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ABSTRACT 10 

Recently a new family of loss functions called smart error sums has been suggested. These loss functions 11 

account for correlations within experimental data and force modeled data to obey these correlations. As a 12 

result, multiplicative systematic errors of experimental data can be revealed and corrected. The smart error 13 

sums are based on 2D correlation analysis which is a comparably recent methodology for analyzing 14 

spectroscopic data that has found broad application. In this contribution we mathematically generalize and 15 

break down this methodology and the smart error sums to uncover the mathematic roots and simplify it to 16 

craft a general tool beyond spectroscopic modelling. This reduction also allows a simplified discussion 17 

about limits and prospects of this new method including one of its potential future uses as a sophisticated 18 

loss function in deep learning. To support its deployment, the work includes computer code to allow 19 

reproduction of the basic results. 20 

 21 

  22 
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Main 23 

Systematic errors lead to non-accurate results with biases even if an experiment is repeated multiple times 24 

and the results are averaged to reduce the statistical random error. Systematic errors are often hard if not 25 

sometimes impossible to detect.1,2 One reason is that the down- or upshift of the mean compared to the true 26 

value does not influence the distribution of results caused by random errors. Even though it is possible to 27 

remove or reduce random errors and obtain a seemingly consistent (“precise”) result, these may nevertheless 28 

still be far from the underlying ground-truth.  29 

In particular, in curve fitting, where experimental data points are fitted assuming that the points follow a 30 

mathematical or physical model, a good agreement between measured points and fitted curve may delude 31 

the operator into thinking that systematic errors are absent.2,3 In general, it must be kept in mind that a good 32 

agreement of a fit is no indication of accuracy, neither in terms of the experimental data nor of the underlying 33 

model. That is data analysis of quantitative experiments is based upon the assumption that the measured or 34 

calculated independent and dependent variables are not subject to systematic errors.4 35 

Curve fitting is often applied when nonlinear mathematical or physical problems are to be solved that cannot 36 

be linearized. When linear problems and those that can be linearized are to be solved, analytical solutions 37 

can be derived. Such linear models form the basis for many chemometric methods.5 In contrast to linear 38 

problems, nonlinear problems require to iteratively improve the fitted curve by minimizing a measure of 39 

disagreement, to approach the curves of the experimental data. Potential applications of curve fitting are 40 

countless and encompass virtually all scientific disciplines. Examples include biosynthesis,6 41 

thermoluminescence,7 solar energy,8 materials science and technology,9 agriculture,10 cancer research,11 42 

kinetics,12 thermal engineering,13 transportation,14 soil science,15 remote sensing of ecosystems,16 43 

epidemiology,17 power and energy engineering,18 population growth19 and spectroscopy,20  to name just a 44 

few. The disagreement metrics to minimize during the fit depends on the properties of the noise and possibly 45 

on prior information on the parameters to fit. However, in most cases it is sensible to assume Gaussian 46 

statistics, which requires the minimization of the residual sum of squares (RSS) also called the sum of 47 

squared errors or its weighted version in case of non-uniform but known variances.  48 
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Recently, we derived alternative loss functions, which are based on 2D correlation analysis or spectroscopy 49 

(2D COS).3,21 2D correlation analysis has been introduced in the 1980s by one of us as a tool for infrared 50 

spectroscopy which found widespread use also in other spectroscopic methods, like Raman spectroscopy 51 

and mass spectrometry.22 In principle, 2D correlation spectroscopy is based on acquiring a series of spectra 52 

under a systematic change of one parameter of the sample (the so-called perturbation), e.g., the stretch of a 53 

polymer, the temperature or the concentration of one compound in a mixture. The perturbation can certainly 54 

also be a parameter of an established physical model to describe how its alteration induces changes in the 55 

spectra, like the thickness of films. A variant of 2D correlation spectroscopy is hybrid 2D correlation 56 

spectroscopy, which allows the comparison of two different spectral series, e.g., the same compound under 57 

two different perturbations. In the sense of curve fitting, a variant would be to let one series consist of 58 

experimental data, whereas the second comprises modelled spectra.  59 

In the original 2D correlation maps, half of the data points are redundant, due to symmetry relations between 60 

points separated by the diagonal from low to high values of the independent variable. For hybrid 2D 61 

correlation maps these relations do no longer hold, but the more the two series resemble each other, the 62 

smaller the deviations from this symmetry relations become. This property of hybrid 2D correlation maps 63 

can be exploited by formulating an alternative criterion for the resemblance between experimental and 64 

modelled data which includes the correlations in between the series, which we call smart error sum (SES).  65 

