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Abstract 

In this paper, the stability analysis of periodic solutions of Bonhoeffer Van der Pol system with 

applied impulse was investigated using Lyapunov direct method. Through the use of appropriate 

values of the control parameters, three equilibria points and periodic solutions of the system were 

obtained. A Lyapunov candidates which depended on the parameters were constructed. Hence, we 

concluded that the equilibria points have different regions of stability and instability of the system 

in which the two regions were found to be stable. Furthermore, Mathcad software was used to 

analyze the behavior of the system, thereby improving known results in literature.  
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Introduction 

Consider the system 

             
𝑥̇ = 𝑐(𝑥 + 𝑌 − 𝑥33 + 𝑧) 𝑦̇ = 1𝑐 (−𝑥 − 𝑏𝑌 + 𝐴) }                                                                  (1) 

where 𝑥, 𝑌 are the dependent variables, 𝑥̇ and 𝑌̇ denote the derivatives with respect to time, and 𝐴, 𝑏, 𝑐, and 𝑧 are constant parameters where 𝑐 > 0. Here 𝐴, 𝑏, 𝑐 are the control parameters while 𝑧 represent an applied impulse. Since 𝐴, 𝑏, and 𝑐 are constant, it can be removed by the following 

transformations 

         𝑦 = 𝑌 + 𝑧,   𝑎 = 𝐴 + 𝑏𝑧      (2) 

Equation (1) becomes 

          
𝑥̇ = 𝑐(𝑥 + 𝑦 − 𝑥33 ) 𝑦̇ = 1𝑐 (−𝑥 − 𝑏𝑦 + 𝑎)}             (3) 

with periodic initial conditions 

         𝑥(0) = 𝑥(2𝜋)   𝑥̇(0) = 𝑥̇(2𝜋) 
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Bonhoeffer Van der Pol equation is a nonlinear system of differential equations with two or more 

control parameters. The equation was introduced by [1] as a simplified version (two-dimensional) 

representation of the four-dimensional Hodgen-Huxley system. This system describes how nerve 

impulses travel down the axon of a nerve cell. The Bonhoeffer Van der Pol (BVP) equation is a 

physiological model which describes the electrical activity of certain nerve cells. However, from 

the mathematical perspective, the BVP system is one of a class of periodically forced nonlinear 

relaxation oscillators. The equation is used in the modeling of cardiac pulses from 

electrocardiographic signals, normal cardiac pulses which account for the adaptive response for 

every single heartbeat, manipulation of cell division in a state of inactivity or dormancy and 

formation of a multicellular fruiting body. In [2], BVP equation is used to simulate neuron cells 

and control the dynamics of the neuron cells from chaotic to periodic states. Under proper 

parameters, BVP equation describes the action potentials and regulates heart rate pulse. It is highly 

preferred over others because of its possibility to facilitate the classification of normal and 

pathological heart beats for diagnosing purposes.  

Furthermore, its applications are seen in the modeling of a cell cycle which describes the lipid 

peroxidation in an open membrane and the corresponding production of free radicals. Due to the 

wide range of applications of BVP equation in different fields of endeavor, many researchers have 

worked on the Bonhoeffer Van der Pol equation using different methods which yielded amazing 

results. See [3] [4] [5] [6] and [7]  

Stability is a qualitative property of a differential equation that is important in linear and nonlinear 

analysis. It describes the behavior of the system when the system undergoes small changes. 

Analytically, the stability is determined by the interval placed on the total derivative of the system 

formed by the given differential equation. For the linear systems with one parameter, stability is 

assessed only at one equilibrium point. However, for a nonlinear systems with more than two 

parameters, the search for the stability analysis of the equilibrium point becomes an issue. 

Emphasis on stability has been discussed by many authors. For instance, see [8], [9], [10], [11] 

[12], [13] and there references therein.  Researchers who have worked on the stability of nonlinear 

systems are [14], [15], [16] ,[17] and [18].   

Motivated by the above literature, the objective of this paper is to investigate the stability analysis 

of periodic solutions of Bonhoeffer van der Pol equation. The paper further investigated the effect 

of the parameters on the system and analyzed the behavior of the system using Mathcad software. 

