. The multi-armed bandit (MAB) then makes   the   content caching decision. 

Thar et al. [3] also addressed the popularity prediction technique in mobile edge caching. 

The authors’ main goal was to minimize the content’s access delay and provide users with QoS 

by predicting the future popularity of the objects and predicting the future frequency of 

the requested contents. The proposed system comprises master and slave nodes. The   master   

node   uses the historical data collected from the base station to train   the   deep   learning   

model, predicting the content’s future popularity. Conversely, the slave node stored the content 

recommended by the master node. The proposed scheme outperformed the convolutional 

recurrent neural network by 33% in terms of average training accuracy.  

The authors in [4] studied joint admission control and content caching for wireless 

access points using the energy harvest capability. Their research focused on whether to accept 

the request and cache the requested content. The approach is based on the revenues of each 

access point, or a base station computed from the amount of content transmitted to the user 

using the admission control and content caching policies. This process is achieved by 

formulating a constrained stochastic game for the joint admission control and the content 

caching, where the transmission throughput constraint is imposed. The results demonstrated 

that the proposed methodology could enhance the throughput of the content transmission 

within a given energy harvest rate. 

Kirilin et al. [5] examined a machine learning-based algorithm to implement   an 

admission algorithm to decide whether to cache an object. The algorithm used RL to extract a 

large set of features, such as an object’s size, recency and access frequency, by training a 

feedforward neural network that outputs 1 to admit the content and 0 to reject the content. 

This approach was tested on three CDN-traffic classes: the web, images, and videos. The 

evaluation demonstrated an improvement in the cache hit rate compared to the state of 

the art, and its robustness since it could be trained in one location and executed on 

different sets of   request   traces   in other locations.  

In [6], the authors implemented a caching policy known as Content-Aware Cache 



Admission (CACA), which is based on the content’s features rather than the request 

pattern, such as the request frequency of the interval. The reason for not focusing on 

the request pattern, especially in video content caching, is its poor performance in edge 

caching. The approach admits the request based on the object’s features, such as its 

category, the author, or video duration. It proposes a tree-structured reinforcement learning 

model along with an explore-and-exploit method to decide which contents can be admitted 

to the cache based on the extracted features. Enhancements of 15% in the cache hit ratio 

and 95% in memory saving were observed when comparing the CACA with LRU and LFU. 

Recent researches [7], proposed a framework based on the deep reinforcement learning 

using Wolpertinger architecture to maximize the cache hit ratio. The cache replacement 

decision defines   the state and actions spaced along with the reward function. The 

Wolpertinger architecture has three main components: actor-network, K-Nearest Neighbor 

(KNN),  and critic network, which adapts the data to develop the caching policy. The 

results revealed that the proposed method performed better than LRU, FIFO, and LFU in 

different cache capacities and time frames in terms of the cache hit ratio.  

A Deep Reinforcement Learning (DPL) approach was discussed in [8], who employed 

the technique in the mobile computing field. This approach was implemented to make 

the cache storage adaptable for a  dynamic mobile computing environment. The main 

advantage of this technique is that it does not require prior knowledge of the data 

distribution or its popularity to make a decision. It uses an RL model that places a learning 

agent in the environment to observe and learn during interactions with the environment. The 

caching policy is based on the result of the RL mechanism, and it is dynamically 

adjusted based on the network status in real-time. The results demonstrated that DPL is 

more accurate than other deep-learning methods.  

Narayanan et al. [9] also presented a deep recurrent neural network known as DeepCache. 

It comprises two components: Object Characteristics Predictor, which predicts the content’s 

popularity using the LSTM encoder-decoder model, and the caching policy component, 

which uses the characteristics predicted by the Object Characteristics Predictor to make 

decisions. The research’s main contribution was recognizing the content caching problem 

as a seq2seq modeling problem. DeepCache was evaluated by applying it to existing caching 

policies such as LRU and K-LRU. The results indicated a significant boost in the overall 

cache hit rate, encouraging later researchers to implement the DeepCache framework in many 

caching systems.  