In contrast to the fits using the conventional RSS, the 2D correlation-based smart error sum does not force 66 

the modelled curve to agree point by point with experimental curves, but accounts for correlations between 67 

the latter and between the individual points of a curve. As a consequence, even when the experimental data 68 

are reduced by a (frequency dependent) factor, the data can still be analyzed in a meaningful way.  In 69 

spectroscopy, such a situation is often encountered, for example, due to diffuse reflection caused by surface 70 

roughness, or measured data becomes larger than predictable by models which do not account for such 71 

experimental problems. This approach can not only detect, but also remove multiplicative systematic errors 72 

as has been demonstrated for infrared spectra of films on substrates with different thicknesses (additive 73 

systematic errors can also be treated after applying an exponential transformation). 74 
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Quite often, though, series of spectra are not available and it is only one data curve that is to be fitted. In 75 

this case inter spectral correlations cannot be exploited. However, it is still possible to use correlations 76 

between the individual data points based on a recent subtype of 2D correlation analysis. The so-called two-77 

trace 2D correlation analysis or spectroscopy (2T2D COS)23,24 requires only two sets of spectral data of 78 

which only one needs to be experimental. In this case the symmetry relations cannot be used as a criterion, 79 

but if experiment and model agreed perfectly, one of the maps would amount to become everywhere zero. 80 

The value of this idea has been proven employing the same physical system as the original smart error sum. 81 

As we will show, the 2T2D SES approach is similar to utilizing normalized cross-correlation (NCC) and 82 

zero mean normalized cross-correlation (ZNCC) as SES. NCC and ZNCC are related to 2D correlation 83 

analysis22 and often used for signal analysis. Examples entail comparing image quality in competition with 84 

the conventional residual sum of squares,25-28 tracking wavelength-shifts in Fiber-Bragg gratings.29,30 and, 85 

recently, also least squares optimizations of images.31 86 

While the application to real systems and problems helped to establish the validity of the approach, it also 87 

partially obscured the mathematical basis and the principal properties of the method. To enable broader 88 

application, we therefore here reduce it to its essential properties and demonstrate it based on a simple 89 

example in the following. In addition, we provide the 2T2D-based smart error sum in a form that scales, 90 

like the conventional sum of squared residuals, linearly with the number of points. Accordingly, the former 91 

can replace the latter in nonlinear curve-fitting applications that are prone to unknown systematic 92 

experimental errors. The code of the program which we used to obtain the results shown in the following is 93 

made available together with this work so that they can be easily reproduced. In addition, the code can 94 

effortlessly be modified to be used for other non-linear models. 95 

 96 

  97 
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Methods 98 

The following is based on the matrix algebra employed for 2D-COS as used by Noda and Osaki.22 Since the 99 

formalism was originally developed for spectroscopy, we have to slightly reformulate it. However, to allow 100 

the reader to connect the following to the original literature, we will try to adhere to the original terminology 101 

as closely as possible. We assume that we have a function ( ),k ky y x t=  of two variables x and t of which 102 

we call the former the shaping variable and the latter the perturbation. A number of different data points 103 

located on m different curves which differ with regard to t, shall be represented by employing discrete values 104 

xi and tj according to ( ),k k i jy y x t= . These curves will be called a set of dynamic spectra ( ),k k i jy y x t=  105 

The dynamic spectra are arranged in a matrix Yk in the following way: 106 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1 2 2 2 2

1 2

, , ... ,

, , ... ,

... ... ... ...

