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Abstract

Background
Kernel size-related traits, as critical determinants of wheat kernel weight and yield potential, are complex
quantitative traits controlled by polygenes. Genome-wide identi�cation of important and stable
quantitative trait loci (QTL) and functional genes for these traits can advance molecular genetic
improvement of wheat kernel yield.

Results
In this study, Thirty-two QTLs for kernel size-related traits, including kernel length (KL), kernel width (KW),
kernel diameter ratio (KDR) and kernel thickness (KT), were discovered using a series of recombinant
inbred lines (RILs) which explained 3.06–14.2% of the phenotypic variation. Of these, eleven QTLs were
con�rmed as stable QTLs in multiple environments. The 1103 original QTLs from 34 previous studies
and the present study were employed for the MQTL analysis, in which 346 of the 1103 original QTLs were
re�ned to 58 MQTLs. Compared to the original QTLs, the average con�dence intervals of the target
MQTLs decreased 3.26-fold, but the average genetic contribution rates to explain phenotypic variation
increased 1.72-fold. Through comprehensive analysis of wheat publicly available transcriptome data, a
total of 70 putative candidate genes for kernel size development were ultimately identi�ed within the
MQTL regions.

Conclusions
kernel size-related traits predominantly regulated by genetic factors and can be detected in different water
conditions. Potential candidate genes expressed in spike and grain were identi�ed through meta-QTL and
in-silico expression analysis. The identi�cation of stable QTLs and candidate genes for kernel size-related
traits provides a novel insight to understand the genetic basis of kernel size-related traits in wheat.

Background
Wheat (Triticum aestivum L.) is one of the most important cereal crops worldwide, providing nearly 40%
of the calories for the world population [1]. It is estimated that wheat yield needs to be increased by 70%
to meet the food demand associated with the growth of the world population [2]. In this context,
improving wheat yield is critical to ensuring food security in the future. Wheat yield is mainly in�uenced
by thousand kernel weight (TKW), number of kernels per spike (KNS), and reproductive pollen number
(RTN) [3, 4]. Of these, TKW has been selected as an important target trait in wheat breeding programs due
to its high heritability [5]. Kernel size-related traits, as one of the critical factors in kernel weight formation,
were mainly composed of kernel length (KL), kernel width (KW), kernel diameter ratio (KDR), and kernel
thickness (KT) [6]. Larger kernels have a positive in�uence on the growth performance of wheat seedlings



Page 3/36

and contribute greatly to yield improvement [4, 7–8]. Deciphering the genetic basis and �nding functional
genes for kernel size are critical for enhancement of grain yield and quality traits in wheat.

Traits related to grain size in wheat have attracted considerable attention in crop breeding. These are
complex quantitative traits controlled by polygenes [9–11] and are strongly in�uenced by both genotypic
and environmental factors [12]. In the last two decades, a large number of QTLs underlying wheat kernel
size-related traits have been successfully identi�ed by traditional bi-parental linkage mapping [7, 9–11,
13–17] and genome-wide association studies (GWAS) [18–23]. However, due to the redundancy of
functional genes in three sub-genomes A, B, and D of wheat and the highly repetitive nature of this
genome, identifying stable and robust QTLs for kernel size-related and yield traits remains challenging
[24, 25]. Therefore, identi�cation and validation of reliable QTLs for controlling these traits remain crucial
in wheat breeding.

Previous study reported that QTLs for grain size were generally mapped in large con�dence intervals with
small effects and are signi�cantly in�uenced by genetic background and environment, which limits the
usefulness of these QTLs in wheat breeding programs [26]. Meta-QTL analysis is a robust method for
genetic analysis of complex traits and an effective approach to integrate QTLs from different pathways
to obtain stable genetic regions controlling a quantitative trait [27]. Compared to QTLs identi�ed in a
single study, MQTLs have the advantage of having a smaller QTL con�dence interval and being stable
across multiple experimental runs. Meta-QTL analysis may also overcome the limitations of identifying
candidate genes in a genome as complex as wheat.

MQTL analysis have been successfully applied in various crops, including maize [28–31], rice [26, 32–
33], and soybean [34]. MQTL analysis in wheat have also been effectively used to establish the
consensus map of QTLs for many agronomic traits. Previous study integrated QTLs for yield and yield-
related traits from published articles and identi�ed 12 signi�cant MQTLs on chromosome 1A, 1B, 2A, 2D,
3B, 4A, 4B, 4D, and 5A including two important underlying genes such as Rht and Vrn [35]. Tyagi et al.
(2015) performed a meta-analysis of QTLs associated with kernel morphological traits and mapped 17
MQTLs on 7 chromosomes in wheat [36]. In previous study, a total of 2230 QTLs for yield and yield-
related traits were used for meta-QTL analysis and identi�ed 145 MQTLs, of which 85 were veri�ed by
GWAS using different natural populations, within 76 MQTL core intervals, 237 candidate genes involved
in photoperiod response, kernel development, multiple plant growth regulatory pathways, carbon and
nitrogen metabolism, and ear and �ower organ development were identi�ed through searching for
sequence homology and expression analysis [37]. Meanwhile, Liu et al. (2020) performed a meta-analysis
with 381 QTL related to yield and identi�ed 86 MQTL and 210 candidate genes in wheat [38]. In addition
to yield-related traits, MQTL analysis were also used to discover consistent QTLs and identi�cation of
candidate genes for various quantitative traits such as leaf rust [39], drought and heat tolerance [40–42],
salt tolerance [43], and disease resistance [44–46].

