Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Convergence of forepaw somatosensory and motor
cortical projections in the striatum, claustrum,
thalamus, and pontine nuclei of cats

Jared Brent Smith (3% jasmith@salk.edu)
Salk Institute for Biological Studies https://orcid.org/0000-0002-0273-4898

Shubhodeep Chakrabarti
Penn State College of Medicine

Todd M. Mowery
Rutgers Robert Wood Johnson Medical School

Kevin D. Alloway
Penn State College of Medicine

Original Article

Keywords: motor cortex, somatosensory cortex, striatum, claustrum, thalamus, pons
Posted Date: April 9th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-194390/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Brain Structure and Function on October
19th, 2021. See the published version at https://doi.org/10.1007/s00429-021-02405-6.

Page 1/31


https://doi.org/10.21203/rs.3.rs-194390/v1
mailto:jasmith@salk.edu
https://orcid.org/0000-0002-0273-4898
https://doi.org/10.21203/rs.3.rs-194390/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00429-021-02405-6

Abstract

The basal ganglia and pontocerebellar systems regulate somesthetic-guided motor behaviors, and
receive prominent inputs from sensorimotor cortex. Additionally, the claustrum and thalamus are
forebrain subcortical structures that have connections with somatosensory and motor cortices. Our
previous studies in rats have shown that primary and secondary somatosensory cortex (S1 and S2) send
overlapping projections to the neostriatum and pontine nuclei, whereas overlap of primary motor cortex
(M1) and S1 was much weaker. Additionally, we have shown that M1, but not S1, projects to the
claustrum in rats. The goal of the current study was to compare these rodent projection patterns with
connections in cats, a mammalian species that evolved in a separate phylogenetic superorder. Three
different anterograde tracers were injected into the physiologically identified forepaw representations of
M1, S1, and S2 in cats. Labeled fibers terminated throughout the ipsilateral striatum (caudate and
putamen), claustrum, thalamus, and pontine nuclei. Digital reconstructions of tracer labeling allowed us
to quantify both the normalized distribution of labeling in each subcortical area from each tracer
injection, as well as the amount of tracer overlap. Surprisingly, in contrast to our previous findings in
rodents, we observed M1 and S1 projections converging prominently in striatum and pons, whereas S1
and S2 overlap was much weaker. Furthermore, whereas rat S1 does not project to claustrum, we
confirmed dense claustral inputs from S1 in cats. These findings suggest that the basal ganglia,
claustrum, and pontocerebellar systems in rat and cat have evolved distinct patterns of sensorimotor
cortical convergence.

Introduction

The cerebral cortex contains numerous modality-specific regions, with each area specialized for a specific
type of information processing (for review see Krubitzer 2009). For example, somatosensory and motor
cortical areas are thought to process aspects of touch and movement, respectively (Borich et al. 2015;
Chapin and Lin 1984; Hall and Lindholm 1974; Hoffer et al. 2003; Kaas 2004; but see Matyas et al. 2010).
However, information across these two modalities must be integrated in both directions to achieve
appropriate somesthetic-guided movements and accurate sensory perceptions of the resulting bodily
motion (Arce-McShane et al. 2016; Khateb et al. 2017; Lee et al. 2008, 2013; Murthy and Fetz 1992; Pai-
Vieira et al 2013; Umeda et al. 2019, Zagha et al. 2013). In addition to direct cortico-cortical connections
between sensory and motor cortices that mediate such integration, each of these cortical areas also
projects to numerous subcortical structures, some of which represent additional opportunities for
sensorimotor integration (Battaglia-Mayer and Caminiti 2019; Chakrabarti et al. 2006, 2008; Colechio and
Alloway 2009; Fabri and Burton 1991; Ghosh et al. 1987; Hamadjida et al. 2016; Hoffer et al. 2003, 2005;
Huerta and Pons 1990; Izraeli and Porter 1995; Jones et al. 1978; Mao et al. 2011; Smith and Alloway
2013; Stepniewska et al. 1993, 2020; Suter and Shepherd 2015; Vogt and Pandya 1977).

Among the subcortical targets of sensorimotor cortex, the thalamus contains higher-order nuclei such as
the posteromedial nucleus (POm), which receives convergent inputs from both sensory and motor cortical
areas, as well as projecting back to both areas (for review see Alloway 2008; Alloway et al. 2008; Hoffer
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and Alloway 2001; Lu and Lin 1993; Mo and Sherman 2019). In addition, the claustrum has connections
that could facilitate interactions between sensory and motor cortices (for review see Smith et al. 2019a;
Jackson et al. 2020). Our previous work in rodents, for example, has shown that the claustrum receives
dense inputs from motor cortex and sends bifurcating projections back to both sensory and motor cortex
(Smith and Alloway 2010, 2014; Smith et al. 2012).