, , ... ,

k k k n

k k k n

k

k m k m k n m

y x t y x t y x t

y x t y x t y x t

y x t y x t y x t

 
 
 =  
 
  

Y . (1) 107 

The index  1,2k  and indicates if the set of dynamic spectra consists of either the set of “measured” (108 

1k = ) or the set of simulated spectra ( 2k = ). One may think that it is advantageous to mean-center the 109 

dynamic spectra, i.e., subtracting the mean spectrum of the series from each individual measured spectrum. 110 

However, such mean-centering or, more general, referencing is often not only unnecessary,32 but sometimes 111 

even detrimental. Yet, if the array of curves or dynamic spectra share a common offset, this offset needs to 112 

be removed prior to application, otherwise not only the 2D correlation maps,33 but also the smart error sums 113 

are ill-defined. 114 

From the matrices Yk the variance-covariance matrices xxΦ  can be generated by: 115 

 1 2

1

1

T

xx
m

=
−

Φ Y Y . (2) 116 

If 1 2=Y Y , then we speak of conventional 2D-COS, whereas the case 1 2Y Y  leads to a so-called hybrid 117 

correlation analysis. In case of the conventional smart error sum 1Y  is formed from the “measured” and 2Y  118 

from the corresponding simulated curves. As pointed out in ref. 22, each element of the variance-covariance 119 
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matrix expresses the similarity between a specific pair of intensity variations at different xj. If 1 2=Y Y , the 120 

diagonal elements are the autocorrelation functions of the intensity variations along t at a given xj.  121 

The variance-covariance matrix is identical to the synchronous 2D correlation map/spectrum. In order to 122 

compute the asynchronous 2D correlation map/spectrum, the Hilbert–Noda transformation matrix N must 123 

be calculated first. The elements of N are given by: 124 

 

( )

0 if

1
otherwiseij

i j

N

j i

=
= 
 −

. (3) 125 

The elements of the asynchronous 2D correlation map/spectrum can then be calculated according to, 126 

 1 2

1

1

T

xx
m

=
−

Ψ Y NY , (4) 127 

where we again distinguish between the conventional case (I) and hybrid 2D-COS (II). As already 128 

mentioned, in the introduction for the conventional ( 1 2=Y Y ) 2D-correlation analysis for synchronous and 129 

asynchronous spectra/maps certain symmetry relationships hold. Accordingly, the synchronous spectra are 130 

always symmetric relative to the diagonal elements ( ),i ix x . This condition can be expressed as, 131 

 ( ) ( ), ,j k k jx x x x = . (5) 132 

Accordingly, the diagonal from small to large x values is a mirror plane that relates each point above the 133 

diagonal to its mirror image below it. From eqn. (5) it follows that the sum of differences of all variances 134 

and covariances above the diagonal and their counterparts below the diagonal are zero: 135 

 ( ) ( )
1

, , 0
l l

j k k j

k j k

x x x x
= =

  − =  . (6) 136 

For hybrid 2D-COS, the synchronous maps are not necessarily obeying the above condition. The residuals 137 

of the differences of the elements ( ),j kx x  and ( ), k jx x  is a measure of dissimilarity, which can be 138 

generally written as, 139 

 ( ) ( )
1

, ,
l l p

p

S j k k j

k j k

D x x x x
= =

 =  −  , (7) 140 
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with DS, the so-called Minkowski distance, which is called the Euclidian distance for p = 2. Therefore, 141 

hybrid 2D correlation maps allow a derivation of these quantities simply from their symmetry relations.3  142 

For asynchronous 2D correlation maps, a similar relationship can be derived. Accordingly, similarly to eqn. 143 

(5), we find from the condition that the conventional asynchronous 2D correlation maps are always 144 

antisymmetric with respect to the diagonal the following relation: 3 145 

 

( ) ( )

( ) ( )
1

, ,

, , 0

j k k j

l l

j k k j

k j k

x x x x

x x x x
= =

 = −

 →  + = 
. (8) 146 

This relation leads for the hybrid 2D-correlation asynchronous map to: 147 

 ( ) ( )
1

, ,
l l p

p

A j k k j

k j k

D x x x x
= =

 =  +  . (9) 148 

Note that for both, eqs. (7) and (9), we can include the diagonal since the terms with j = k are zero.  149 

