Clinical and genetic characteristics of breast cancer patients with pathogenic gBRCA1/2 mutations were investigated in the present study. In consistence with previous reports, about half of our patients were diagnosed before age 40, and majority were premenopausal [4, 39]. These patients also presented with other high risk features, such as family history of breast cancer, co-occurrence of contralateral breast or ovarian cancer, and high Ki-67 index [5, 7, 40]. Carriers of gBRCA1 mutations had higher prevalence of triple-negative breast cancers (TNBC), while majority of gBRCA2 mutations were associated with hormone receptor-positive breast cancers [41, 42]. However, TNM staging, histologic grade of the tumor, and lymph node metastases were not statistically different between gBRCA1-mutated and gBRCA2-mutated patients.
Previously noted gBRCA1/2 mutations in Korean ethnicity were consistently detected in our patients. The most common mutation of BRCA2, p.Arg2494X, was also detected in 12-15% of Koreans with gBRCA1/2 mutations in other studies and suggested as a founder mutation [43, 44]. Among BRCA1 variants, p.Val1833Serfs, p.Tyr130Ter, Glu1210Argfs, and p.Trp1815Ter had been frequently observed also in Asian populations [44-46]. Moreover, there were two cases of BRCA1 p.Leu1780Pro, which was also recently identified as a novel pathogenic variant [47]. None of the known or suspected founder mutations of Ashkenazi Jews [48], Caucasians [49], North African [50], Hispanic [51], or Mexican populations [52] were observed. Interestingly, the Greek founder mutation BRCA1, p.Val1833Met and one of our common variants p.Val1833Serfs had different amino acid change in same location [53]. These results highlight the ethnical differences among gBRCA1/2 mutations.
While BRCA genes are known as the strongest drivers of the breast cancers, 35 of the 93 known driver mutations were also observed in these patients [54]. The most frequently co-mutated gene was TP53, which usually undergo missense mutations in DNA-binding domains and nonsense or deletions in other domains [40, 55]. In our study, only one-third of the TP53 mutations were found in major grooves or zinc binding site of the DNA-binding domain [56]. Of all, only ten cases were included in 73 codon hotspots defined by Walker et al [57, 58], and two cases of TP53 p.R175H were observed in our patients among six well-known hotspot codons (R175, R213, G245, R248, R273, and R282) that account for a quarter of all TP53 mutations. All in all, the codon distribution and types of TP53 mutations of gBRCA1/2 mutants had discrepancy from those in known hotspots of sporadic breast cancers [59].
TP53 acts as a tumor suppressor gene, and its mutations were strongly associated with increased chromosomal instability and higher HRD score [60]. In patients with TP53 mutations in addition to gBRCA1/2 mutations, the total number of mutated genes, especially of HR-related genes, increased. In gBRCA1 mutants, mutation of non-HR related genes also increased, probably due to its tendency towards more frequent structural rearrangements than gBRCA2 [61].
TP53 mutations are associated with breast cancer with younger age, higher grade, advanced stages, hormone receptor-negativity, enrichment of mutational signature 3, and with a high HRD index [54, 62]. In our study, the tumors with TP53 mutation were also more likely to be TNBC and have high Ki-67 values. On the other hand, age and staging at initial diagnosis of the patients with TP53 mutations were not significantly different from those with TP53 wild-types. High rate of TP53 mutations observed from younger ages and early stages of the patients with gBRCA1/2 mutations implied the effect of DNA-repair deficiency and its selective pressure on tumor suppressor genes [57, 63].
The role of TP53 variants in the breast patients with pathogenic gBRCA1/2 mutation had been controversial. In our study, the improvement of overall survival was observed only in the patients with gBRCA2 mutations, despite the similar pathological complete remission rates after neoadjuvant chemotherapies, relapse rates, and de novo stage IV diseases. Those with wild-type TP53 and gBRCA2 mutation had numerically higher rate of distant metastases and deaths. As for subtypes of breast cancer, TP53 mutation has been reported to be more prevalent in basal-like subtypes [63-65]. Consistently, tumors with TP53 mutants (44.4%) were more likely to be ER-negative than those with wild-type TP53 (15.8%) in the present study. Previous study showed that, Asians were more likely to have TP53 mutations among ER-positive breast cancers than Caucasians, and TP53 mutations were associated with poor survival in ER-positive breast cancer [63]. Another study has shown that the neoadjuvant chemotherapies, regardless of the pathological complete remission rates, was more effective in the patients with TP53 mutations than wild-types [66]. Taken together, one possible explanation is that initially luminal-like gBRCA2-mutated breast cancer are affected by TP53 co-mutation to become closer to basal-like entities, and more sensitive to neoadjuvant and adjuvant chemotherapy that led to less distant metastases and deaths.
Our study has limitations that arise from the retrospective design utilizing the targeted NGS for clinical purpose. Genetic mutations not targeted in the panels were difficult to be observed, including large deletions, rearrangements, chromosomal abnormalities, and methylations. Moreover, targeted NGS were done for clinical purposes and the paired biopsy with non-neoplastic tissues were difficult to be done. Small number of the patients due to the rarity of gBRCA1/2 mutations were another limitations in obtaining statistical significance. Still, our study holds its value in delineating the rare breast cancer entity with gBRCA1/2 and concomitant somatic mutations, especially in the Asian populations.