In addition to cortical projections to the thalamus and claustrum, the cerebral cortex also sends
topographically organized projections to the basal ganglia and pontocerebellar systems (Brodal 1978;
Dudman and Gerfen 2015; Flaherty and Graybiel 1991; Hoover and Strick 1993; Kunzle 1975, 1977; Oh et
al. 2014; Proville et al. 2014; Schmahmann and Pandya 1997; Schwarz and Mock 2001; Suzuki et al.
2012; Wiesendanger and Wiesendanger 1982a,b). In turn, both the basal ganglia and the cerebellum
provide feedback to sensorimotor cortex via multi-synaptic outputs to the thalamus, which are believed to
remain segregated, thus forming parallel cortico-subcortico re-entrant loops (Alexander et al. 1986, 1990;
Aoki et al. 2019a; Brodal and Bjaalie 1992; Hoover and Strick 1993; Mercier et al. 1990; Middleton and
Strick 2000; Parent and Hazrati 1995; but see Aoki et al. 2019b for evidence of convergence in basal
ganglia loops). However, though largely topographic, whole-cortex mapping studies of cortico-striatal
projections have demonstrated convergence of modality related cortical inputs into functional domains
of striatum that are thought to have specific behavioral relevance (Hinitryan et al. 2016; Hunnicutt et al.
2016; Oh et al. 2014). In the sensorimotor domain, previous work in rodents and primates has
demonstrated convergence of sensory and motor cortices in the dorsolateral region of the striatum
(Alloway et al. 2006; Charpier et al. 2020; Flaherty and Graybiel 1993, 1995; Hoffer et al. 2001; Hooks et
al. 2018; Hoover et al. 2003; Lee et al. 2019; Ramanathan et al. 2002), an area of the striatum that is
responsible for guiding sensorimotor habits (see Alloway et al. 2017 for review). Similar anatomical
tracing studies in the cortico-pontine system of rodents and primates indicate parallel themes of
integration to those observed in the cortico-striatal system (Bjaalie and Brodal 1989; Leergaard et al.
2000a,b; Leergaard et al. 2004; Legg et al. 1989; Schwarz and Thier 1995; Wiesendanger et al. 1972;
Wiesendanger and Wiesendanger 1982a,b).

In the current work, we sought to expand on these previous studies by investigating cortical sensorimotor
integration in multiple subcortical structures in felines. The feline clade, which is part of the
Laurasiatheria superorder, diverged from rodents and primates, members of the superorder
Euarchontoglires, nearly 100 million years ago (Murphy et al. 2004). By employing the same
physiologically guided, neuroanatomical tracing paradigm used previously to map sensorimotor
convergence in rodents (Alloway et al. 2000; Hoffer and Alloway 2001; Leergaard et al. 2004), we can
make direct comparisons to felines to assess the hypothesis that different phylogenetic clades evolved
distinct neural circuits for sensorimotor integration. Therefore, we used microstimulation mapping of
primary motor cortex (M1) and receptive field mapping of primary and secondary somatosensory cortex
(S1 and S2, respectively) to identify overlapping forepaw representations in each cortical area. We then
injected each area with a different neuroanatomical tracer. This triple-tracer paradigm allowed us to
assess integration from three modality related cortical areas in the striatum, claustrum, thalamus, and

basal pontine nuclei within the same animal. Our results show that whereas S1 and S2 projections show
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strong convergence in rodents, felines show significantly more S1-M1 integration, indicating that different
strategies in cortico-subcortical interactions evolved across phylogenetically separate lineages.

Material And Methods

Anatomical tracing experiments were performed on ten adult male felines (Charles River) weighing 3.1-
5.0 kg. All procedures were approved by Penn State University's Institutional Animal Care and Use
Committee and conformed to National Institute of Health standards.