For p = 2, 2

S
D  and 2

A
D  are special residual sums of squares, which we call the synchronous and the 150 

asynchronous residual sum of squares, SRSS and ARSS. SRSS and ARSS can be combined ad hoc to the 151 

smart error sum (SES) according to: 152 

 ( )ln ln( )SRSS ARSS SES+ = . (10) 153 

Obviously, in cases where only a single measured spectrum is available for curve fitting, the smart error 154 

sum cannot be used, simply because it is not possible to generate a 2D correlation map from a single 155 

spectrum. For this case, we have introduced an alternative smart error sum based on hybrid 2T2D-COS, 156 

with one measured curve, while the other is the simulated one. Synchronous and asynchronous 2D 157 

correlation spectrum/map are then calculated by,23,24  158 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
,

2

1
,

2

j k j k j k

j k j k j k

x x s x s x m x m x

x x s x m x s x m x

  =  +  

  =  −  

, (11) 159 

wherein ( ) ( )1 ,= Yj j lm x x t  is the measured and ( ) ( )2 ,= Yj j lm s x t  the simulated curve with an arbitrary lt160 

. Based on eqn. (11), the hybrid synchronous spectrum is always symmetric and the asynchronous spectrum 161 
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is always antisymmetric relative to the diagonal. Therefore, the underlying principle of the smart error sum, 162 

introduced for series of curves, namely to increase the symmetry of the hybrid synchronous 2D correlation 163 

map and the antisymmetry of the hybrid asynchronous 2D correlation map by varying the fit parameters, 164 

cannot be employed. As an alternative we can use that the asynchronous 2T2D-Correlation map xx  165 

vanishes if both the given and the modelled curve are linearly dependent. Put in concrete terms, in this case 166 

the given and the modelled curve can also, as in case of the conventional smart error sum, differ by a simple 167 

scalar multiplication factor. Accordingly, the 2T2D smart error sum is given by,21 168 

 ( )2

1

,
l l p

p

A T j k

k j k

D x x
= =

 =   , (12) 169 

where we set p = 2. Therefore, a corresponding algorithm would minimize 2

2A TD  by finding optimized values 170 

for the fit parameters. In eqn. (12), all points below the diagonal need not to be considered, which follows 171 

from the asynchronous map being perfectly antisymmetric: 172 

 ( ) ( ) ( ), 1 ,
p pp

j k k j
      = −       . (13) 173 

On the other hand, if set p = 2, then there is a possibility to significantly simplify eqn. (12), if we let both 174 

sums run from 1 to l. In this case,  175 

 176 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2
2

2

1 1

1 1

1 1 1 1 1 1

2

,

1
2

4

1
2

4

1

2

= =

= =

= = = = = =

 =    

 =      +      −        

 
=     +     −     

 

= 





     

l l

A T j k

k j

l l

j j k k k k j j j j k k

k j

l l l l l l

j j k k k k j j j j k k

j k k j j k

j

D

s s m m s s m m s m s m

s s m m s s m m m s m s

s ( ) ( ) ( )
2

2

1 1 1

2
= = =

  
  −      
  

l l l

k j j

j k j

m m s
177 

, (14) 178 

which scales with ( )N  like the conventional residual sum of squares instead of ( )2
N  like the other 179 

smart error sums based on 2D correlation analysis. The advantage of the smart error sums in comparison 180 
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with the conventional residual sum of squares as minimalization criterion is that for the former experimental 181 

and simulated curve are not forced to agree by all means but can be different by an individual factor, the 182 

optimum of which is determined by maximum correlation. In other words, not only the best agreement 183 

between original and simulated values determines the fit parameters, but also the correlation of the curves 184 

in a series or within a curve. From a mathematical point of view, the additional degree of freedom can be 185 

understood in terms of the phase angle: 186 

 ( ) ( )
( )