2. Preliminaries 

Definition 2.1 Consider a real valued function 𝑉: ℝ𝑛 → ℝ which is continuously differentiable 

then the continuous function 𝑉(𝑥) is said to be positive definite if  𝑉(𝑥) > 0 for all 𝑥 ≠ 0 and 𝑉(0) = 0. 

Definition 2.2 The continuous function 𝑉(𝑥) with respect to definition 2.1 is said to be negative 

definite if  𝑉(𝑥) < 0 for all 𝑥 ≠ 0 and 𝑉(0) = 0 

Theorem 2.3 (Lyapunov Stability) Let 𝑥 = 0 be an equilibrium of  𝑥̇ = f(x) and 𝐷 ⊂  ℝ𝑛 be a 

domain containing 𝑥 = 0. Let 𝑉: 𝐷 → ℝ be a continuously differentiable function such that (i) 𝑉(0) = 0  (ii) 𝑉(𝑥) > 0 in  𝐷 − {0}  (iii) 𝑉̇(𝑥) ≤ 0 in  𝐷 − {0} Thus 𝑥 = 0 is stable in the sense 

of Lyapunov. 



Theorem 2.4 (Asymptotic Stability) Let 𝑉: 𝐷 → ℝ be a continuously differentiable function such 

that (i) 𝑉(0) = 0 (ii) 𝑉(𝑥) > 0 in  𝐷 − {0} (iii) 𝑉̇(𝑥) < 0 in  𝐷 − {0} Thus 𝑥 = 0 is asymptotically 

stable in the sense of Lyapunov. 

Theorem 2.5 (Global Asymptotic Stability) Let 𝑉: 𝐷 → ℝ be a continuously differentiable 

function such that (i)  𝑉(0) = 0 (ii) 𝑉(𝑥) > 0 in  𝐷 − {0} (iii) 𝑉(𝑥) is ‘radially’ bounded (iv) 𝑉̇(𝑥) < 0 in 𝐷 − {0}. Thus 𝑥 = 0  is globally asymptotically stable in the sense of Lyapunov. 

Definition 2.6 (Periodic Solution) It is the solution 𝑦 = 𝑓(𝑥) of a differential equation with the 

property that there exist a positive real number 𝑘 ≠ 0 such that 𝑓(𝑥 + 𝑘) = 𝑓(𝑥). 𝑘 is called the 

period of the function. 

Definition 2.7 (Stability) An equilibrium solution 𝑥𝑒 of an autonomous system is said to be stable 

if for every 𝜀 > 0 there exist 𝛿 > 0 such that every solution 𝑥(𝑡) having an initial conditions within 𝛿 ie ‖𝑥(𝑡0) − 𝑥𝑒‖ < 𝛿 of the equilibrium remain within 𝜀 is ‖𝑥(𝑡) − 𝑥𝑒‖ < 𝜀 for all 𝑡 ≥ 𝑡0. 
3. Results 

3.1 Stability of the Equilibrium Point 

Consider the system defined by equation (3)    

             
𝑥̇ = 𝑐(𝑥 + 𝑦 − 𝑥33 ) 𝑦̇ = 1𝑐 (−𝑥 − 𝑏𝑦 + 𝑎)}       

where 𝑎, 𝑏, 𝑐 are constant parameters and 𝑐 > 0. 
Equation (3) can be combined to give a Lienard equation of the form: 

             𝑥̈ + 𝑓(𝑥)𝑥̇ + 𝑔(𝑥) = 0       (4)   

where  𝑓(𝑥) = 𝑐(𝑥2 − 1) + 𝑏𝑐  and  𝑔(𝑥) = 𝑥(1 − 𝑏) + 13 𝑏𝑥3 − 𝑎. By setting 𝑐 = 0, 𝑏 = 0  and 𝑎 = 0, equation (4) reduces to 

           𝑥̈ + 𝑥 = 0         (5) 

Equation (5) is oscillatory in ℝ. Hence, the solution obtained in equation (5) is periodic.                                            

The equilibrium points are obtained by setting the right hand side of equation (3) to zero which 

gives;     

             𝑦 = 13 𝑥3 − 𝑥   and    𝑦 = 𝑎𝑏 − 𝑥𝑏                                                                     (6)                                                                            

Eliminating y from equation (6) we obtain the cubic equation 

         𝑥3 − 3 (1 − 1𝑏) 𝑥 − 3𝑎𝑏 = 0                                                                               (7) 