Animal surgery

Surgical procedures were performed using sterile technique with support from veterinary staff for
anesthesia and animal care (Penn State College of Medicine, Department of Comparative Medicine). In
preparation for injections, animals received an injection of dexamethasone (0.1 mg/kg, intramuscular)
the day before surgery. The following morning, animals were initially anesthetized with an intra-muscular
injection of ketamine (10 mg/kg) and acepromazine (0.5 mg/kg). The femoral artery was catheterized,
the head was shaved, the trachea was intubated through the oral cavity, and the femoral artery was
catheterized to enable intravenous injections of dexamethasone 0.1 mg/kg) and chloramphenicol

(50 mg/kg). The head was then fixed into a stereotaxic device (Kopf) and the animal was ventilated with
a mixture of oxygen and sevoflurane (1-2%) to maintain a stable anesthetic plane for the remainder of
the procedure as determined by lack of nociceptive withdrawal reflexes and flaccid muscle tone. A sensor
was attached to the tongue and vital signs (heart rate, specific oxygen, respiratory rate, and in/end tidal
CO,) were monitored continuously (Surgivet) and recorded every fifteen minutes. Fluids were maintained
via saline drip connected to the femoral catheter. Body temperature was monitored via a rectal thermistor
and was maintained by hydraulic heat pumps underneath the animal, as well as a hot air enclosure
around the torso (Bear-Hugger). Ophthalmic ointment was applied to the eyes to prevent corneal drying.

The skin over the cranium was disinfected with betadine and a sterile drape was place over the entire
head. Prior to the incision, the skin over the area of the craniotomies was infiltrated with numerous
subcutaneous injections of lidocaine to provide local anesthesia. A single large incision was made over
the right side of the skull to provide access to the frontal and parietal bones. The skin was retracted, and
the underlying fascia and muscle was resected to expose bregma and the sites of the craniotomies. After
measuring with surgical rulers, two craniotomies approximately 15 mm in diameter were drilled, with one
spanning the primary motor (M1) and primary somatosensory (S1) cortices, and the other around the
secondary somatosensory (S2) cortex.

Intracranial microstimulation (ICMS)

Following craniotomies, tungsten microelectrodes (FHC, 0.5-1.0MQ), affixed to a stereotaxic
micromanipulator were inserted in M1 coordinates used in previous mapping studies (Alloway and Burton
1985a,b for ST and S2). The electrode was inserted into the cortex via a small slit in the dura made with a
27G needle held by a pair of forceps. The electrode was lowered to a depth of ~ 1.0-1.5 mm below the
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dural surface to target layer 5, which contains corticospinal neurons (Suter and Shepherd, 2015). A
constant current source (BAK BSI-2) controlled by a digital timer (Master-8), was used to administer
electrical stimulation (0.7 ms pulse, 250 Hz frequency). Current levels were initially high (~ 100pA) and
reduced to identify the minimum current necessary for eliciting limb or forepaw movements at each
cortical site (typically <30 pA). To evoke muscle twitches, sevoflurane levels had to be reduced to 0.5-
0.75%; this led to a slight increase in muscle-tone but maintained insensitivity to forepaw pinches. The
electrode was moved to numerous sites to obtain a detailed map of the body representation of M1, to
identify the center of the forepaw representation. Typical movements included dorsoflexion of the entire
forepaw and brief twitches of individual digits.

Extracellular neuronal recordings.

In order to identify the forepaw representation in S1 cortex and S2 cortex, a tungsten microelectrode (FHC,
1.0-1.5MQ) was used to map both areas. Initial coordinates were identified based on previous studies
(Alloway and Burton 1985 a,b; Felleman et al. 1983), and detailed maps were obtained for each individual
animal. Electrodes were inserted via a dural slit and lowered to a depth of 400-600um below the surface,
corresponding to layer 4, the primary input layer from thalamus. Neuronal activity was amplified (Dagan,
1 k head-stage amp, 2 k amp, band pass filtered 300 Hz-5 kHz) and subsequently observed on an
oscilloscope (Grass Digital) as well as through an audio monitor. The wooden end of a cotton-tipped
applicator was used to probe the surface of the skin to elicit a neural response. Receptive fields were
drawn, and coordinates recorded to provide a detailed map of both S1 cortex and S2 cortex, such that
injections could be targeted to overlapping representations of the forepaw.

Tracer injections.