1 2

1 2

1 2

,
, arctan

,

x x
x x

x x

   =  
  

. (15) 187 

The term phase angle is used, because xxΦ  and xxΨ  are linearly independent and can be described formally 188 

as a complex function:  189 

 xx xx xxi= +X Φ Ψ . (16) 190 

( )1 2,x x  is then derived from the polar form. For hybrid 2T2D correlation analysis, ( )1 2,x x  becomes 191 

zero if the original curve and its best fit agree within a multiplication factor, which means that ( )1 2, 0x x =192 

. This situation means that the two curves are linearly dependent or even identical if systematic errors are 193 

absent. Accordingly, an alternative form for the 2T2D-based smart error sum is given by:21 194 

 ( )2

1

,
l l p

p

A T k j

k j k

D x x
= =

 =   . (17) 195 

For series-based hybrid 2D correlation analysis, the ratios ( ) ( )1 1 2 1 1 2, ,x x x x   for the set of the given 196 

curves and ( ) ( )2 1 2 2 1 2, ,x x x x   for the fitted curves are equal if the correlations within both sets of curves 197 

agree. An alternative form of the original smart error sum is therefore,21 198 

 ( ) ( )
1

, ,
l l p

p

SES ex k j sim k j

k j k

D x x x x
= =

 =  −  . (18) 199 

where ( ),ex k jx x  are the phase angles of the original data and ( ),sim k jx x  are those of the simulated 200 

curves. This form, for p = 2 and without consideration of its symmetry properties, has originally been 201 

introduced by Shinzawa et al.34,35 and used exclusively for the method of alternating least squares (ALS). In 202 
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this form, a theoretical problem of eqn. (10) is avoided, which occurs if either SRSS or ARSS becomes zero, 203 

which in practice unlikely happens due to numerical errors related to the conversion of numbers to the binary 204 

system. To be on the safe side, a dummy regularizing positive constant ε can be incorporated into eqs. (6) 205 

and (7), e.g. 1010− =  (this value is small enough to have no effect on the actual computation and may be 206 

viewed as a predictable substitute for random bit noise). Similar consideration may apply to the calculation 207 

of the phase angle defined in eqn. (15) and it may be advantageous to regularize the denominator, even 208 

though the chance for the intensity of synchronous spectrum becomes exactly zero might be slim (there are 209 

chances that this can happen near the zero-crossing area. The sign of the regularization constant has to be 210 

the same as the sign of the synchronous spectrum intensity. The primary reason for regularizing the ratio 211 

between asynchronous and synchronous intensities is to avoid the ambiguity of the zero-divided-by-zero 212 

situation where the dynamic spectrum remains zero). Note that for a typical arctangent function routine, the 213 

direction of a vector in the phase plain is confined to the first and fourth quadrants. In other words, the phase 214 

angle calculated by a computer is automatically assumed to take the value between –π/2 and +π /2. In a 215 

practical physically expected situation, a phase vector can point to the direction outside of this artificial 216 

confinement. Therefore, it is generally advantageous to assume that the phase angle should be confined 217 

between -π/4 and +3π/4, and to add π whenever the calculated value lies between - π/2 and - π/4.  218 

According to eqn. (18), individual 2D maps can differ by multiplication factors, even though their phase 219 

angles are equal. In the absence of systematic errors, the factor becomes unity. It might not be obvious, but 220 

the normalized cross correlation NCC coefficient can be derived from the 2T2D SES: 221 

 

( ) ( )

( ) ( )

( ) ( )

2
12

2 2 2 2

1 1 1 1

1

2

l

j j

jA T

l l l l

j k j k
j k j k

m s
D

NCC

s m s m

=

= = = =

 
− − = =

   



   
. (19) 222 

As long as m C s=  , with an arbitrary factor C, 1NCC = , otherwise 1 1NCC−   . In other words, NCC−  223 

can also be employed as a loss function and then shares the property of the 2T2D smart error sum that the 224 

experimental and the simulated spectrum can differ by a factor. Quite often the NCC  is used in a form that 225 
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is mean-centered, to be more precise zero mean-centered, which is then called zero-mean normalized cross 226 

correlation ZNCC , 227 

 