In the present study, the inclusive composite interval mapping (ICIM) method was used to identify the
QTL controlling kernel size-related traits across seven environments. We performed a meta-analysis by
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combining the QTLs detected in our study with the 1071 QTLs from previous studies. Our main objectives
were to: (1) identify stable QTL for traits related to kernel size in seven environments; (2) discover and
map MQTLs from numerous reported QTL and current studies; (3) identify candidate genes related to
kernel size associated with MQTL intervals.

Results

Phenotypic and correlation analyses
In the �eld trials conducted in seven environments (E1-E7), the parental line Q9086 had a signi�cantly
longer and wider kernel compared to Longjian19 (Table S1). In KT, the parental line Longjian19 had an
advantage over Q9086. In the RILs population, all traits varied widely and had an approximately normal
distribution with obvious transgressive segregation (Fig. 1). The coe�cients of variation for KL, KW, KDR,
and KT ranged from 3.47–5.71%, 2.47–6.27%, 3.24–8.57%, and 3.88–5.45%, respectively. ANOVA of the
four kernel size-related traits revealed signi�cant differences (P < 0.01) among environments, genotype
and genotye × environment interaction. Among the kernel size-related traits, KL (h2 = 0.89) and KDR (h2 = 
0.70) were highly heritable, followed by KW (h2 = 0.67) and KT (h2 = 0.61) (Table S2).

Signi�cant correlations were found among KL, KW, KDR, and KT (Fig. 2). KL showed a positive correlation
with KW (r = 0.45, P < 0.01) and KDR (r = 0.71, P < 0.01), whereas there was a negative correlation with KT
(r = -0.03, P < 0.05). KW showed a positive correlation with KT (r = 0.41, P < 0.01) and KDR (r = -0.30, P < 
0.05). In addition, a negative correlation was observed between KT and KDR (r = -0.42, P < 0.01).

QTLs controlling kernel size-related traits
QTL mapping detected 32 QTLs for kernel size-related traits with the PVE ranging from 3.06–14.2% in
different environments (Table S3, Fig. 3). These loci were mapped on 17 of the 21 chromosomes, except
for chromosomes 2B, 4B, 5A, and 5D. Eleven stable QTLs, namely QKL.acs-1A, QKW.acs-1A, QKDR.acs-2A,
QKL.acs-2D, QKW.acs-3A, QKDR.acs-4A, QKDR.acs-5B.2, QKL.acs-6A, QKL.acs-6B, QKW.acs-7B.1, and
QKW.acs-7B.2, were detected in more than three environments, with PVE ranging from 3.07–9.85%.

Ten QTLs associated with KL were identi�ed on chromosomes 1A, 1B, 2D, 3D, 4A, 6A, 6B, 7A, 7B, and 7D,
with PVE ranging from 3.40–8.26% (Table S3, Fig. 3). Of these, four stable QTLs were identi�ed for KL on
chromosomes 1A, 2D, 6A, and 6B, including QKL.acs-1A identi�ed in E3, E4 and E5, QKL.acs-2D identi�ed
in E3, E4 and E7, QKL.acs-6A identi�ed in E3, E5 and E7, and QKL.acs-6B identi�ed in E1, E2, E3, E6 and
E7, respectively. Notably, QKL.acs-6B, with 4.07–8.26% of the PVE, was detected in �ve environments (E1,
E2, E3, E6 and E7). Except for the QTL QKL.acs-6B, the additive effect of other three stable QTLs
contributed to decreasing of KL.

Among the seven QTLs associated with KW on six chromosomes (1A, 2D, 3A, 4A, 4D, and 7B), with PVEs
ranged from 3.35–9.85% (Table S3, Fig. 3), four stable QTLs, QKW.acs-1A identi�ed in E4, E6 and E7,
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QKW.acs-3A identi�ed in E2, E3 and E6, QKW.acs-7B.1 identi�ed in E4, E5 and E6, and QKW.acs-7B.2
identi�ed in E1, E5 and E6, which were mapped on chromosomes 1A, 3A, and 7B, respectively. QKW.acs-
1A and QKW.acs-7B.1 had a negative additive effect on KW, while QKW.acs-3A and QKW.acs-7B.2 showed
a positive additive effect for increasing KW. The QTLs QKW.acs-7B.1 and QKW.acs-7B.2 were detected on
the same chromosomes with opposite additive effects.

Nine QTLs were identi�ed for KDR with individual PVEs ranging from 3.06–14.2% distributed on eight
chromosomes (1A, 1D, 2A, 2D, 3B, 3D, 4A, and 5B) (Table S3, Fig. 3). Three stable QTLs, QKDR.acs-2A
identi�ed in E1, E5 and E7, QKDR.acs-4A identi�ed in E2, E3, E6 and E7, and QKDR.acs-5B.2 identi�ed in
E1, E3 and E5, were also detected in at least three environments with a range of PVE between 3.06–6.9%.
A major QTL QKDR.acs-2D was identi�ed and contributed to explaining 14.2% of phenotypic variance. In
addition, a stable QTL QKDR.acs-4A was detected in four environments (E2, E3, E6 and E7) and
accounted for 3.06–6.9% of the PVE.