Following detailed mapping of M1, S1, and S2 cortices, tracer injections were targeted to overlapping
representations of the forelimb. Each cortical area was targeted with a different anterograde tracer
(Molecular Probes, Eugene OR) including Fluoro-Ruby (FR, D-1817), Alexa-Fluor 488 (AF, D-2290), and
Biotinylated Dextran Amine (BDA, D-1956). While BDA was always injected into M1, FR and AF injections
were injected into either S1 or S2 (see Table 1 for summary). Tracers were injected by means of 2.0 uL
Hamilton syringes secured onto a microinjector (Kopf) attached to the stereotaxic frame as done
previously (Alloway et al., 2000, 2009). Each syringe had a pulled glass pipette, with a 10—50 pm tip,
cemented onto the end of the Hamilton syringe needle to minimize the damage to the cortex. The tip of
the pipette was inserted ~ 1.7 mm from the surface to insure tracer deposit within layer 6 and in more
superficial layers as the tracer tended to seep upward along the injection pipette. Tracers were injected
slowly (100 nL/min), and total tracer volume injected at each cortical site varied from 400 to 900 nl. Each
cortical area (ie.,, M1, S1, or S2) received 4-7 injections to cover a wide region of the forepaw
representation.
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Table 1
Summary of tracer injections in cats.

Animal ID M1 Tracer Injection S1 Tracer Injection S2 Tracer Injection

TI-2 BDA FR AF

TI-3 BDA FR AF

TI-8 BDA FR AF

TI-9 BDA AF FR

TI10 BDA FR AF

Anterograde tracers: BDA - biotinylated dextran amine; FR — FluoroRuby; AF- AlexaFluor488 dextran

Following mapping and tracer injections, Gel-film was placed over the cortical surface and Gel-foam
inserted into the craniotomy. The incision was subsequently sutured and triple antibiotic ointment applied
to the wound margins. The margins of the skin incision were injected with bupivacaine (1-2 ml) to
provide local anesthesia, and the animal received a long-lasting analgesic, buprenorphine (0.01 mg/kg
IM), just prior to discontinuation of the sevoflurane and removal of the head from the stereotaxic. Upon
recovery of self-respiration, the intubation tube and femoral catheter were removed, and animals were
monitored until fully conscious and able to right themselves. Animals were returned to their home cage
and monitored daily with veterinary-assisted post-operative care for the duration of the experiment.

Histology.

After 10 days to allow for tracer transport, animals were deeply anesthetized with ketamine, xylazine and
acepromazine. A femoral catheter was inserted, and animals were over-dosed with a lethal quantity of
sodium pentobarbital (Nembutal 100 mg/kg). Animals were trans-cardially perfused with heparinized
saline (3 cc heparin/L saline) until the liver blanched, and then subsequently perfused with 4%
paraformaldehyde in 0.TM PBS and 4% paraformaldehyde in 0.1TM PBS with 10% sucrose. The brain and
spinal cord were removed and stored in 4% paraformaldehyde in 0.1TM PBS with 30% sucrose for
cryoprotection. The day after the perfusion, the arachnoid was removed from the cortical surface with
Dumont forceps and the brain and spinal cord were blocked.

After thorough fixation of the brain (~ 3 days or until it sank in the fixative solution), the brain was cut in
60-um sections on a freezing microtome. Sections were stored in 0.1M PBS and refrigerated. For
processing, tissue was split into 5 serially-ordered groups for: (1) Nissl staining, (2) BDA processing, (3)
fluorescence-only, and two back-up sets. Nickel-enhanced BDA processing was performed as previously
described (Hoffer et al. 2005). Briefly, sections were agitated in 0.3% H,0, and then washed with 0.3%
Triton X-100 (pH =7.4) in 0.1M PBS before a 2-hour incubation in an activated avidin-biotin horseradish
peroxidase solution (Vector Novocastra Laboratories, Burlingame, CA). Sections were rinsed in 0.1TM PB
and then incubated in a solution of 0.05% diaminobenzidine (DAB), 0.0005% H,0,, and 0.04% NiCI2 in
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0.1M Tris buffer (pH =7.1) for 9-12 minutes. The reaction was terminated with washes in a 0.1M PB
solution. After processing, sections were mounted on gel-coated glass slides, dried overnight, then
dehydrated with ethanol, defatted with xylene and finally cover-slipped with Cyto-seal.

Anatomical analysis.