( )( ) ( )( )
11

1

l

j m j s

j

m s

m s

ZNCC
l

=

 −  −
=

+  


, (20) 228 

where i  are the mean spectral intensities of m and s and i  are their standard deviations. In contrast to 229 

NCC  and the 2T2D smart error sum, the ZNCC  is additionally immune to offsets O: m C s O=  + . To 230 

show the main features of the smart error sums we use Cauchy-type model distributions of the general form, 231 

 ( ) ( )
( )2 2

0

, 1f x t t at
x x bt

= +
− − +




, (21) 232 

to generate curves that we fit with the same type of functions. If the constants a and b are small, the function 233 

does not deviate noticeably from the Cauchy-distribution that is depicted in Fig. 1. The larger b is, the more 234 

the maximum shifts to smaller x-values for increasing t. The parameter a induces a non-linear increase of 235 

the amplitude.  236 

 237 

Fig. 1: Cauchy-type function that was used throughout this work. The curve depicted was generated with 0x = 1000,  = 30, 238 

0a b= = . 239 
 240 

The fits were performed by a corresponding custom-made program based on Wolfram Mathematica® 10.3 241 

which is provided as supporting information together with a variant programmed in Julia. 242 

 243 
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Results and discussion 244 

The crucial point for applying the smart error sum is the appearance or nature of the synchronous and 245 

asynchronous map or, alternatively, the map of the phase angles. For the smart error sum based on a series 246 

of curves for different perturbations t (eqn. (10), methods), it is pivotal that the hybrid synchronous map is 247 

not already symmetrical to the diagonal from low to high x, as it is for non-hybrid maps, and that the hybrid 248 

asynchronous map is not zero. Unfortunately, this case is not uncommon, e.g., for the Cauchy-type functions 249 

if b equals zero (cf. eqn. (21), methods). This may come as a surprise, because if you are familiar with 2D 250 

correlation spectroscopy, then you know that the asynchronous map is supposed to be nonzero if “the 251 

dynamic spectrum behaves nonlinearly with respect to the external variable”, i.e. the perturbation.22 We can 252 

introduce such a nonlinearity by setting 0a   in eqn. (21). But, as long as 0b = , the asynchronous map 253 

will remain zero everywhere, which does not change even if we multiply all curves with a constant factor 254 

to cause 1 2Y Y . In fact, it seems that it is not a nonlinear change of ( ),f x t  in t that results in a non-zero 255 

asynchronous map, but the change must be disproportionate. Such a change can be induced by setting 0b 256 

, because then the maximum of the distribution downshifts increasingly if t increases.  257 

It looks like the presence of such a disproportionate change with increasing t is the criterion that must be 258 

fulfilled for the smart error sums to work, including the ones that are based on 2T2D-correlation as well as 259 

NCC (eqn. (19)) and ZNCC (eqn. (20)). Accordingly, the synchronous map presents the proportionate 260 

changes and the asynchronous map the disproportionate changes of ( ),f x t  with t. The different 261 

synchronous and asynchronous maps for the Cauchy-type functions are displayed in Fig. 2. The synchronous 262 

maps are for all investigated functions quite similar. In contrast, the asynchronous maps stay zero for linear 263 

and quadratic ( 1a = ) proportionate changes, while the map becomes non-zero for disproportionate changes 264 

( 1b = ) and shows a typical pair of cross-peaks indicating a shift of the peak maximum. The same holds true 265 

for the asynchronous 2T2D maps, except that two cases have to be distinguished for 1b = . These are the 266 

case 1 2t t= , for which the asynchronous map is still zero, whereas it is similar to the conventional 267 
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asynchronous map for the second case for which 1 2t t . This agrees with the definition of the smart error 268 

sum in this case, since t itself can certainly be one of the fit parameters. 269 

 270 

 271 

Fig. 2: Comparison of the hybrid synchronous and asynchronous maps of the Cauchy-type functions used in this work ( 1 2=Y Y ). 272 

