Arunseshan C, Suresh S, Arivuoli D. (2013) Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. International journal of physical sciences,8(32):1639-45.
Ashdown CP, Johns SC, Aminov E, Unanian M, Connacher W, Friend J et al. (2020) Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability. Biophysical Journal, 118(7):1552-63. doi:https://doi.org/10.1016/j.bpj.2020.02.013.
Bauer L, Antunović M, Rogina A, Ivanković M, Ivanković H (2021), Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells. Journal of Materials Science, 56(5):3947-69.
Baylink DJ, Finkelman RD, Mohan S (1993). Growth factors to stimulate bone formation. Journal of Bone and Mineral Research., 8(S2):S565-S72.
Boanini E, Torricelli P, Gazzano M, Fini M, Bigi A. (2012), The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells in vitro. Biomaterials, 33(2):722-30.
Boanini E, Gazzano M, Rubini K, Bigi A. (2007), Composite nanocrystals provide new insight on alendronate interaction with hydroxyapatite structure. Advanced Materials, 19(18):2499-502.
Calabrese G, Petralia S, Fabbi C, Forte S, Franco D, Guglielmino S et al. (2020), Au, Pd and maghemite nanofunctionalized hydroxyapatite scaffolds for bone regeneration. Regenerative biomaterials, 7(5):461-9.
Chen L, Chen C, Wang P, Song T. (2017), Mechanisms of Cellular Effects Directly Induced by Magnetic Nanoparticles under Magnetic Fields. Journal of Nanomaterials, 1564634. doi:10.1155/2017/1564634.
Chen NX, O'Neill KD, Moe SM. (2018), Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways. Kidney international, 93(2):343-54.
Cheng M, Salamanca E, Lin J, Pan Y, Wu Y, Teng N, Watanabe I, Sun Y, Chang W (2022), Preparation of Calcium Phosphate Compounds on Zirconia Surfaces for Dental Implant Applications, Int. J. Mol. Sci., 23(12): 6675; https://doi.org/10.3390/ijms23126675
Christy PN, Basha SK, Kumari VS, Bashir A, Maaza M, Kaviyarasu K et al. (2020), Biopolymeric nanocomposite scaffolds for bone tissue engineering applications–A review. Journal of Drug Delivery Science and Technology, 55:101452.
Doca SC, Vlase G, Vlase T, Galuscan A, Balean O, Negru D et al. (2020), The Use of Bisphosphonate-Hydroxyapatite Composite in Bone Augmentation, Revista de Chimie -Bucharest, 71(6):22-30; DOI:10.37358/RC.20.6.8166
Fathy A, Butler I, Elrahman M., Mostafa SI (2017) New Active Bisphosphonate (Etidronate) Complexes as Anticancer Agents. Inorg Chem Ind J., 12(2):119-125.
Fathy AA, Butler IS, Abd Elrahman M, Jean-Claude BJ, Mostafa SI. (2018), Anticancer evaluation and drug delivery of new palladium (II) complexes based on the chelate of alendronate onto hydroxyapatite nanoparticles. Inorganica Chimica Acta, 473:44-50.
Feng W, Feng S, Tang K, He X, Jing A, Liang G. (2017), A novel composite of collagen-hydroxyapatite/kappa-carrageenan. Journal of Alloys and Compounds, 693:482-9
Ferraris S, Yamaguchi S, Barbani N, Cazzola M, Cristallini C, Miola M et al. (2020), Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta biomaterialia, 102:468-80.
Fulfaro F, Casuccio A, Ticozzi C, Ripamonti C. (1998), The role of bisphosphonates in the treatment of painful metastatic bone disease: a review of phase III trials. Pain, 78(3):157-69.
Gonçalves AI, Rodrigues MT, Carvalho PP, Bañobre‐López M, Paz E, Freitas P et al. (2016), Exploring the potential of starch/polycaprolactone aligned magnetic responsive scaffolds for tendon regeneration. Advanced healthcare materials, 5(2):213-22.
Gong J, Lin X. (2003), Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. Microchemical journal, 75(1):51-7.
Granito RN, Renno ACM, Yamamura H, de Almeida MC, Ruiz PLM, Ribeiro DA (2018) Hydroxyapatite from fish for bone tissue engineering: A promising approach. International journal of molecular and cellular medicine, 7(2):80-90.
Han L, Guo Y, Jia L, Zhang Q, Sun L, Yang Z et al. (2021) 3D magnetic nanocomposite scaffolds enhanced the osteogenic capacities of rat bone mesenchymal stem cells in vitro and in a rat calvarial bone defect model by promoting cell adhesion. Journal of Biomedical Materials Research Part A., 109(9):1670-1680; doi: 10.1002/jbm.a.37162.
Han Y, Li S, Cao X, Yuan L, Wang Y, Yin Y et al. (2014), Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Scientific reports, 4(1):1-8.
Hsu S-h, Chang J-C (2010) The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology, 62(2):143-55.
Huang D-M, Hsiao J-K, Chen Y-C, Chien L-Y, Yao M, Chen Y-K et al (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials, 30(22):3645-51.
Jakab M, Enisz-Bódogh M, Makó É, Kovács K, Orbán S, Horváth B (2020) Influence of wet chemical processing conditions on structure and properties of magnetic hydroxyapatite nanocomposites. Processing and Application of Ceramics, 14(4):321-8.
Heidari F, Bazargan‐Lari R, Razavi M, Fahimipour F, Vashaee D, Tayebi L (2020), Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application. International Journal of Applied Ceramic Technology, 17(6):2752-61.
Jansen JH, van der Jagt OP, Punt BJ, Verhaar JA, van Leeuwen JP, Weinans H et al (2010), Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC musculoskeletal disorders, 11(1):1-11.