On the chromosomes 2A, 3B, 4D, 6A, 6B, and 6D, six QTLs associated with KT were identi�ed, each
accounting for 4.6–10% of PVE (Table S3, Fig. 3). They were all detected in less than two environments.
Among those, QTL QKT.acs-3B.1 owned the highest PVE of 10%.

QTLs identi�ed under different water environments
In our study, we detected 19 QTL for kernel size-related traits under WW environments and 14 QTLs under
DS environments, the last of which mapped on chromosomes 1A, 1B, 1D, 2D, 3B, 3D, 4A, 5B, 6A, 6B, and
7D, with an average PVE of 5.83% (Table S3, Fig. 3). Two stable QTLs, QKL.acs-2D and QKW.acs-1A, were
identi�ed under DS conditions. Under WW environments, nine QTLs for kernel size-related traits were
located on chromosomes 1A, 2A, 3D, 4A, 4D, 6D, 7A, and 7B with an average PVE of 6.30%. Importantly,
nine stable QTLs, including QKL.acs-1A, QKDR.acs-2A, QKW.acs-3A, QKDR.acs-4A, QKDR.acs-5B.2,
QKL.acs-6A, QKL.acs-6B, QKW.acs-7B.1, and QKW.acs-7B.2, were identi�ed under both WW and DS
environments.

Initial QTLs collection for wheat kernel size-related traits
A total of 34 QTL studies published between 2007 and 2020 for KL, KW, KDR, and KT were used for
MQTL analysis (Table S4). By integrating 1071 initial QTLs from 34 studies and 32 QTLs discovered in
this study, a total of 1103 initial QTLs for kernel size-related traits were used for MQTL analysis (Fig. 4a).
The distribution of QTLs across homologous groups, sub-genomes, and individual chromosomes was
not uniform. For example, the number of QTLs ranged from 101 on homologous group VII to 241 on
group II, and from 15 on chromosome 4D to 117 on chromosome 2D (Fig. 4b). Of the 1103 initial QTLs,
399, 433 and 271 QTLs were distributed among sub-genomes A, B and D, respectively (Fig. 4d). The
con�dence interval ranged from 0.14 cM to 190 cM, with an average of 14.52 cM (Fig. 4c). The proportion
of phenotypic variance explained by individual QTL ranged from 1.00–86.31%, with an average of 9.98%
(Fig. 4c).

MQTL analysis for wheat kernel size-related traits
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A total of 346 initial QTLs were located on the consensus map, while the remaining QTLs were eliminated
due to the lack of common markers with the consensus map (Fig. 5). After meta-analysis, 58 MQTLs
were detected on chromosomes 1B, 1D, 2A, 3D, 4A, 5B, 5D, 6B, 7A, 7B, and 7D (Table S5). Each
chromosome harboured 2 (3D) to 7 MQTLs (1B, 4A, 7B) (Fig. 6a), and the projected initial QTLs on the
chromosomes varied from 20 (5D) to 80 (5B) (Fig. 6b). Most of the MQTL regions were co-localized for
more than two kernel size-related features (Fig. 5). The number of individual QTL per MQTL ranged from
1 (MQTL37 and MQTL38) to 18 (MQTL18) (Table S5). MQTL intervals ranged from 0.21 cM (MQTL33) to
72.64 cM (MQTL46) with an average of 4.46 cM, representing a reduction of 3.26-fold compared to the
initial QTLs (14.54 cM) (Table S5, Fig. 6c). The PVE ranged from 5% (MQTL7) to 56% (MQTL35) with an
average PVE of 17.12%, which was increased 1.72-fold (Table S5, Fig. 6d). Based on the comparison of
the �anking marker sequences, the MQTLs had unique physical positions in the reference sequence of
the Chinese Spring wheat genome. The physical interval of these 58 MQTLs ranged from 1.54 Kb to
580.66 Mb (Table S5). Particularly, 12 MQTLs with a physical interval < 20 Mb were selected as target
MQTLs.

Candidate genes mining and expression analysis
We identi�ed 1864 potential candidate genes in 12 MQTL intervals, with the lowest (1) and highest (487)
number of potential candidate genes in the MQTL50 and MQTL15 intervals, respectively. The potential
candidate genes in the interval of the 12 MQTLs were screened and annotated based on the wheat
reference genome of the Chinese Spring as the version of IWGSC RefSeq v1.1 (Table S6).

The GO terms associated with biological processes belonged to metabolic and cellular (229 and 210
candidate genes, respectively) pathways (Fig. 7). GO terms associated with molecular function were
related to binding and catalytic activity (380 and 260 candidate genes, respectively). Regarding the
cellular component, candidate genes were mainly related to the cell and cell part with 130 and 128
candidate genes, respectively. KEGG analysis for candidate genes revealed that the ubiquitin-mediated
proteolysis and plant hormone signalling are the two most important pathways involved in the metabolic
process (Fig. 8).