 273 

In fact, the example that we want to showcase in the following is about fitting t. For a reader familiar with 274 

2D correlation spectroscopy this may seem surprising, since t is usually assumed to simply increase 275 

systematically, which is important as otherwise semiquantitative deductions about the relative order of 276 

spectral changes are not possible. Note that 2D-COS can also be used in case of unevenly spaced increments 277 

of the perturbation, a corresponding extension of eqs. (2)-(4) for such increments has been provided.36 If the 278 

sequence of the dynamic spectra is unknown, a computation of the asynchronous spectrum is not meaningful 279 

in contrast to the synchronous spectrum.37 For applications of the smart error sum, however, neither 280 

equidistance nor the order of t values is of importance, which is why t can also be a fit parameter.  281 
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We nevertheless generated 5 curves by assuming  1,2,3,4,5t , 0x = 1000 and  =30 in the range of 282 

900 1100x   and added 10 % systematic error by multiplying the curves by 1.1. Note that this is an 283 

oversimplification of a real situation, where the factor would depend on x – otherwise it would simply be 284 

possible to correct the spectra by introducing this factor as an additional fit parameter, but here we focus on 285 

demonstrating the method in a simple setting. The erroneous data were subsequently fitted by employing 286 

the conventional sum of squares and with the different smart error sums. The results are depicted in Fig. 3 287 

and in Table 1. Obviously, apparently perfect fits are possible employing the conventional sum of squares 288 

by adjusting the parameter t. 289 

 290 

 291 

Fig. 3: Fit of the erroneous data with the conventional residual sum of squares (left panel) and with the smart error sums (right 292 
panel, the results obtained with the different error sums agree within line thickness except for eqn. (18) if  1,3t ).  293 

 294 

Note that for the 2T2D smart error sums following eqs. (12) and (17), for which the latter is based on the 295 

phase angle, the convergence is fast enough so that the original t values are virtually recovered. While eqn. 296 

(14) allows a much faster fit, Mathematica returns a slightly worse result. The convergence is much slower 297 

for the series based smart error sums. In principle, instead of adding the logarithm of SRSS and ARSS, an 298 

alternative for connecting both residual sums would be to use the product (in case of an addition, a weighting 299 

would be necessary, since the ARSS usually is several orders of magnitude smaller). However, we found 300 
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that the convergence would be much worse, which is why we prefer eqn. (10) over using the product of 301 

SRSS and ARSS (the use of either alone further deteriorates the result, in particular if SRSS is used). 302 

 303 

Table 1: Results of the fits based on the different errors sums and relative time needed. 304 

 305 

 306 

In particular the phase angle-based smart error sum, eqn. (18), has a comparably slow convergence, so that 307 

the fitted values differ considerably from the original values with the default settings of Mathematica’s 308 

NMinimize, even though we added the condition that the solutions must be in the interval of 1  of the 309 

original value (cf. Table 1). Obviously, although it points to the correct values, the phase angle and series 310 

based smart error sum has by far the worst convergence independent of which of Mathematica’s built-in 311 

methods is chosen (“Nelder-Mead”,38 "DifferentialEvolution" “SimulatedAnnealing” and 312 

“RandomSearch”). The conventional correlation-based smart error sums NCC (eqn. (19)) and ZNCC (eqn. 313 

(20)) are slower than the faster 2T2D smart error sum. Not only do they show a somewhat inferior 314 

convergence, in real life applications where the error does not consist of a multiplicative error that is 315 

independent of x, they show also an inferior performance due to normalization. In particular ZNCC does 316 

not show any advantage compared to an also zero mean-centered and normalized residual sum of squares 317 

(not shown), which is in line with its poorer performance compared to NCC for pattern recognition in image 318 

analysis.39 319 

Eqn. t1 t2 t3 t4 t5 Rel. 