Tracer labeling was analyzed with an Olympus BH-2 microscope fitted with 1x, 2x, 4x, 10x, and 20x
objectives and 10x eyepieces. BDA and Nissl stains were observed using brightfield, whereas FR and AF
fluorescence was imaged using a combined fluorescein isothiocyanate/tetrarhodamine isothiocyanate
(FITC/TRITC) filter cube (51004v2, Chroma Technology, Rockingham, VT). Labeled neuronal soma and
labeled axonal varicosities of terminal arborizations were digitally reconstructed with respect to
anatomical landmarks using a computer controlled AccuStage reconstruction system (St Paul, MN) and
stored to hard drive for subsequent analysis. For anterogradely-labeled fibers, synaptic boutons were
plotted under 20x magnification, as these structures represent putative synapses (Kincaid and Wilson
1996).

To quantify the convergence of projections from M1, S1, and S2 cortices, the plotted reconstructions of
terminal labeling were analyzed using custom software (Hoffer et al., 2005) or a custom module in MD
Plot (AccuStage software), which imposed a grid of 50p m x 50u m squares onto the sections. This bin
size was chosen to allow comparison to previous rat data obtained in our lab (Alloway et al. 2000; Hoffer
et al. 2001, 2003, 2005; Leergaard et al. 2004). For each tracer, bins containing at least two boutons were
counted as labeled and colored appropriately (BDA-blue, FR-red, AF, green). Bins labeled by two tracers
were colored white so that tracer overlap is expressed as a percentage of all colored bins (ie., red, green
blue, and white) that were labeled as white.

Digital photomicrographs of tracer-labeling and Nissl staining were acquired by a Cool Snap HQ CCD
digital camera (Retiga) mounted on the BH-2 microscope. Images were stored as TIF files and imported
into our graphic design software (Deneba Systems, Canvas X, Miami, FL) to generate figures.
Quantification of tracer labeling was analyzed in Microsoft Excel, with statistics and graphing performed
using Graphpad Prism.

Results

Neuronal tracers were administered to ten cats (Charles River). Cases were included in the final analysis
only if the histological examination confirmed that all three tracer injections were present and spanned
both the supragranular and infragranular layers of cortex because virtually all cortical layers send
projections to one or more of the subcortical regions that we analyzed in the present study (Royce 1982;
Levesque et al. 1992; Mao et al. 2011). Furthermore, we only analyzed cases in which transported tracer
labeling was apparent in all subcortical regions of interest: striatum, claustrum, thalamus, and the basal
pontine nuclei. Five of the experiments satisfied these criteria and were included in the final analysis (see
Table 1 for summary of injections). Representative photomicrographs of tracer injections from case TI-8,

shown in Fig. 1, depict biotinylated dextran amine (BDA) injected into the forepaw region of primary
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motor cortex (M1; Fig. 1c,c’), Fluororuby (FR) injected into the forepaw representation of primary
somatosensory cortex (S1; Fig. 1d,d’), and Alexa-fluor 488 (AF) injected into the forepaw representation of
secondary somatosensory cortex (S2; Fig. 1e,€). All of these sites were identified physiologically, either
via intracranial microstimulation (ICMS) mapping of M1 cortex or receptive field mapping of the S1 and
S2 cortical areas, which are demonstrated in Fig. 1b. Additionally, the Nissl-stained sections shown in

Fig. 1 show hallmarks of motor and sensory cortex. In Fig. 1c, Nissl staining of the M1 injection site
reveals characteristics of agranular cortex (i.e. motor cortex), which lacks a layer 4, but shows an
expanded layer 5 with large cell bodies that likely represent corticofugal projections targeting the spinal
cord and other brainstem structures. In contrast, Nissl staining in Fig. 1d and 1e of S1 and S2 reveals a
prominent granular layer 4, which is characteristic of sensory cortex. The injection sites in each of these
regions span all layers of cortex, including layers 3, 5 and 6, which represent the output layers to the
subcortical regions of interest. The other four cases included in the final analysis showed similar injection
characteristics.

In addition to the physiologic mapping, and histological verification of the injection sites, we also
examined tracer labeling in thalamus to confirm the functional placement of the tracer injections.

Figure 2 shows representative tracer labeling in the thalamus from the injection sites shown in Fig. 1 for
case TI-8. As demonstrated by the digital reconstruction in Fig. 2b and the photomicrograph in Fig. 2c
tracer labeling appeared in the ventromedial (VM) nucleus, a motor related region of thalamus, following
tracer injections in M1 cortex. Anterogradely labeled terminals and retrogradely labeled neuronal cell
bodies were observed in the ventrobasal complex following the S1 and S2 tracer injections (Fig. 2d-e).
The presence of anterogradely labeled terminals further indicates that our tracer injections infiltrated
layers 5 and 6 as these layers represent the origin of most corticothalamic projection neurons.
Interestingly, the labeling in the thalamus was markedly segregated, with the bulk of labeling from each
tracer injection largely forming its own topographic domain. Segregated thalamic domains were also
observed in another representative case (case TI-9 shown below), in which BDA was injected in M1, AF in
S1,and FRin S2.