The potential candidate genes were then subjected to in silico expression analysis using publicly
available various RNAseq data. Only 70 candidate genes belonging to 9 MQTLs (except MQTL50,
MQTL51, and MQTL55) were differentially expressed in spike and grain (Table 1, Fig. 9). These genes are
involved in various metabolic pathways, such as carbon �xation in photosynthetic organisms (4
candidate genes), carbon metabolism (6 candidate genes), mRNA surveillance pathway (4 candidate
genes), RNA transport (4 candidate genes), and biosynthesis of secondary metabolites (18 candidate
genes).
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Table 1
Identi�cation of 70 candidate genes located in the nine core MQTL intervals

MQTL Gene ID Gene
Position

Description Orthology

MQTL9 TraesCS1D02G004900 2218794–
2230403

Paired amphipathic helix
protein Sin3

NA

  TraesCS1D02G005200 2468742–
2472416

Glycosyltransferase-like
KOBITO 1

Os01g13200

  TraesCS1D02G007800 3961444–
3964988

Ankyrin repeat family
protein

Os01g01960

  TraesCS1D02G007900 3968895–
3969443

MICOS complex subunit
Mic25

Os05g01300

MQTL15 TraesCS2A02G083000 38218064–
38220520

Elongation factor 1-alpha Os03g08010

  TraesCS2A02G083300 38304986–
38306906

Elongation factor 1-alpha Os03g08010

  TraesCS2A02G086400 39704402–
39709256

AAA + ATPase domain OsRpt3;
OSRPT2B

  TraesCS2A02G087000 40541031–
40547241

Adenosine/AMP
deaminase domain

Os07g49270

  TraesCS2A02G088300 41652179–
41655428

NmrA-like domain Os12g16410

  TraesCS2A02G089300 42470945–
42476145

Heat shock transcription
factor

OsHsfA2b;
OsHSF5

  TraesCS2A02G090000 43133651–
43137076

AAA + ATPase domain OSRPT2B

  TraesCS2A02G092200 45085317–
45085622

Wound-induced protein
WI12

Os03g18770

  TraesCS2A02G075800 33696041–
33701785

DNA binding Os04g19684

  TraesCS2A02G076700LC 38490262–
38490831

Pol polyprotein Os04g20220

  TraesCS2A02G076900 34517930–
34520662

ER membrane protein
complex subunit 8/9-like
protein

Os04g20230

  TraesCS2A02G079500 36047811–
36053052

Oxoglutarate
dehydrogenase (succinyl-
transferring) activity

Os07g49520
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MQTL Gene ID Gene
Position

Description Orthology

  TraesCS2A02G080000 36138685–
36141909

LPS-induced tumor
necrosis factor alpha
factor

Os02g31100

  TraesCS2A02G082100 37084649–
37088462

Peroxidase activity OsAPX1;
OsAPXa

  TraesCS2A02G075900 33712839–
33714236

Leucine-rich repeat 2 OsFbox194

MQTL19 TraesCS3D02G024500 8285414–
8287617

Glyceraldehyde-3-
phosphate dehydrogenase

Os01g02930

  TraesCS3D02G024700 8336528–
8341354

Cytochrome P450 OsCYP709C5

  TraesCS3D02G026400 8971472–
8975036

Fructose-bisphosphate
aldolase class-I

Os11g07020

  TraesCS3D02G031900 11747403–
11752024

WD40 repeat OsAIP1

  TraesCS3D02G032000 11755792–
11762962

Ubiquitin-conjugating
enzyme E2

OsUBC34

MQTL22 TraesCS4A02G472900LC 605125402–
605129635

Putative S-adenosyl-L-
methionine-dependent
methyltransferase

Os01g62800

  TraesCS4A02G473000LC 605128287–
605128517

S-adenosyl-L-methionine-
dependent
methyltransferases
superfamily protein

NA

  TraesCS4A02G315500 605656378–
605659792

Chaperonin Cpn60 Os12g17910

  TraesCS4A02G310700 603377077–
603380232

Zinc �nger C2H2-type Os09g39660

MQTL26 TraesCS4A02G442900 710742945–
710744427

Peroxisomal biogenesis
factor 11

Os06g03660

  TraesCS4A02G445300 713352055–
713352438

Ozone-responsive stress-
related protein

Os06g02420

MQTL40 TraesCS6B02G772700LC 701661949–
701662457

ATP-dependent 6-
phosphofructokinase 1

NA

  TraesCS6B02G432600 701871210–
701874404

Thiolase OsI57

  TraesCS6B02G432700 701886743–
701890627

Ribosomal protein L13 Os08g06474
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MQTL Gene ID Gene
Position

Description Orthology

  TraesCS6B02G432900 701977549–
701982043

Aldo/keto reductase family Os02g57240

  TraesCS6B02G433800 702562152–
702565516

DHHC
palmitoyltransferase

OsPAT15

  TraesCS6B02G434700 703153107–
703155841

OTU-like cysteine protease Os02g57410

  TraesCS6B02G436400 704038894–
704042474

Serine-threonine protein
phosphatase N-terminal
domain

OsPP41

  TraesCS6B02G439300 704879300–
704881854

PBS lyase HEAT-like repeat Os12g43100

  TraesCS6B02G439400 704882414–
704885861

Target SNARE coiled-coil
homology domain

Os02g57510

  TraesCS6B02G783000LC 704944589–
704949129

ATP binding NA

  TraesCS6B02G439800 705158924–
705162882

RING/U-box superfamily
protein

Os11g18947

  TraesCS6B02G440000 705282693–
705285851

B3 DNA binding domain Os03g42230

  TraesCS6B02G440200 705377945–
705384852

Metabolic process Os06g19960

  TraesCS6B02G440500 705497185–
705500263

Fibrillarin Os02g57590

MQTL47 TraesCS7B02G002900 1203205–
1208405

COP1-interacting-like
protein

DEP2; EP2;
SRS1

  TraesCS7B02G005700 3142605–
3150879

THIF-type NAD/FAD
binding fold

Os02g30310

  TraesCS7B02G005800LC 2014362–
2018322

NAC domain Os01g18070

  TraesCS7B02G003000 1254814–
1262214

COP1-interacting-like
protein

DEP2; EP2;
SRS1

  TraesCS7B02G003200 1277537–
1282562

PB1 domain Os07g25680

MQTL49 TraesCS7B02G366700 630552409–
630552871

Ubiquitin domain Os06g46770

  TraesCS7B02G619400LC 632490144–
632492343

GTPase activity NA
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MQTL Gene ID Gene
Position