Although the previous approach focused on building a model that could predict future 



popularities accurately from historical data, Zhang et al. [10] provided a more dynamic 

mechanism that could capture not only long-term history but also short-term events. 

The model combined the Deep Neural Network (DNN), which captures long-term popularity 

features, with the online exploitation-exploration process to manage short-term popularity 

changes that could occur in the environment. This approach was tested on two real- world 

datasets, and it was proven that the proposed approach could achieve the state-of-the-art 

performance, and it even outperforms the baseline models if the cache size was small, 

indicating an improvement of 17.5% to 68.7% in the total hit rate. 

Considering 5G networks, Pang et al. [11] applied DeepCache to a real-world mobile 

video dataset to decide which content will be evicted from the cache to admit newly-

requested content. This module learns the caching strategy from the sequence of the incoming 

requests. DeepCache uses the LSTM network, a neural network that makes predictions based 

on time series data, in this case, the sequential pattern of the requests. The authors 

attempted to overcome the complexity of directly deciding which content should be evicted 

by calculating the caching priority using DeepCache and evicting the lowest priority score 

from the cache. The results showed that the transmission delay was reduced by 14% to 22%, 

with a traffic saving of 15% to 23%.  

Gharaibeh et al. [12] formulated the problem of minimizing the costs paid by the cellular 

networks with limited capacity as an Integer Linear Program (ILP). To implement an 

eviction policy in 5G networks, the authors proposed an online algorithm to decide which files 

to remove from the cache to allocate a space for newly requested files without knowing 

the request sequence. They considered the concept of deploying Smaller Base Stations 

(SBSs) to serve mobile users. The SBSs are connected to the main base station via links and 

can store the content locally to reduce the traffic on the links and improve the network’s overall 

performance. Extensive simulations demonstrated that the proposed online algorithm could 

reduce costs compared to the most widely used algorithms, such as LRU and FIFO. 

In a recent work, Fan et al. [13] proposed a content caching policy known as popularity-

aware content caching (PA-Cache), which dynamically learns the content’s popularity and 

decides which content should be replaced when the cache is full. PA-Cache weights a 

large set of content features, and initially trains shallow multi-layer recurrent neural 

networks. When more requests arrive over time, PA-Cache trains a DNN, which is more 

powerful and computationally efficient. The proposed caching policy replaces the cached 

content with the longest time before it is likely to be visited in a subsequent request. This 

process is achieved by predicting the popularity of the content within a specific time 



interval. Extensive experiments were conducted using the largest online video-on-demand 

service providers in China and demonstrated that PA-Cache outperforms several existing 

caching policies, such as LRU, LFU and FNN, and approximates the optimal algorithm by a 

3.8% performance gap.  

Zong et al. [14] employed the concept of ensemble learning, which combines multiple 

models to improve the performance of a single model by using DRL agent. The concept 

employs an ensemble of constituent caching policies and selects the best caching policy 

for different caching scenarios. The proposed mechanism, which is known as the Cocktail 

Edge Caching (CEC), employs a two-level hierarchy. The lower level is an ensemble of 

caching policies that process the requests of the contents and generates caching decisions 

in parallel. The upper level, the DRL agent, monitors the performance of the caching policies 

in the lower levels and dynamically chooses the best caching policy for the current situation in 

the cache to maximize the cache hit ratio. The extensive results on two real datasets 

shows that the CEC outperforms all the single policies. 

Most of the previously discussed caching mechanisms depend on the data used for 

training, which is considered to be hardly adaptive or by knowing the sequence of the requests 

in advance in order to compute the content popularity, which is hard to know in real life 

scenarios. So, the caching policy that is used in this work depends firstly admitting the requests 

that most likely will maximize the hit rate the caching system that was described in [6], and 

then predicting the popularity of the contents. A reinforcement learning model will be applied 

as well to take the final decision in caching which content and evicting any content from the 

cache.  