Cortico-striatal projections.

Previous studies in rodents and primates, have reported that all sensorimotor cortical areas send
topographically-organized projections to the striatum (Aoki et al. 2019; Brodal 1978; Dudman and Gerfen
2015; Flaherty and Graybiel 1991, 1993, 1995; Hinitryan et al. 2016; Hoover and Strick 1993; Hunnicutt et
al. 2016; Kunzle, 1975, 1977; Oh et al. 2014). Consistent with these previous findings, we observed tracer
labeling from M1, S1, and S2 throughout the dorsolateral caudate and the putamen. The digital
reconstruction shown in Fig. 3 from case TI-8 reveals dense intermingling of S1, S2, and M1 projections
to a band of neuropil along the dorsolateral edge of the caudate that stretched 3 mm along the anterior-
posterior axis. Overlap analysis of the tracer labeling in a grid of 50-um? bins revealed strong overlap of
tracer labeling from M1 and S1 injections (shown as white bins in Fig. 4a), whereas M1-S2 and S1-S2
overlap was minimal. In this representative case, cortico-striatal labeling from the AF injection in S2 was
relatively caudal and noticeably weaker than the labeling from the M1 and S1 injections, which could
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account for the low overlap with projections from S2 cortex. In another case, however, we varied which
tracers were injected in the cortical areas, and we still observed minimal M1-S2 and S1-S2 overlap. As
shown below, in case TI-9 where FR was injected in S2, we found that the labeled projections from S2
cortex terminated in zones that were interdigitated with the overlapping terminal labeling resulting from
the M1 and S1 tracer injections.

Cortico-claustral projections.

Analysis of the tracer labeling in the claustrum revealed anterogradely labeled terminals and retrogradely
labeled neuronal cell bodies throughout a T mm anterior-posterior extent of the dorsolateral claustrum
(shown for case TI-8 in Fig. 5a). Like the striatum, we observed marked overlap between M1 and S1
projections, as shown in the tracer overlap analysis in Fig. 5b-d. Projections from S2 terminated more
medially in an adjacent region to the area of M1-S1 terminals and did not overlap with any of the
corticoclaustral projections from S1 and M1. A similar pattern can be seen in the digital reconstruction
from case TI-9 shown below.

Cortico-pontine projections.

Analysis of the tracer labeling in the pontine nuclei revealed anterogradely labeled terminals throughout a
~ 3 mm anterior-posterior extent of the structure, positioned on both the medial and lateral sides of the
descending pyramidal tract white matter (shown for case TI-8 in Fig. 6a). As in the striatum, we observed
substantial overlap between M1 and S1 projections, as shown in the tracer overlap analysis in Fig. 6b-d.
In contrast to the striatum, however, we observed stronger input from S2 cortex, which showed moderate
overlap with both M1 and S1 projections.

Quantitative analysis.

The amount of anterograde tracer labeling can vary due to differences in tracer volume, efficiency and
detectability. To mitigate any such affects, we varied which tracer was injected into each cortical area.
Figure 7 shows a representative example (case TI-9), where the most efficient tracer, FR, was injected into
S2 cortex (BDA was injected into M1, and AF into S1). As shown throughout Fig. 7, the pattern of tracer
labeling was identical to what was observed in the representative example (TI-8) shown in earlier figures.

To further determine whether these factors could affect our overlap analysis we performed statistical
analysis on the total numbers of terminals counted across all animals used in the final analysis (n = 5).
The total number of counts summed across all subcortical structures (e.g. striatum, claustrum, thalamus,
and pons) was found to vary for each tracer (BDA: 11517 + 3534; FR: 22057 + 7841; AF: 2625 + 880).
However, though some tracers produced more labeled terminals than others (e.g. FR > AF), statistical
analysis did not reveal any significant difference in the total number of labeled varicosities across
different tracers (one-way ANOVA, F = 3.80, p = 0.053). These results suggest that differences in the
amount or efficiency of the different tracers was likely not a significant factor in our overlap analysis.
Furthermore, we varied which tracer was injected into what cortical site (see Table 1), further limiting the
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effect of tracer efficiency on the results of our overlap analysis. To further investigate tracer efficiency, we
also calculated the total bouton counts produced based on cortical injection site (Fig. 8a, M1: 11517 +
3534;S1: 19910 + 8598; S2: 4772 + 2623) finding no significant differences (Kolmogorov Smirnoff test
for normality, p >0.10; one-way ANOVA, F = 1.85, p = 0.20). This second analysis further demonstrates
that tracer efficiency was not a significant factor in our overlap analysis.