Description Orthology

  TraesCS7B02G377800 642274924–
642277145

Ribosomal protein S8 Os02g15610

  TraesCS7B02G636000LC 644027912–
644028247

Myosin-like protein XIG NA

  TraesCS7B02G623100LC 634562940–
634564127

F-box protein At5g41490 NA

  TraesCS7B02G370800 636625334–
636627607

Ribosomal protein S13 Os03g58050

  TraesCS7B02G371900 637769054–
637774747

RNA recognition motif
domain

Os06g45910

  TraesCS7B02G372500 638129949–
638134271

SANT/Myb domain Os06g01670

  TraesCS7B02G372700 638509625–
638515329

Conserved oligomeric
Golgi complex subunit 7

Os06g45830

  TraesCS7B02G373000 638882526–
638885183

Peptidase M41 OsFtsH2

MQTL55 TraesCS7D02G148900 96756606–
96777587

Chromatin-remodeling
factor CHD3

CHR702

  TraesCS7D02G149000 97615140–
97617186

SWEET sugar transporter OsSWEET15

  TraesCS7D02G149300 98292586–
98293620

Rtf2 RING-�nger Os06g08490

  TraesCS7D02G149500 98408253–
98411417

DNA-directed RNA
polymerase subunit beta

DPL2

  TraesCS7D02G149800 98637892–
98644179

Ubiquitin carboxyl-terminal
hydrolase

Os06g08530

  TraesCS7D02G150300 99617003–
99618245

Thioredoxin-like fold Os07g09310

  TraesCS7D02G150900 100280693–
100281019

Proteolipid membrane
potential modulator

OsRCI2-8

  TraesCS7D02G152400 101084476–
101087850

Glutathione peroxidase OsGPX4

  TraesCS7D02G152800 101395597–
101400935

Serine-type
carboxypeptidase activity

OsSCP1

  TraesCS7D02G153200 101580722–
101585530

ATP-dependent DNA
helicase

Os06g08740
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MQTL Gene ID Gene
Position

Description Orthology

  TraesCS7D02G154500 102537242–
102539785

RNA-binding
(RRM/RBD/RNP motifs)
family protein

Os10g39510

Discussions
Grain yield is in�uenced by the combination of kernel weight and number per spike [14, 47]. TKW is not
only one of the key components of grain yield, but also is commonly used as a standard factor for
determining �our quality and marketing in wheat. Kernel size and shape, including KL, KW, and KT, are
strongly and positively correlated with TKW [48–50]. A bigger kernel has a positive effect on wheat kernel
weight and yield, improving �our quality and commercial value [38, 51]. Kernel size-related traits in�uence
wheat yield by regulating TKW, and both are associated with high heritability [16, 52–57].

We observed signi�cant and positive correlations between KL, KW, and KDR (r = 0.45 and r = 0.71,
respectively), KW and KT (r = 0.41, P < 0.01). Meanwhile, a negative and signi�cant correlation was also
observed between KT and KDR (r = -0.42, P < 0.01) (Fig. 2), which is consistent with previous studies [13,
48, 58–59]. It is known that KL reached its maximum value 15 days after anthesis, while KW and KT
reached their maximum value two weeks later [60, 61]. KL showed the highest heritability (0.89) in this
study, followed by KDR (0.70), KW (0.67), and KT (0.61) (Table S2), which is consistent with previous
studies [7, 60–62]. Therefore, increasing KL and KW through genetic improvement can have a positive
effect on grain weight and yield of wheat.

Traits related to kernel size are known to in�uence TKW strongly. Many QTLs and genes for kernel size
have been identi�ed on 21 chromosomes in wheat [16, 59, 62–65, 67–68]. In this study, 32 QTLs for KL,
KW, KDR, and KT were found on 17 chromosomes, suggesting that genetic factors play an important role
in kernel size-related traits (Table S3, Fig. 3). QKW.acs-1A, a stable QTL identi�ed in E4, E6, and E7, is in
the Xcfa2219-Xgwm99 interval on chromosome 1A and was detected only under DS environments. Li et
al. (2012) identi�ed a major QTL with a PVE of 40.79% that shares the same �anking marker Xgwm99
with QKW.acs-1A [69]. In addition, the stable QTLs QKL.acs-1A and QKW.acs-1A share the same �anking
marker Xwmc99 with the QTLs QGw.ccsu-1A.3 reported by Mir et al. (2012) [70]. Xgwm99 can be used for
marker-assisted selection in wheat breeding programs. QKL.acs-2D, located in the interval of Xgwm157-
Xwmc41, shared a common �anking marker (Xwmc41) with QTKW.ncl-2D.2 [52]. QKL.acs-2D, located in
the Xgwm157-Xwmc41 interval on chromosome 2D, strongly overlapped with the different environmental
QTLs for KDR (QKDR.acs-2D) and KW (QKW.acs-2D). In addition, QKL.acs-6B was identi�ed in E1, E2, E3,
E6, and E7, with a PVE ranging from 4.07–8.26%, suggesting that kernel size-related traits are closely
linked and represent one of the crucial elements in the regulation of kernel weight.