3 Proposed methodology 

This section presents the smart caching system framework, which aims to maximize the cache 

hit rate in different caching scenarios. The proposed framework applies an admission policy to 

predict the content’s popularity, limiting the obstacles that affect the caching system’s 

performance and solving content caching problems caused by the large amount of content that 

must be cached and limited cache sizes.  

 

3.1 Problem formulation 

Suppose there is only one origin server or content provider with N different contents 𝐶𝑃𝑁 = {1, 2, …, N}. 

and only one cache device in the caching system, which can cache up to K different contents, 𝐶𝐾 = {1, 2, …, K}. 



The content in the cache device 𝐶𝐾 at timeslot t is denoted as: 

C(t)= { 𝐶1(𝑡), 𝐶2(𝑡), … , 𝐶𝐾(𝑡)}. 

The input sequence of all the unique requested objects at time T is defined as 𝑋𝑇 = {𝑋1, 𝑋2, 𝑋3, …, 𝑋𝑇}. 

and the desired output sequence with a time shift of ts > 0 & d > 0 is the number of probabilities 

for predicting each content as follows: 𝑋𝑇 = {𝑋𝑇+𝑡𝑠, 𝑋𝑇+𝑡𝑠+1, 𝑋𝑇+𝑡𝑠+2, …, 𝑋𝑇+𝑡𝑠+𝑑}. 

For each request k, an indication vector 𝑍𝑘 is used to determine whether the requested content 

c is available in the cache at timeslot 𝑡𝑘: 𝑍𝑘=[ 𝑍𝑘1, 𝑍𝑘2 , … , 𝑍𝑘𝑁]. 

where 𝑍𝑘𝑐  {0,1}, and 𝑍𝑘𝑐   = { 1, 𝐶𝑎𝑐ℎ𝑒 ℎ𝑖𝑡 = 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑐 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑐ℎ𝑒.0, 𝐶𝑎𝑐ℎ𝑒 𝑀𝑖𝑠𝑠 =  𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑐 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑐ℎ𝑒.} 

 In the case of a cache miss, the content request cannot be served, an old cached content 𝑐𝑒𝑣𝑖𝑐𝑡𝑒𝑑 is removed from the cache, and the newly requested content c is cached and served to 

the end-user. Since it is difficult to decide which content should be evicted from the cache, a 

replacement policy is needed to make the best decision to maximize the cache hits in the cache 

device. Therefore, the main goal is to obtain as many cache hits in 𝐶𝐾 as possible, which can 

be defined as follows:  

Max ∑ 𝑍𝑘𝑐𝑇𝑡=1  =1. 

Enhancing any caching system lies in the replacement policy, which is responsible for 

selecting the content that must be evicted, leading to either an increase or decrease in the 

number of hits in the caching device. Although rule-based algorithms such as FIFO, LRU, and 

LFU are used in many caching systems, they do not consider the future probability of the 

contents. For example, FIFO does not consider the future probability, while LFU considers the 

number of times the contents were used in a specific time window. Other algorithms such as 

PopCaching in [15] use feature generation to predict the popularities of the content. However, 

they cannot be generalized to manage different requests patterns.  

 To solve these problems, this study proposes a SmartCache replacement mechanism 

that implements a machine-learning based solutions, such as RL and DNN, to predict the 

features required for the cache replacement decision, such as the popularities of the contents in 

the future. The proposed approach can capture long-term historical information from previous 

requests and generalize decisions to different scenarios to maximize hit ratios. The popularity 

of specific content can be used to make efficient caching decisions since it provides insight 



into the amount of traffic expected with that content. On this basis, the caching decision can be 

optimized by caching the requested content and deciding which cached content should be 

replaced. Popularity appears to be the most powerful feature in this scenario due to its effect of 

knowing it ahead of time and its ability to make effective decisions based on the status of the 

cache and predicted values.  

 

3.2 SmartCache model design  

When the base station receives a queue of requests coming from different end-users 

for different contents, a reinforcement learning mechanism is applied to the queue 

to generate a new string of requests that will be moved to the base station to 

determine whether the requested content is available in the cache. If the admission 

control accepts the incoming request and the content is available in the cache, it is a 

hit, and the content is served to the user. If not, it is a miss, and the base station 

requests the content from the origin server, downloads it, and forwards the 

requested content to the user.  