To solve the cubic equation in (7), we let 𝑎 = 0 and 𝑏 = 3. Equation (7) becomes 



          𝑥 (𝑥2 − 3 (1 − 1𝑏)) = 0       (8)  

The roots of equation (8) are  𝑥1 = 0 , 𝑥2 = √2   and  𝑥3 = −√2 

Substituting 𝑥1, 𝑥2, 𝑥3 into equation (6) we have 𝑦1 = 0 , 𝑦2 = −√23    𝑎𝑛𝑑 𝑦3 = √23 

Therefore, the equilibrium points are (0,0), (√2, −√23)  𝑎𝑛𝑑 (−√2, √23)  
Linearized form of equation (4) is given by:  

 
𝑥̇ = 𝑦𝑦̇ = −𝑓(𝑥)𝑦 − 𝑔(𝑥)}        (9)   

where 𝑓and 𝑔 are polynomials of degree two and three respectively. The Lyapunov function 

is calculated as the total energy of the system which is given by 

        𝑉(𝑥, 𝑦) = 𝐾𝐸 + 𝑃𝐸        (10) 

where 𝐾𝐸 is the kinetic energy of the system, and 𝑃𝐸 is the potential energy of the system. 𝑉(𝑥, 𝑦) 

is a function defined by 𝑉(𝑥, 𝑦): ℝ2 → ℝ. Equation (10) can further be written as   

      𝑉(𝑥, 𝑦) = 12 𝑦2 + 𝐺(𝑥)        (11)  

                      

where  𝐺(𝑥) = ∫ 𝑔(𝑠)𝑑𝑠𝑥0 = ∫ (𝑠(1 − 𝑏) + 13𝑥0 𝑏𝑠3 − 𝑎)𝑑𝑠 = 𝑏 𝑥412 − 𝑏 𝑥22 + 𝑥22 −  𝑎𝑥 

Therefore, 𝑉(𝑥, 𝑦) = 12 𝑦2 +  𝑏 𝑥412 − 𝑏 𝑥22 + 𝑥22 − 𝑎𝑥                       (12) 

Equation (12) is the Lyapunov function for the system. 

Clearly, 𝑉(𝑥, 𝑦) is continuous at (𝑥0, 𝑦0) since lim(𝑥,𝑦)→(𝑥0,𝑦0) 𝑉(𝑥, 𝑦) = 𝑉(𝑥0, 𝑦0). (𝑥0, 𝑦0) is an 

element of the domain of 𝑉(𝑥, 𝑦). 

For 𝑉(0,0) we have 

 𝑉(0,0) = 12 02 +  𝑏 0412 − 𝑏 022 + 022 − 𝑎(0) = 0      (13) 

Evaluating for other values of the equilibrium point we have           

 𝑉 (√2, −√23) = 12 (−√23)2 +  𝑏 √2412 − 𝑏 √222 + √222 − 𝑎(√2) = 89 > 0    (14)              

 𝑉 (−√2, √23) = 12 (√23)2 +  𝑏 (−√2)412 − 𝑏 (−√2)22 + (−√2)22 − 𝑎(−√2) = 89 > 0      (15) 



This shows that 𝑉(𝑥, 𝑦) > 0 for the equilibrium points except at the origin. Hence 𝑉(𝑥, 𝑦) = 12 𝑦2 +  𝑏 (𝑥412 − 𝑥22 ) + 𝑥22 − 𝑎𝑥 > 0              (16) 

Therefore, 𝑉(𝑥, 𝑦) is positive definite.  

Since 𝑉(𝑥, 𝑦) > 0 ∀ 𝑥, 𝑦 ≠ 0, the time derivative of the energy of the system is given by 𝑉̇(𝑥, 𝑦) = 𝜕𝑣𝜕𝑥  𝑥̇ + 𝜕𝑣𝜕𝑦 𝑦̇ 

             = (13 𝑏𝑥3 − 𝑏𝑥 + 𝑥 − 𝑎)𝑥̇ + 𝑦𝑦̇               (17) 

             = (13 𝑏𝑥3 − 𝑏𝑥 + 𝑥 − 𝑎)𝑥̇ + 𝑦(−𝑓(𝑥)𝑦 − 𝑔(𝑥)) 