As a result of QTL mapping studies in different environments, numerous QTLs for kernel size-related
traits have been identi�ed. MQTL analysis is a useful tool to effectively integrate QTLs reported in
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different studies and to remove the barriers such as genetic background, population type, and
environmental variations in QTL mapping [27, 71]. We conducted MQTL analysis using a total of 1071
QTLs controlling kernel size-related traits detected in 34 independent previous studies and 32 QTLs
identi�ed in the present study (Table S4, Fig. 4). These original QTLs were unevenly distributed across 21
chromosomes, and most of them were located on sub-genomes A and B, consistent with previous studies
[35, 37]. In this study, 346 original QTLs were re�ned into 58 MQTLs and distributed on chromosomes 1B,
1D, 2A, 3D, 4A, 5B, 5D, 6B, 7A, 7B, and 7D (Table S5, Fig. 5). Each chromosome harbor 2 MQTLs (3D) to 7
MQTLs (1B, 4A, 7B), and the projected original QTL numbers on the chromosomes varied from 20 (5D) to
80 (5B). The distribution of MQTLs and original QTLs on different chromosomes is inconsistent due to
the different number of original QTLs contained in MQTLs [37]. In the present study, the average 95%
con�dence interval of MQTL (4.46 cM) was 3.26-fold smaller than that of the original QTLs (14.54 cM),
and the average PVE of MQTLs (17.12%) was 1.72-fold larger than that of the original QTLs (9.95%)
(Fig. 6c, 6d), while the average con�dence interval of identi�ed MQTLs for yield-related traits was 2.9-fold
lower than that of the original QTLs [37]. Most of the MQTLs in the present study controlled more than
one trait, likely indicating either tight linkage of genes or the presence of pleiotropic genes for controlling
kernel size-related traits [37, 41, 46, 71].

Candidate genes related to important agronomic traits have been identi�ed by MQTL analysis [37–38, 41,
72–73]. Nadolska-Orczyk et al (2017) classi�ed genes related to controlling kernel yield into �ve
categories, including transcription factors, growth regulator signalling, carbohydrate metabolism, cell
division and proliferation, and �owering regulators [74]. Understanding the genetic and physiological
pathways involving in grain development is of great help for investigating of traits related to kernel size.
In our study, we detected 1864 candidate genes in 12 MQTL intervals with a physical interval less than 20
Mb using the wheat genome reference sequence of Chinese Spring. Among 1864 candidate genes, 70
candidate genes were expressed mainly in the spike and grain at different developmental stages (Table 1,
Fig. 9), consistent with previously reported by Yang et al. (2021) [37]. In recent years, analysis of
homology relationships between wheat and rice facilitated cloning of several yield-related genes such as
TaFlo-A1 [75], TaCKX6-D1 [76], and TaTGW6-A1 [77]. Here, 17 out of 70 candidate genes homologous to
rice genes were found within MQTL intervals, such as TraesCS3D02G024700, which is homologous to
OsCYP709C5 [78], a gene involved in the regulation of cytochrome P450, discovered in the MQTL19
interval. Guo et al. (2021) also showed that constitutive overexpression of TaCYP78A5 signi�cantly
increased seed size and weight [79]. The ubiquitin-proteasome pathway has been associated with seed
size development in both wheat and rice, and the corresponding genes e.g., TaGW2-6A/6B [80, 81] and
OsUBC [82] have been cloned in wheat and rice, respectively. According to previous study, carbohydrate
metabolism is an important factor affecting yield and yield-related traits [74]. In this study,
TraesCS7D02G149000 (MQTL55), its homologous gene OsSWEET15 [83] and TaSWEETs [84, 85] were
identi�ed as important genes involving in sucrose transport pathway in rice. In addition, �oral regulators
are also an important regulator in the regulation of yield and yield-related traits [74]. The
TraesCS7D02G149500 (MQTL55) was identi�ed as an orthologous gene of DPL1/2, involving in pollen
hybrid incompatibility in rice [86]. In our study, the orthologous genes of DEP2, EP2, and SRS1 were found
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in MQTL47 (TraesCS7B02G002900, TraesCS7B02G003000), which was shown to be related to kernel size
and yield [87, 88]. In addition, the remaining 53 candidate genes were involved in various signalling
pathways, such as zinc �nger protein [89], transcription factors [17], and glycosyltransferase [90], are also
involved in the regulation of yield and yield-related traits.

Conclusions
In this study, we found that kernel size-related traits in wheat predominantly regulated by genetic factors
with a moderate and high heritability. Most of stable QTLs were detected under both well-watered and
drought-stressed conditions. Potential candidate genes expressed in spike and grain were identi�ed
through meta-QTL and in-silico expression analysis. The markers closely linked to stable QTL had great
potential in marker-assisted breeding program and the identi�cation of potential candidate genes
advanced the understanding of the genetic basis regulating the processes of kernel size in wheat.