The proposed model, shown in Fig. 2, is divided into four phases: 

 Phase 1: admission control phase. 

 Phase 2: predicting future content probabilities  

 Phase 3: filtering the content probabilities 

 Phase 4: caching policy applied to the top-k list. 



 

3.2.1 Phase 1: Admission control phase  

The admission control phase is responsible for accepting or rejecting the incoming 

requests based on several metrics. This phase is implemented using RL, a subfield 

of machine learning. It is a dynamic scheme, in which the RL agent is trained to 

take actions in an environment in order to maximize the reward. This process is 

undertaken by exploiting what is already known and exploring to make better 

decisions in the near future. The model input is the initial state of the environment, 

and the output is the agent’s decision, which should maximize the rewards over 

time.  

In this work, to decide whether to accept the incoming request, the admission 

control uses the FNN [16], which computes the admission probability for each 

content request AP(u,w), where u represents the object features and w represents the 

weights of the neural network. The object’s features can be its size, frequency of 

previous requests or its recency as shown in Table 1. Once the admission 

probability AP(u,w) is computed for each request, the neural network results will be 

rounded to either 0 or 1. A result of 1 indicates that the content request is accepted 

Fig. 2 Overview of the SmartCache model 



and will be forwarded to phase 2. A result of 0 discards the content request from the 

queue of the incoming requests. The FNN is trained to learn the weights w of the 

network. The training data is the incoming requests for each object j characterized 

by the features 𝑢𝑗 . Since the number of the incoming requests is vast, and to 

compute the admission probability efficiently, a sliding window is applied, starting 

from the first requests, using K requests at a time until the training phase is applied 

to all the requests.  

   Table 1 The features of content j in the admission control phase 

Notation Meaning 𝑠𝑗 Size of content j in bytes. 𝑓𝑗 Frequency of object j among all the incoming requests. 𝑡𝑟𝑗 Temporal recency as the time in seconds since the last request for 

content j. 𝑟𝑗 Number of requests since the last requests for content j. 

 

In this scenario, at time t, the agent obtains the status of the environment and the 

cache, and gets its current status. The status can be how many files are in the cache 

at time t, for how long, the size of the cached files, frequency of the files in previous 

allocation processes and other metrics. The agent then chooses, based on the 

mechanism, one of the two actions for a particular request and sends it to the 

environment. If the request is for file x, and it appears to be already cached, then the 

environment sends the agent feedback regarding its decision in two parts: state and 

reward. In this case, the state is a hit and receives a positive reward. If the requested 

file is not cached, the state is a miss, and the agent’s rewards decreases. The agent’s 

effective policy is developed over time and by calculating the final reward, which 

should be maximized. 

 

3.2.2 Phase 2: Predicting future content probabilities  

When a user requests content at time t, the DNN model calculates the popularity of 

all the other requested contents in the future at time t + ts, where ts is the time shift. 

The time interval is pre-set before calculating the object’s popularity. After 

calculating the popularities, the request is then sent to the caching policy to decide 



whether to cache or evict the object. The DNN model components are the 

following:  

 

3.2.2.1 Object popularity predictor  

A sequence-to-sequence model (Seq2Seq) is used in order to predict the object’s popularity in 

the future. It is a model based on an encoder-decoder mechanism that maps an input sequence 

to an output sequence as shown in Fig. 3. This model is based on recurrent neural networks 

(RNNs), and can use its internal memory in order to process sequences of input, which, in this 

case, is the object’s popularity. The seq2seq model is trained by using the sequence of requests 

as an input to compute the object’s popularity. Two different encoders can be applied to the 

seq2seq model: LSTM and the Gated Recurrent Unit (GRU). The LSTM encoder is used as a 

feature vector input for the model, where it makes predictions based on time series data. 