              = (13 𝑏𝑥3 − 𝑏𝑥 + 𝑥 − 𝑎)𝑦 + 𝑦(−𝑐𝑥2𝑦 + 𝑐𝑦 − 𝑏𝑐 𝑦 − 𝑥 + 𝑏𝑥 − 13 𝑏𝑥3 + 𝑎) 

              = (13 𝑏𝑥3𝑦 − 𝑏𝑥𝑦 + 𝑥𝑦 − 𝑎𝑦) + (−𝑐𝑥2𝑦2 + 𝑐𝑦2 − 𝑏𝑐 𝑦2 − 𝑥𝑦 + 𝑏𝑥𝑦 − 13 𝑏𝑥3𝑦 + 𝑎𝑦) 

              =(−𝑐𝑥2𝑦2 + 𝑐𝑦2 − 𝑏𝑐 𝑦2) 𝑉̇(𝑥, 𝑦) = −𝑦2(𝑐𝑥2 − 𝑐 + 𝑏𝑐)                                                                          (18) 

With the condition placed on 𝑐 in equation (1), 𝑉̇(𝑥, 𝑦) < 0  ∀ 𝑥, 𝑦 ≠ 0. Hence, from theorem (2.4) 

the equilibrium point is asymptotically stable. If 𝑐 < 0, then the equilibrium point is unstable. This 

shows that the occurrence of different regions of stability and instability is based on parameter 

variations. 

3.2 Stability of the Equilibria 

The equilibria of system (3) which is determined by the following system 

     𝑐 (𝑥 + 𝑦 − 𝑥33 ) = 0  

     
1𝑐 (−𝑥 − 𝑏𝑦 + 𝑎) = 0        (19) 

is given by 𝐶1(0,0), 𝐶2(√2, −√23) and 𝐶3(−√2, √23). 

We shall now investigate the stability property of the above equilibria. The variational matrix of 

system (3) is  

                𝐽(𝑥, 𝑦) = [𝑎11 𝑎12𝑎21 𝑎22 ]       (20) 

where 𝑎11 = 𝑐 − 𝑥2 , 𝑎12 = 𝑐 , 𝑎21 = − 1𝑐  and 𝑎22 = − 3𝑐 

 

 



Theorem 3.2 𝐶1(0,0) is unstable. 

Proof. From equation (20), the Jacobian matrix of the system about the equilibrium point 𝐶1(0,0) 

is given by 

                𝐽(0.0) = [ 𝑐 𝑐− 1𝑐 − 3𝑐]       (21) 

The characteristics equation of equation (21) is given as 

           𝜆2 + 𝜆 (−𝑐 + 3𝑐) − 2 = 0       (22) 

The eigenvalues are 𝜆1 = −𝛼+√𝛼2+82   and  𝜆2 = −𝛼−√𝛼2+82   where 𝛼 = 3𝑐 − 𝑐.  Both eigenvalues are 

real and nonzero. Since the eigenvalues have opposite signs, 𝐶1(0,0) is a saddle and thus unstable. 

Theorem 3.2 𝐶2 (√2, −√23) is stable. 

Proof. From equation (20), the Jacobian matrix of the system about the equilibrium point  

 𝐶2 (√2, −√23) is given by 

          𝐽 (√2, −√23) = [𝑐 − 2 𝑐− 1𝑐 − 3𝑐]        (23) 

The characteristics equation of equation (23) is given by  

            𝜆2 + 𝜆 (3𝑐 + 2 − 𝑐) + 6𝑐 − 2 = 0      (24) 

The eigenvalues are 𝜆1 =  
−𝛽+√𝛽2−4𝜇2   and  𝜆2 = −𝛽−√𝛽2−4𝜇2   where 𝛽 = 2 + 3𝑐 − 𝑐 and   

 𝜇 = 6𝑐 − 2. The eigenvalues are real, nonzero and negative. Hence 𝐶2 (√2, −√23) is stable. 

Theorem 3.3 𝐶2 (−√2, √23) is stable.  