timing

(1) 1.09993 2.19944 3.29812 4.39557 5.4914 1

(10) 1.00067 1.99862 3.00092 3.99983 4.99997 105.9

(12) 1 2 3 4 5 29.5

(14) 0.99983 2.00001 3.00001 4 4.99999 2.3

(17) 1 2 3 4 5 46.4

(18) 0.956611 2.02517 2.95784 4.00158 4.99879 110.2

(19) 0.999966 2.00002 3.00002 4 5 11.0

(20) 0.999999 1.99999 3 4 5 62.5
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For the conventional residual sum of squares, the t values completely reflect the error of the data (cf. Table 320 

1), but the nearly perfect adaption to the altered data belies about the failure and can cheat the user into 321 

believing that the parameters obtained from the fit are errorless. Not only that, it can even mislead the user 322 

into believing that the model that is applied is correct. As mentioned above, if 0b  , then the maximum of 323 

the curves is increasingly shifted to lower x with increasing t. Nevertheless, it is also possible to fit the 324 

curves under the assumption 0b =  if 0x  is allowed to be one of the fit parameters – in this case the fit of 325 

the erroneous curve is perfect for  0 999,998,997,996,995x =  and  1.1,2.2,3.3,4.4,5.5t = , although the 326 

employed fit function is wrong.  327 

If smart error sums are employed, this erroneous situation cannot occur, because in this case the fit cannot 328 

converge to a result. Hybrid 2D correlation analysis reveals the reason for this “failure” as can be seen in 329 

Fig. 4. For mixtures of different functions, the asynchronous maps do not show the expected form, i.e., the 330 

values above the diagonal from small to large x do not have in general the inverted sign of the values below 331 

the diagonal, even though for both series the parameters, with the exception of the constants a and b, were 332 

the same. As a consequence, fits employing one of the smart error sums must fail, since the antisymmetry 333 

of the asynchronous map with respect to the diagonal can never be reached. In other words, if the use of a 334 

smart error sum for the fit of a physical problem leads to convergence, the used theoretical model must be 335 

adequate for the problem. On the other hand, if a fit fails because the asynchronous map does not show the 336 

expected distribution of signs, the applied model is not adequate for the problem at hand.  337 

To present a concrete and practical example, Cauchy-functions are assumed in large parts of the 338 

spectroscopic community to describe the absorption of light, i.e., absorbance peaks. In fact, Lorentz derived 339 

based on dispersion theory that such profiles (therefore they are often called Lorentz-profiles) are good 340 

approximations for weak oscillators.40 In the Lorentz-profile, however, the band position is decoupled from 341 

the peak intensity, in contrast to dispersion theory (the coupling results from the polarization of matter by 342 

light). If a single band is assumed it can be shown that 1 3b = .41 If the conventional residual sum of squares 343 
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 344 

Fig. 4: Asynchronous 2D correlation maps for the mixture of different functions. For all parameters (except the constants a and b) 345 
the same values were chosen for both series. 346 
 347 

is used, the Lorentz-profile can nevertheless be employed to fit the bands – as long as no series is fitted, 348 

which is the usual case, a band shift is simply compensated by changing the peak position as in the example 349 

discussed above. In contrast, a fit employing one of the smart error sums cannot succeed. The simple reason 350 

is that the asynchronous map, and, with it, the map of the phase angles, is not antisymmetric in the sense 351 

that the values above the diagonal have in general the opposite value of those below the diagonal, if the 352 
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model that was used to generate the original curves is different from the one the simulation is based on. 353 

Note that 2T2D maps behave differently and cannot be used to evaluate functional relations.  354 

Again, it must be stated that this property can only be advantageously exploited for complex underlying 355 

laws that lead to disproportionate changes due to the perturbation. On the other hand, all less-complex 356 

relationships can be linearized and treated with the method of linear least squares, which provides analytical 357 

solutions. Therefore, curve fitting is not required. More importantly, such problems also do not require to 358 

employ neural networks/deep learning, methods which are specifically suitable to solve nonlinear modelling 359 

problems. For deep learning, on the other hand, it should be helpful to use loss functions based on smart 360 

error sums, because the latter obviously help to develop the correct functional relationships. In this stage 361 

this remains speculative, but we think that such loss functions do also support the training of neural networks 362 

as they can be effective measures to prevent underfitting and overfitting. 363 
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