 

 

3.2.2.2 Computing the model’s features  
The input is a buffer with a sequence of requests (for example: 100,000 requests) 

from different users requesting various objects at different times. The sequence of 

requests is sliced based on the window size, which can be set at the beginning of the 

program. For example, if the window size is 4, the first slice will include the first 

four requests from the buffer. The object probability entity computes the probability 

of each object 𝑃𝑅𝑋𝑖  in the window as follows:  

Fig. 3 Seq2Seq model 

 



Object 𝑋𝑖 probability = 
Number of requests for object 𝑋𝑖 in W Total number of requests in W  

The second slice includes the subsequent four requests until it reaches the final 

request in the buffer. After computing all the probabilities for all the requested 

objects, the results are stored in the Feature Updater database. This database creates 

a Feature Vector Input (FVI) for each object, where the size of the vector is the 

number of slices. Each element in the vector is the computed probability of the 

object in every slice. This vector is then used as an input in the LSTM encoder-

decoder in order to compute the popularity sequence for all the objects.  

 

3.2.2.3 LSTM encoder-decoder 

The LSTM encoder-decoder uses the feature vector as an input to compute a 

sequence of popularities for each object at time t. This output is used to decide 

which object to cache and which object to evict from the cache. The LSTM 

architecture comprises three models as follows: 

1. The encoder reads the sequence of probabilities as the FVI and encodes it 

into a fixed-length vector. 

2. The decoder decodes the fixed-length vector to generate a predicted sequence 

as the object’s popularity in the future. Both the encoder and decoder models 

are known as the LSTM layers. 

3. The dense layer is a fully connected layer, placed after the LSTM layers, and 

used to output the prediction. 

 The model can be trained to make better cache replacement decisions by feeding it with 

a sequence of online requests. 

 

3.2.3 Phase 3: Filtering the content’s probabilities  
Once the popularity is calculated for all the contents in phase 2, the cached content 

is sorted in ascending order based on the predicted popularity. Next, the top-k query 

is applied to the cached contents, and the k results with the highest object popularity 

are returned. If a miss occurs and a cache replacement is needed, the least popular 

content in the cache is evicted and replaced with the newly requested content.  

 

3.2.4 Phase 4: Caching policy applied to the top-k list  

After the top-k list is generated in Phase 3, an epsilon-greedy algorithm [17] is applied to the 

list to choose the content that must  be evicted from the cache in case a miss occurs. Epsilon-



greedy is a simple RL algorithm that balances exploration and exploitation by choosing 

between the two options randomly as shown in Algorithm 1, exploiting most of the time with 

a small probability of exploring. This probability is decided by the epsilon value that is pre-set 

before the caching policy takes place. The epsilon probability is set to 10% in most applications 

that use the epsilon-greedy algorithm. 

The exploration option means that the caching policy chooses random content using the 

epsilon probability to evict from the cache. In contrast, exploitation selects the best option, 

which, in this case, is the least popular content in the top-k list. Hence, over time, the 

mechanism chooses different options each time a replacement is needed and it learns the 

options that result in the maximum reward from the previous choices. However, the mechanism 

occasionally determines a random action to ensure that other content is evicted as well from 

the cache as well as the least popular content.  

Caching replacement is needed = { 𝐿𝑒𝑎𝑠𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 , 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 < 1 −  𝑅𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 , 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   } 

 

Algorithm 1 Epsilon-Greedy Algorithm 

Input: epsilon , uniform random number probability p between 0 and 1. 

Output: object to be evicted from the cache.  

Function: Epsilon-Greedy-Algorithm ( , p) 

1 If p <  : 

2               Evict a random content. 

3 else:  

4          Evict the least popular content in the top-k list.  

 

 

3.3 An illustrative example  

Fig. 4 and Fig. 5 show an illustrative example of how the previously explained phases will 

work and how to decide which object to cache or evict starting from the second phase, after 

filtering the requests in phase 1. Let’s assume the following:  

 The content provider has a total of 15 unique objects 𝐶𝑃𝑁 = 10.  

 The size of the cache 𝐶𝑘= 5. This means that the cache can store up to 5 unique objects.  