Proof. From equation (20), the Jacobian matrix of the system about the equilibrium point  

 𝐶2 (−√2, √23) is given by 

          𝐽 (−√2, √23) = [𝑐 − 2 𝑐− 1𝑐 − 3𝑐]        (25) 

The characteristics equation of equation (25) is given by  

            𝜆2 + 𝜆 (3𝑐 + 2 − 𝑐) + 6𝑐 − 2 = 0      (26) 



The eigenvalues are 𝜆1 =  
−𝛽+√𝛽2−4𝜇2   and  𝜆2 = −𝛽−√𝛽2−4𝜇2   where 𝛽 = 2 + 3𝑐 − 𝑐 and   

 𝜇 = 6𝑐 − 2. The eigenvalues are real, nonzero and negative. Consequently, 𝐶2 (−√2, √23) is stable 

4. NUMERICAL SIMULATION OF THE RESULTS 

We illustrate the numerical simulation of the results using the MATHCAD software; 

Simulation-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

    

Define a function that determines a vector of derivative values at any solution 

point (t,Y): 

 

 Endpoint of solution interval 

Define additional arguments for the ODE solver: 

 Initial value of independent variable 

 Vector of initial function values 

 Number of solution values on [t0, T1] 

Solution matrix: 

 

 Independent variable values 

 First solution function values 

 Second solution function values 

 0.7  0.8  3

D t Y( )

 Y0 Y1
Y0 3
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

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num 1 10
3

S1 Rkadapt Y0 t0 T1 num D 

t S1
0 

x S1
1 

y S1
2 

T1 = 50 



 

 

 

 

 

 

 

 

 

 

 

Table 1.1 Table of values for 𝛼 = 0.7, 𝛽 = 0.8, 𝛾 = 3 

 
 

  

Figure1a. Shows the trajectory profile of the Bonhoeffer Van der Pol equation which starts out 

from the origin and moves away from the equilibrium point on the positive axis. This shows that 

the equilibrium point is unstable and the solution is not periodic. 
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Figure 1b. Shows the trajectory profile of the Bonhoeffer Van der Pol equation which moves 

away from the equilibrium point on the positive axis. This shows the instability and aperiodic 

nature of the system. 

 

 

 

 

 

 

 

 

 

 

 

Figure1c. A phase diagram of BVP equation showing the instability nature of the system.. 
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Simulation-2 

 

 

 

    

 

 

 

Table 1.2 Table of values for 𝛼 = 0.5, 𝛽 = 0.1, 𝛾 = 3 
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0 1 1
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0.15 1.657 0.953

0.2 1.798 0.93

0.25 1.896 0.906

0.3 1.96 0.881

0.35 1.999 0.855

0.4 2.02 0.828

0.45 2.03 0.802

0.5 2.034 0.775

0.55 2.033 0.748

0.6 2.029 0.721

0.65 2.023 0.695

0.7 2.016 0.668

0.75 2.009 ...



    0.5  0.1  3

 



 

 

 

 Figure 2a: A trajectory profile of the BVP equation showing the periodic nature of the solution. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2b: A trajectory profile of the BVP equation which shows that the solution is periodic. 
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Figure 2c: A phase portrait of BVP equation depicting the stability of the solution within a 

bounded region. 

 

Simulation-3 

 

 

      

 

Table 1.3 Table of values for  𝛼 = 0.1, 𝛽 = 0.1, 𝛾 = 1  
 

S1

0 1 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 1

0.05 1.082 0.948

0.1 1.16 0.892

0.15 1.235 0.833

0.2 1.304 0.771

0.25 1.368 0.705

0.3 1.426 0.637

0.35 1.478 0.566
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0.5 1.594 0.343

0.55 1.62 0.266

0.6 1.641 0.189

0.65 1.656 0.11

0.7 1.666 0.032

0.75 1.672 ...
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 Figure 3a: A trajectory profile of the BVP equation showing the periodic nature of the solution 
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Figure 3b: A trajectory profile of the BVP equation showing the periodic nature of the solution. 
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Figure 3c A phase portrait of BVP equation depicting the stability of the solution within a 

bounded region. 
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Simulation-4 

 

 

      

 

Table 1.4 Table of values for 𝛼 = 0.1, 𝛽 = 0.1, 𝛾 = 0.4 

 
 

 

Figure 4a A trajectory profile of the BVP equation depicting the periodic nature of the solution. 
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Figure 4a A trajectory profile of the BVP equation depicting the periodic nature of the solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4b: A trajectory profile of the BVP equation showing the periodic nature of the solution. 
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Figure 4c: A phase portrait of BVP equation depicting stability of the system. 