The next quantitative analysis we performed was to identify the relative amount of labeling in each
subcortical region of interest from each cortical area injected (i.e. M1, S1, and S2). This distribution was
normalized for each tracer within each animal then, percentages were averaged across subjects, thus
making these measurements insensitive to tracer efficiency issues. As shown in Fig. 8b, this analysis
revealed significant differences in the distribution of projections from these cortical areas to these
subcortical structures (2-way ANOVA, interaction F = 43.24, p <0.0001). Post-hoc Bonferroni comparisons
showed M1 projections to striatum were significantly stronger than those from S1 (t=8.11, p<0.001) and
S2 (t=8.93, p<0.001), whereas in thalamus M1 projections were significantly weaker than those from S1
(t=9.96,p<0.001) and S2 (t=11.47, p<0.001).

Analysis of tracer overlap using 50p m? bins revealed significant differences in the overlap of labeled
projections from M1, S1, and S2 (2-way ANOVA, interaction F = 4.00, p<0.01). Post-hoc Bonferroni tests
revealed that M1-S1 overlap was significantly greater than M1-S2 or S1-S2 overlap in both the striatum (t
=5.43,p<0.001 and t=5.38, p< 0.001; respectively) and in the pons (t=3.44,p<0.05and t=2.70, n.s.).
We then compared these data from felines with those from our previous studies in rodents. The injection
scheme showing location of anterograde tracer injections in rodents for our previous studies (Leergaard
et al. 2004) is shown in Fig. 9c. Quantitative analysis of the overlap analysis (bin size 50p m?) in the
rodent tracing studies shows more S1-S2 overlap than M1-S1, that was significant in the pons (t=4.87, p
<0.001). These findings are in opposition to the findings in felines, where S1-M1 overlap was significantly
greater, indicating cross-species differences in sensorimotor convergence.

Discussion

In this study we analyzed the convergence of sensory and motor cortical projections in subcortical
structures; specifically, the striatum, claustrum, thalamus and pons. Using a triple anterograde tracer
approach in cats, we injected the forepaw representation in M1, S1, and S2 cortices (which are
equidistant) and analyzed the distribution and overlap of anterogradely labeled terminals. These new
findings were subsequently compared to our previous tracing experiments in rodents (Hoffer and Alloway
2001; Leergaard et al. 2004), to determine how sensorimotor cortical projections to the striatum,
claustrum, thalamus and pons vary across evolutionarily distinct lineages (Euarchontoglires and
Laurasiatheria).

These experiments yielded several key findings. First, in cats we observed the greatest tracer overlap
between M1 and S1 terminals in the striatum and pons, whereas in rodents the overlap in these target
regions was stronger for the projections from S1 and S2. Second, whereas S1 and S2 cortices in the cat
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sent the majority of their projections to the thalamus (~ 70%), M1 projections to the thalamus were weak
(< 20%); the most abundant projections terminated in the striatum (~ 60%). This finding contrasts with
our previous rodent data in which thalamus was consistently the strongest target of M1 (Alloway et al.
2009). Third, in the cat claustrum we observed clear input from both M1 and S1 cortex, in contrast to our
previous observations in rats where we observed weak input from M1 forepaw and no input from ST
(Smith and Alloway 2010; Smith et al. 2012). Together these findings suggest evolutionary differences in
the principles guiding the distribution and integration of sensorimotor cortical projections to the
subcortex.

Relative contribution of sensorimotor projections to subcortical structures

One of the primary findings of these studies, shown in Fig. 8b, is that while M1 contributed most of its
projections to the striatum, ST and S2 sent the majority of their inputs to the thalamus with equivalently
minor contributions to striatum and pons. Furthermore, M1, S1 and S2 projections were almost equally
represented within the pons. Finally, all three cortical areas sent relatively few projections to the claustrum
compared to striatum, thalamus or pons. These findings may give insight into the relative neural
processes that occur in these subcortical structures to guide behavior.