 The cache at time t has the following objects: 𝑋6, 𝑋2, 𝑋7, 𝑋9, 𝑋4.  

 An incoming request for object 𝑋10 arrives to the base station at time t+ts.  



 The epsilon value  = 10%.  

 

 

 

Fig. 4 Prediction and filtration of the content’s popularities 



The proposed SmartArt framework will apply the following phases as shown in Fig. 5:  

1. Phase 2 will predict the future content popularities of all the 15 unique contents at time 

t+1.  

2. Phase 3 will sort the predicted popularities by using the top-k query, assuming that the 

value of k is 5. The result will have the most 5 popular contents among all the 15 unique 

contents. This phase is extremely beneficial and can save a lot of time if there is a need 

of evicting more than one object in a row from the cache. The example shows that the 

most popular content is 𝑋6 and the least popular is 𝑋4.  
3. In phase 4, if the randomly generated probability p is 0.12 and the epsilon  = 0.1, then 

as shown in Fig. 5, the caching policy decision will be evicting the least popular content 

in the top-k list.  

 

 

Fig. 5 Eviction policy applied on a cached content 



Once the request of content 𝑋10 arrives at time t+ts, the proposed mechanism will do the 

following as shown in Fig. 5:  

1. Check if 𝑋10 is available in the cache or not.  

2. Since 𝑋10 is not cached, the indication vector 𝑍1𝑋10 will be 0, which means that this is a 

cache miss and eviction is needed.  

3. The mechanism will evict the least popular content 𝑋7 and will replace the newly 

requested content 𝑋10. 

4 Simulation results  

This section explains the procedure for generating the datasets to evaluate the 

performance of the proposed methodology. The results are also compared with 

existing caching mechanisms.  

 

4.1 Synthetic dataset generation  

The dataset was generated using the open source provided by [9] The dataset has the 

following characteristics: 

 NUM_OF_OBJECTS is the number of objects that can be requested in each 

session, which is set to 2000 unique objects. Each object has an object_ID 

from 1 to 2000.  

 NUM_OF_REQUESTS_PER_SESSION is the number of requests that are 

generated in each session, which is set to be 500,000 requests per session.  

 AlphaSet is the set of alphas that is used by the Zipf distribution [18] to 

create the object popularity for each session. The alpha values for the six 

intervals are set as the following: [0.8, 1.0, 0.5, 0.7, 1.2, and 0.6].  

The generated dataset is saved in a data frame that contains two values: 

Object_ID and the request_time for all the six sessions. 

As previously discussed, the NUM_OF_REQUESTS_PER_SESSION = 500,000 

and the NUM_OF_SESSIONS = 6, so the Total_number_of_requests is generated 

as follows:  𝑇𝑜𝑡𝑎𝑙  # 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = # 𝑜𝑓 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 ∗ # 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 6 ∗ 500,000 = 3,000,000 requests 

Table 2 summarizes the dataset stored in a data frame containing two columns: 

Object_ID as an integer and Request_time as a floating number, where the total 

number of requests that were generated = 2,937,659  3M requests. The total 



number of requests differs in each run. However, on an average number of runs, this 

number is approximately 3,000,000. The reason behind it is that some entries have 

null values and are not counted in the dataset. Table 3 shows the interarrival 

distributions for each session, which is used to create the requests in each interval.   

 

Table 2 Dataset frame summary 

Columns Number of rows Type 

Object_ID 2,937,659 Int64 

Request_time 2,937,659 Float64 

 

 

Table 3 The interarrival distributions of the six intervals 

Interval 1  Interval 2 Interval 3  Interval 4 Interval 5 Interval 6  

Pareto 

Distribution 

Pareto 

Distribution 

Poisson 

Distribution 

Pareto 

Distribution 

Poisson 

Distribution 

Poisson 

Distribution 

 

Once the dataset is generated, it is divided into three sections for training, 

validation and testing. The training dataset, which comprises 70% of the incoming 

requests, is used to train the model. The validation dataset, which includes 15% of 

the requests, is used to evaluate the model by estimating how well it can predict the 

object’s popularity if given a set of requests that the model have never seen before. 