 

Simulation-5 

 

 

 

 

Table 1.5 Table of values for 𝛼 = 0.1, 𝛽 = 0.1, 𝛾 = 0.1 
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0.15 1.014 -0.406

0.2 1.014 -0.832

0.25 1.013 -1.237

0.3 1.009 -1.621

0.35 1.003 -1.984

0.4 0.996 -2.325

0.45 0.987 -2.647

0.5 0.976 -2.947

0.55 0.964 -3.228

0.6 0.95 -3.489

0.65 0.936 -3.73

0.7 0.92 -3.951

0.75 0.903 ...
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Figure 5a. A trajectory profile of BVP equation showing the aperiodic nature of the solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5b. A trajectory profile of BVP equation showing aperiodic nature of the solution. 
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Figure 5c. A phase portrait of BVP equation depicting the asymptotic stability of solution close 

to the point of origin. 

 

4. Conclusions 

From our results, Lyapunov direct method is very effective in constructing suitable Lyapunov 

functions that depend on the parameters. The advantage of this method is that it is general and can 

be used to estimate the region of attraction for an equilibrium point. We observed that the solution 

of BVP equation is periodic by setting value of the control parameters equal to zero. Three 

equilibria points are obtained due to the cubic nature of the BVP equation. The equilibrium point 

was found to be asymptotically stable because the time derivative is negative definite. Multiple 

equilibria shows that some regions of stability and instability exist. The increase in the control 

parameters leads to stability while the decrease in the control parameters leads to instability. 

Hence, we conclude that the stability analysis of BVP equation strongly depends on the 

parameters. Application of our results can be seen in the process of heartbeat where certain 

conditions can alter the equilibrium state of the body. The numerical behaviors are explained as 

follows:  

In Figure 1a, the trajectory profile of BVP equation was shown by the relationship between the 

first solution function values and independent variable values. The not periodic nature is unstable 

since the trajectory does not start from the equilibrium point. 

In Figure 1b, the solution is not periodic using the second solution function values. The starting 

point of the trajectory was far from the origin, hence showing instability of the system. 

In Figure 1c, the trajectory was far away from the origin for 𝛼 = 0.7, 𝛽 = 0.8, 𝛾 = 3. This shows 

that the equilibrium point is highly unstable for the relationship between the two function values. 
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In Figure 2a, the trajectory profile of BVP equation was shown for 𝛼 = 0.5, 𝛽 = 0.1, 𝛾 = 3. The 

trajectory shows that the solution is periodic and unstable with an increased maximum 

displacement. 

In Figure 2b, the trajectory profile of BVP equation shows that the solution is periodic for the 

second solution function values. The maximum displacement is closer to the origin when 

compared with Figure 2a. 

In Figures 2c and 3c, the phase portrait of BVP equation was shown for the two function values. 

The portrait shows that the equilibrium is stable in a bounded region. This region is defined as the 

interval where the bounds of the solution will occur. 

In Figure 3a, the trajectory profiles exhibits a perfect oscillation for 𝛼 = 0.1, 𝛽 = 0.1 and 𝛾 = 1. 
As the trajectory moves away from the origin, the maximum displacement increased, hence 

showing an unstable nature of the equilibrium point. 

In Figure 3b, the trajectory of BVP equation was shown for 𝛼 = 0.1, 𝛽 = 0.1 and 𝛾 = 1. As the 

values of the parameters are closer to the origin, a periodic solutions exist.  

In Figure 4a and Figure 4b, the trajectory shows that the solution is periodic with a reduction in 

the maximum displacement. 

In Figure 4c, a phase portrait of BVP equation was shown. The phase portrait was closed to the 

origin when compared with Figure 3c. This shows that the solution is periodic with a stable 

equilibrium point. 

In Figure 5a and Figure 5b, the trajectory of BVP equation was parallel to the 𝑡 axis. This shows 

that the solution is not periodic with an unstable equilibrium point. 

In Figure 5c, a phase portrait of BVP equation for the two function values was shown. The portrait 

shows that the equilibrium point is asymptotically stable.  
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