Methods

Plant materials and �eld trials
A set of wheat hexaploid RILs population was used in this study. The RILs population consists of 120
lines derived from the cross between two winter wheat cultivars, Longjian19 and Q9086 [91]. The male
parent, Longjian19, released by the Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, is an elite
drought-tolerant variety widely grown in rainfed areas (300–500 mm annual rainfall) in northwest China.
The female parent Q9086, released by Northwest Agriculture&Forestry University, Yangling, Shanxi, is a
high-yielding variety developed by Northwest Agriculture and Forestry University, China. It is suitable for
cultivation under conditions with adequate water and high fertility, but is sensitive to water and fertilizer
conditions, especially at the grain-�lling stage. The two parents differ signi�cantly from several
physiological and agronomical traits, especially under rainfed environments [91–93].

Field trials were conducted at Yuzhong farm station, Gansu, China (35°48'N, 104°18'E, altitude 1860 m)
during the growing seasons in 2015–2016 under drought-stressed (DS, designated E1) and well-watered
conditions (WW, designated E2), while in 2016–2017 only under drought-stressed conditions (designated
E3). Field trials were also conducted at Tongwei farm station, Gansu, China (35°11′N, 105°19′E, altitude
1750 m) during the 2017–2018, 2018–2019, and 2019–2020 growing seasons. Planting in 2017–2018
was conducted under drought-stressed (designated E4) and well-watered conditions (designated E5),
while the 2018–2019 and 2019–2020 cropping seasons were conducted under drought-stressed
conditions only (designated E6 and E7, respectively). The two cropping sites are characterized by a
typical dry inland environmental condition in Northwest China, where the annual average temperature is
about 7.0°C, the annual rainfall is less than 400 mm with approximately 60% falling from July to
September, but the annual evapotranspiration capacity is more than 1500 mm. The DS treatments were
equivalent to rainfed condition in each growing season, whereas the WW treatments were irrigated with
the water supply of 75 mm at the spike emergence (Zadoks 55) and grain �lling (Zadoks 71) stages,
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respectively. Here, the decimal codes for growth stages of wheat described by Zadoks et al (1974) [94]. In
this case, the rainfall of the DS plots in each �eld environment was 164.3 mm (E1) to 296.5 mm (E7) (Fig.
S1). All progenies and parents were sown in late September and harvested in early July of the following
year. A randomized complete block design (RCBD) was conducted with three replications for each line
and parent. Each plot consisted of six 1 m rows, 0.2 m spacing, with a sowing rate of 60 seeds per row.
Field management followed local wheat cultivation practices.

After harvesting, two hundred seeds for each line were used to measure kernel length (KL), kernel width
(KW), and kernel diameter ratio (KDR) with the SC-G wheat grain appearance quality image analysis
system (Hangzhou WSeen Detection Technology Co., Ltd, Hangzhou, China) with three biological
replicates, while kernel thickness (KT) was measured with vernier caliper. All data were recorded in
millimetres (mm). The average values of the traits were used for QTL analysis.

Statistical analysis
Statistical analysis and analysis of variance (ANOVA) were performed using SPSS 22.0 (IBM Corporation,
Armonk, NY, United States). Following the method described by Toker et al. (2004) [95], the broad-sense
heritability (h2) was estimated across environments using the formula:

h2 = σ2
g/ σ2

g + σ2
ge /r + σ2

e /re

where σ2
g, σ2

ge and σ2
e estimate genotype, genotype×environment interaction and residual error

variances, respectively, and e and r are the numbers of environments and replicates per environment,
respectively. The correlation among KL, KW, KDR, and KT in the RILs population was also assessed.

Construction of linkage map and QTL analysis
For QTL mapping, a genetic map consisted of 524 SSR markers, described in a previous study was used
[96]. These markers were distributed among 21 linkage groups and covered a total genetic distance of
2266.72 cM with an average distance of 4.33 cM between adjacent markers.

The inclusive composite interval mapping (ICIM) method was performed using the QTL software
IciMapping V4.1 to determine the positions and effects of QTLs [97]. QTL with LOD value ≥ 2.5, as
determined by 1000 permutation tests at P ≤ 0.05, were declared for the presence of signi�cant QTL. QTL
were named based on the International Rules for Genetic Nomenclature
(http://wheat.pw.usda.gov/ggpages/wgc/98/intro.htm). QTLs detected in at least three of seven
environments were considered as stable QTL. QTLs for a trait identi�ed with common �anking markers or
overlapping con�dence intervals were treated as one QTL, with the con�dence interval reassigned by
overlapping genetic positions. The phenotypic variance explained (PVE) by QTLs was estimated
according to previous studied [16, 98–99].

Initial QTL collections used for MQTL analysis

( )
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A total of 1071 QTLs for KL, KW, KDR, and KT traits derived from 36 bi-parental populations were
retrieved from 34 published studies from 2007 to 2020 (Table S4). The size of the mapping populations
varied from 99 to 547 lines of different types, including 3 double haploid (DH), 7 F2, and 26 RILs
populations evaluated in different years and locations. The population information, including target traits,
population parents, population types, and number of markers used in genetic map was listed in Table S4.

QTLs localization on reference map
A high-density map containing 7352 markers, including SSR, DArT, SNP, and other types of markers, was
used as a reference map in this study [73]. The total length of the reference map is 4994.0 cM with an
average distance of 0.68 cM. The original QTL data and associated individual genetic maps from
previous studies, as well as the reference map, were used as input �les to create a consensus map (Fig.
S2) and perform MQTL analysis with BioMercator V4.2.3 [100].