Finally, the remaining 15% of the requests are used to test the performance of the 

model. 

 

4.2 Experiment configuration  

A two-layer depth LSTM encoder-decoder model with 128 hidden layers was 

trained using the dataset. The experiment was run using Google Colaboratory, a 

hosted Jupyter notebook allowing free access to computing resources such as GPUs. 

The loss function is the mean squared error (MSE). In all the experiments, the batch 

size was 32, the number of epochs was up to 20, and the learning rate was 0.001.  

In this experiment, the number of requests was increased to almost three million requests 

with 2,000 unique objects. The cache sizes used to check the performance of all the algorithms 

using the dataset were 30, 130, 230, and 330. Fig. 6 illustrates the performance of the FIFO 

replacement algorithms in DeepCache, along with additional algorithms such as LFU, LRU, 



FIFO, and SmartCache. SmartCache algorithm outperformed the baseline algorithms by 

34.73% to 97.17%. The DeepCache (FIFO) algorithm achieved a very low number of hits (see 

Fig. 7), indicating that DeepCache algorithm performed well using only smaller datasets. In 

comparison, the SmartCache algorithm could manage larger datasets.  

 

 

 

 

Fig. 8 demonstrates that by changing the DeepCache replacement algorithm to LFU and 

LRU, SmartCache algorithm also achieved the highest number of hits among all the algorithms. 

At the same time, DeepCache failed to perform well in a large dataset. The simulation results 
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Fig. 7 Total hits at cache size = 30 
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indicate that, on average, SmartCache algorithm outperformed DeepCache algorithm by 

97.18% using LRU, 97.17% using FIFO, and 93.95% using LFU.  

SmartCache outperformed the other algorithms because it does not rely on predicting the 

object’s popularity and evicting the least popular content only. It can also randomly choose 

content to evict using the popularity of epsilon. Applying the epsilon-greedy reinforcement 

algorithm enhanced the overall performance of DeepCache and allowed the caching policy to 

use the top-k list to apply more effective eviction decisions 

By setting the replacement algorithm to LRU and increasing the cache size to 130, as 

shown in Fig. 9, increased the total number of hits achieved by all the algorithms. The proposed 

methodology achieved 1,781,417 hits, while DeepCache achieved 50,358 hits using the LRU 

algorithm. However, changing the replacement algorithm to LFU, DeepCache achieved a 

higher number of hits, totaling 265,251. Using the FIFO algorithm, DeepCache achieved fewer 

hits, totaling 52,161. LRU performed well, achieving 1,162,810. While FIFO achieved 

1,065,607 hits and LFU achieved 331,113 hits. Table 4 shows the algorithm with the highest 

number of hits by using different replacement algorithms, and how it outperforms the other 

baseline algorithms 
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Fig. 8 Total hits of DeepCache at cache size = 30 under different replacement 

algorithms 



 

 

Table 4 Best performer regarding hit ratio at cache size = 130  

 

Best 

Performer 
Algorithms 

SmartCache 
LRU FIFO LFU 

DeepCache 

(FIFO) 

DeepCache 

(LFU) 

DeepCache 

(LRU) 

34.73% 40.18% 81.41% 97.07% 85.11% 97.17% 

 

 

When the cache size was increased to 330 (see Fig. 10), SmartCache achieved the highest 

number of hits, as expected from the previous figures. At the same time, the FIFO and the LRU 

algorithms performed very closely. LFU algorithm and DeepCache algorithm performed 

poorly against the other algorithms. The pattern of total number of hits achieved by all the 

algorithms was almost the same when the cache size was changed.  
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Fig. 9 Performance comparison at cache size = 130 



 

 

Fig. 11 compares the SmartCache algorithm’s performance under different cache sizes. The 

lowest number of hits was achieved at a cache size = 30, while the highest was achieved at 

cache size = 330. In conclusion, the SmartCache algorithm performs well at different cache 

sizes, although the performance does not improve significantly as the cache size increases. This 

result is expected due to more objects in the cache, which leads to a smaller number of hits. 