Lee D, Wufuer M, Kim I, Choi TH, Kim BJ, Jung HG et al. (2021) Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Scientific reports, 11(1):1-10.
Lee HC, Hong MN, Jung SH, Kim BC, Suh YJ, Ko YG et al. (2015) Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics, 36(7):506-16.
Li W, Zhou J, Xu Y (2015) Study of the in vitro cytotoxicity testing of medical devices. Biomedical reports, 3(5):617-20.
Loh K-S, Lee YH, Musa A, Salmah AA, Zamri I (2008) Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2, 4-dichlorophenoxyacetic acid. Sensors, 8(9):5775-91.
Liao M-H, Chen D-H (2001) Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnology letters, 23(20):1723-7.
Mir M, Leite FL, Herrmann Junior PSdP, Pissetti FL, Rossi AM, Moreira EL et al. (2012) XRD, AFM, IR and TGA study of nanostructured hydroxyapatite. Materials Research, 15(4):622-7.
Mondal S, Manivasagan P, Bharathiraja S, Santha Moorthy M, Nguyen VT, Kim HH et al. (2017), Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment. Nanomaterials (Basel), 7(12). doi:10.3390/nano7120426.
Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, World Journal of Nano Science and Engineering, 2(3), 154-160; DOI DOI: 10.4236/wjnse.2012.23020
Moussa NT, Dym H (2020) Maxillofacial Bone Grafting Materials. Dental clinics of North America, 64(2):473-90. doi:10.1016/j.cden.2019.12.011.
Neamtu J, Bubulica MV, Rotaru A, Ducu C, Balosache OE, Manda VC et al. (2017) Hydroxyapatite–alendronate composite systems for biocompatible materials. Journal of Thermal Analysis and Calorimetry, 127(2):1567-82.
Oh YJ, Hong J.(2022) Application of the MTT-based colorimetric method for evaluating bacterial growth using different solvent systems. LWT, 153:112565. doi:10.1016/j.lwt.2021.112565.
Puppi D, Piras AM, Chiellini F, Chiellini E, Martins A, Leonor IB et al. (2011) Optimized electro‐and wet‐spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. Journal of tissue engineering and regenerative medicine, 5(4):253-63.
Putra AP, Faradisa I, Hikmawati D (2019) The Effect of Hydroxyapatite-Gelatin Composite with Alendronate as Injectable Bone Substitute on Various Hydroxyapatite-Based Substrate. 2019 International Biomedical Instrumentation and Technology Conference (IBITeC), IEEE.
Ressler A, Antunović M, Teruel-Biosca L, Ferrer GG, Babić S, Urlić I et al. (2022) Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold. Carbohydrate Polymers, 277:118883.
Ri M-H, Jang Y-M, Ri U-S, Yu C-J, Kim K-I, Kim S-U (2018) Ab initio investigation of adsorption characteristics of bisphosphonates on hydroxyapatite (001) surface. Journal of materials science, 53(6):4252-61.
Sabry AaA, Salih NA (2020) Synthetic Properties of Hydroxyapatite Powder Prepared from Natural Eggs shell. J Gr Eng, 10(7):3498-507.
Santini MT, Rainaldi G, Ferrante A, Indovina PL, Vecchia P, Donelli G (2003) Effects of a 50 Hz sinusoidal magnetic field on cell adhesion molecule expression in two human osteosarcoma cell lines (MG‐63 and Saos‐2). Bioelectromagnetics, 24(5):327-38.
Shi X, Zhou K, Huang F, Wang C (2017) Interaction of hydroxyapatite nanoparticles with endothelial cells: internalization and inhibition of angiogenesis in vitro through the PI3K/Akt pathway. International journal of nanomedicine, 12:5781-5795.
Sobhi BM, Ismael EY, Mansour AS, Elsabagh M, Fahmy KN (2020) Effect of Nano-hydroxyapatite as an Alternative to Inorganic Dicalcium Phosphate on Growth Performance, Carcass Traits, and Calcium and Phosphorus Metabolism of Broiler Chickens, Journal of Advanced Veterinary Research, 10(4): 250-256
Suárez-González D, Barnhart K, Migneco F, Flanagan C, Hollister SJ, Murphy WL (2012) Controllable mineral coatings on PCL scaffolds as carriers for growth factor release. Biomaterials, 33(2):713-21.
Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX et al. (2004) Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. Journal of the American chemical society, 126(1):273-9.
Taylor KF, Inoue N, Rafiee B, Tis JE, McHale KA, Chao EY (2006) Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. Journal of Orthopaedic Research, 24(1):2-10.
Vasikaran SD (2001) Bisphosphonates: an overview with special reference to alendronate. Annals of clinical biochemistry, 38(6):608-623.
Xia Y, Chen H, Zhang F, Wang L, Chen B, Reynolds MA et al. (2018) Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Artificial cells, nanomedicine, and biotechnology, 46(sup1):423-433.
Xu A, Wang Q, Lv X, Lin T (2021) Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology. Frontiers in Oncology, 11. doi:10.3389/fonc.2021.638146.
Yuan Y, Liu C, Qian J, Wang J, Zhang Y (2010) Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials, 31(4):730-40.
Yuan H, Van Blitterswijk CA, De Groot K, De Bruijn JD (2006) Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue engineering, 12(6):1607-15.
Yu B, Wang C-Y (2016) Osteoporosis: the result of an ‘aged’bone microenvironment. Trends in molecular medicine, 22(8):641-644.
Zeng XB, Hu H, Xie LQ, Lan F, Jiang W, Wu Y et al. (2012) Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. International journal of nanomedicine, 7:3365-3378.
Zhang Xy, Xue Y, Zhang Y (2006) Effects of 0.4 T rotating magnetic field exposure on density, strength, calcium and metabolism of rat thigh bones. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 27(1):1-9