The position, chromosome groups, proportion of phenotypic variance explained (PVE or R2), and
logarithm of odds ratio (LOD score) were recorded for each of the QTL in the 36 studies. To calculate 95%
con�dence intervals (CI) for QTLs, the formula CI = 530/(N×R2) for BC and F2 lines, CI = 287/(N×R2) for

DH lines, and CI = 163/(N×R2) for RILs lines was applied, where N is the population size and R2 is the
proportion of phenotypic variance explained of the QTL [101]. For QTLs without well-de�ned LOD scores
and R2, these criteria were arbitrarily set at 3 and 10%, respectively. All collected QTLs with appropriate
information were projected onto the reference map using BioMercator V4.2.3 [100]. The approach
proposed by Go�net and Gerber [27] was used when the number of QTLs per chromosome was 10 or
less, while the two-step algorithm of Veyrieras [102] was used when the number of QTLs per chromosome
was higher than 10. The Akaike Information Criterion (AIC) statistics were used to determine the best
model for de�ning the number of MQTLs or "true" QTLs that best represent the original QTLs. The
algorithms and statistical procedures implemented in this software are well described in previous studies
[100, 102–103].

Identi�cation of candidate genes
To identify candidate genes, initially the marker or its related primer sequences on both sides of the
MQTL con�dence intervals were manually searched using URGI Wheat (https://wheat-
urgi.versailles.inra.fr), GrainGenes (https://wheat.pw.usda.gov/GG3/), DArT
(https://www.diversityarrays.com), and the Illumina company (https://www.illumina.com) databases. The
obtained sequences were then aligned to IWGSC RefSeq v1.1 (https://wheat-urgi.versailles.inra.fr/) to �nd
the physical location of each marker. Putative candidate genes for this MQTL with a physical interval of
less than 20 Mb were identi�ed and their associated functions were compared to choose the best
possible candidates. The candidate genes were also investigated using Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using Omicshare online tools
(https://www.omicshare.com/).
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In-silico expression analysis of candidate genes
The transcriptomic data of several wheat tissues deposited in the Expression Visualization and
Integration Platform (expVIP, https://www.wheat-expression.com/) were downloaded to study the in-silico
tissue expression of candidate genes [104]. This included 18 tissues throughout the wheat growth period
[105]. The expression levels of candidate genes were assessed by transcripts per million (TPM) and
visualized using the heatmap of TBtools software (https://github.com/CJChen/TBtools/releases).

Abbreviations
AIC, Akaike Information Criterion; ANOVA, analysis of variance; BC, back cross; CG, candidate genes; CI,
con�dence interval; cM, centimorgan; DH, double haploid; DS, drought-stressed; GO, Gene Ontology;
GWAS, genome-wide association study; h2, broad-sense heritability; ICIM, inclusive composite interval
mapping; KDR, kernel diameter ratio; KEGG, Kyoto Encyclopedia of Genes and Genomes; KL, kernel length;
KNS, number of kernel per spike; KT, kernel thickness; KW, kernel width; LOD, logarithm of odds ratio;
MQTL, Meta-QTL; PVE, phenotypic variation explained; QTL, quantitative trait loci; RCBD, randomized
complete block design; RIL, recombinant inbred lines; RTN, reproductive pollen number; SNP, single
nucleotide polymorphic; SSR, simple sequence repeat; TKW, thousand kernel weight; TPM, transcripts per
million; WW, well-watered.
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Figure 1

The frequency distribution of kernel size-related traits.
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Figure 2

Correlation coe�cient among four kernel size-related traits in the Q9086/Longjian19 RILs population. *
and ** indicate signi�cant level at P < 0.05 and P < 0.01, respectively.
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Figure 3

Chromosomal locations of QTLs detected for kernel size-related traits. The vertical bars with different
colors represent interval of QTLs for kernel length (black), kernel width (red), kernel diameter ratio (green),
and kernel thickness (blue).
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Figure 4

Number of QTLs collected (a) by trait category, KL (kernel length), KW (kernel width), KT (kernel
thickness), and KDR (kernel diameter ratio) and (b) in 21 wheat chromosomes (c) frequencies of QTLs
with different PVE (%) and CI values and (d) proportion of QTL numbers in wheat sub-genomes A, B, and
D.
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Figure 5

The chromosome distribution of the 58 MQTL for kernel size-related traits on 11 chromosomes. The
circles from inside to outside represent high-density consensus genetic map, number of initial QTL which
mapped on MQTL interval, values of con�dence interval, values of phenotypic variation explained, and
physical map, respectively.
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Figure 6

Number of MQTLs on different wheat chromosomes (a); comparison of the original QTLs and the
projected QTLs located in the MQTL intervals on different chromosomes (b); comparison between the
mean CI of the original QTLs and the MQTLs (c); comparison between the mean PVE of the MQTLs and
the original QTLs (d). The numbers above the bars show the rate of change for the mean CI and PVE
between the MQTLs and the original QTLs in (c) and (d), respectively.
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Figure 7

Gene ontology (GO) terms for 1863 candidate genes underlying MQTLs interval for kernel size-related
traits.
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Figure 8

KEGG pathway enrichment of 1863 candidate genes.
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Figure 9

Heatmap showing differential expression level of 70 candidate genes underlying MQTL intervals.
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