Fig. 11 demonstrates that when the cache size was increased from 30 to 130, the algorithm 

increased the total number of hits by 25.32%. When the cache size was increased from 230 to 

330, the algorithm achieved only 10.01% more hits. 
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Fig. 10 Performance Comparison at cache size = 230 



 

 Figures 12 to 14 compare the performance of SmartCache and DeepCache using 

different replacement algorithms such as LRU, LFU, and FIFO. SmartCache algorithm 

outperformed DeepCache algorithm under the three conditions. However, DeepCache 

performed best using the LFU algorithm but achieved fewer hits using FIFO and LRU 

algorithms. As previously discussed, SmartCache’s superior performance lies in applying the 

Top-K list after generating the least popular list from the seq2seq model, allowing the 

algorithm to take faster decisions. Since the least K popular contents is available ahead of time, 

the least popular object does not need to be predicted again.  
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Fig. 11 SmartCache algorithm performance at different cache sizes 
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Fig. 12 Performance comparison using LRU replacement algorithm 



 

 

 

 

SmartCache outperformed the other algorithms as shown in the figures because it 

does not rely on predicting the object’s popularity and evicting the least popular 

content only. It can also randomly choose content to evict using the popularity of 

epsilon. Applying the epsilon-greedy reinforcement algorithm enhanced the overall 

performance of the DeepCache mechanism and allowed the caching policy to use 

the top-k list to apply more effective eviction decisions.  

SmartCache (LFU)

DeepCache (LFU)

T
o

ta
l 
H

it
s

 x
 1

0
0
0

0

2×10
5

4×10
5

6×10
5

8×10
5

Request Sequence x 1000

0 500 1000 1500 2000 2500

Performance comparison under LFU replacement algorithm

SmartCache (FIFO)

DeepCache (FIFO)

T
o

ta
l 
H

it
s

 x
 1

0
0
0

0

5×10
5

10×10
5

15×10
5

20×10
5

25×10
5

30×10
5

Request Sequence x 1000

0 500 1000 1500 2000 2500

Performance comparison under FIFO replacement algorithm

Fig. 13 Performance comparison using LFU replacement algorithm 

Fig. 14 Performance comparison using FIFO replacement algorithm 



As expected, as the cache size increases, the total hit ratio increases as well and 

this is due to the fact that the cache can store more files. However, the enhancement 

that the SmartCache shows compared to the other existing algorithms decrease as 

the cache size increases and it is totally accepted, since in a real-life scenario, the 

cache size is much smaller than the total number of objects. 

 

5 Conclusion  

The main aim of this study was to design a smart caching system that can could predict the 

popularity of the contents, and cache the most popular content. This mechanism can help 

increase the hit ratio since the end-user can easily access the requested contents from the cache 

without waiting for the contents to be closer to the end-user. It can also reduce the latency of 

delivering the contents to the end-user. The mechanism used machine learning models such as 

LSTM to predict the popularities of the content efficiently. The study demonstrated how the 

proposed caching mechanism could increase the hit ratio compared to other existing 

replacement algorithms such as LFU, LRU, and FIFO. It also tested the performance of other 

machine-learning algorithms such as DeepCache algorithm. Experiments were conducted 

using a synthetic dataset to compare the proposed model’s performance with other caching 

algorithms on different cache sizes, such as 5, 10, 20, and 30, regarding the total number of 

hits. Although the level of improvement was limited compared to the DeepCache algorithm, 

the proposed methodology achieved the highest number of hits among all the other replacement 

algorithms, increasing by 4.14 to 62.66%, when the cache size was 5 and by 5.80% to 26.12%, 

when the cache size was 30.  

Future enhancements to this study could be done to test the performance of the proposed 

methodology using larger datasets with different characteristics, such as contents with a life 

span, diurnal pattern, and an access rate. Different machine-learning models could also be 

applied to the caching policy to test the performance of these models and attain the highest 

possible hit ratio. Another valuable contribution would be to test the proposed caching policy 

in different environment, such as a 5G network.  
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