In the case of the claustrum, our findings show relatively few connections with sensorimotor cortex
compared to the other subcortical structures. Our previous tracing studies in rodents yielded similar
findings (Alloway et al. 2009; Smith and Alloway 2010), Specifically, in rodents we observed that the M1
forepaw region had very sparse connections to the dorsal region of the ipsilateral claustrum, and no input
from S1 cortex was detectable (Alloway et al. 2009; Smith et al. 2012). This suggests a limited role of
forelimb-related somato-motor inputs in dictating the functional output of the claustrum as discussed in
more detail below.

Interestingly, motor cortex in felines contributes very little input to the thalamus compared to S1 and S2
cortices, which sent the overwhelming majority of their inputs to VPL. Cortico-thalamic feedback is
thought to play a role in attention by enhancing sensory signals from the periphery and optimizing
sensory acuity through receptive field modulation (Alitto and Usrey 2003; Alloway 2008; Briggs and Usrey
2008). Our data suggest that corticothalamic projections play a stronger role in processing sensory
information than motor information, at least in felines. Interestingly, in rodents, M1 forepaw projections
targeted thalamus (45%) more strongly than striatum (30%) (Alloway et al. 2009), providing evidence for
species specific patterns in the distribution of cortico-subcortical projections.

The cortico-cerebellar system is thought to be involved in motor planning as well as monitoring and
adjusting motor output based on sensory feedback (Chen et al. 2016; Doyon et al. 2003; Gao et al. 2018;
Ramnani 2006), whereas striatum is thought to be involved in action selection (Friend and Kravitz 2014;
Klaus et al. 2019; Redgrave et al. 1999). By virtue of its dominant inputs to the striatum, our results
indicate M1 plays a stronger role in the action selection process than the action refinement process
(though itis involved in both). Furthermore, our results reveal substantially more inputs from M1 to the

striatum than from S1 and S2, suggesting that motor cortex plays a more prominent role in action
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selection than sensory cortex. With regards to the pons, as indicated by the largely equivalent inputs from
M1, S1, and S2, our data indicate an equally important role for motor and sensory information in sensory-
guided correction of motor behavior via the cortico-cerebellar system.

Sensorimotor cortico-claustral projections

The claustrum is a unique subcortical structure whose function remains undefined (for review see
Jackson et al. 2020). Many studies have sought to identify its function based on its anatomical
connectivity, which is largely organized into reciprocal connections with the neocortex (Smith et al. 2019a,
Jackson et al. 2020). One striking finding from our current studies is the minimal representation of
sensorimotor inputs to the claustrum, compared to striatum, thalamus and pons. Consistent with other
species, these projections were restricted to the dorsolateral region (Smith et al. 2019a), which represents
only a small region of the total claustrum. Previous tracing data in cats has suggested that auditory and
visual inputs are more prominent in cats (LeVay and Sherk 1981; Macchi et al. 1981). More recent
findings in rodents have found the strongest inputs to the claustrum arise from limbic structures like the
amygdala, MD thalamus as well as prefrontal cortex (Jackson et al. 2020). Furthermore, the claustrum in
rodents has been shown to be a critical node in the rodent homolog of the salience network (Smith et al.
2019b). This potential role in sensory salience is thought to be funneled towards motor cortical areas to
direct attention by guiding behavioral output towards the most relevant sensory stimuli. The limited role
of somato-motor processing of the forelimb in the cat claustrum, with more expansive auditory and
visual inputs, would fit with a role in predation and tracking salient visual and auditory stimuli related to
prey. However, additional studies directly comparing these differences is needed to make any definitive
conclusions.

In our previous studies mapping the connections of sensorimotor cortex with the claustrum in rodents
(Smith and Alloway 2010, 2014; Smith et al. 2012), we observed weak projections from the forepaw
representation in M1 cortex to the claustrum and no projections from any region of S1 cortex. In contrast,
our current findings in cats clearly revealed dense inputs from both S1 and M1 cortices, which terminated
in the same overlapping region of the dorsal claustrum, which is the sensorimotor domain in the
claustrum of rats and monkeys as well (Smith et al. 2019a). Interestingly, we saw almost no connections
between S2 cortex and claustrum in cat, which aligns with an earlier finding observed while mapping
claustro-cortical connections in felines using retrograde tracers (Macchi et al. 1981).

These findings further align with other tracing studies across different primate species that have shown
differences in cortico-claustral connectivity (Sherk 1986). Specifically, in some primates the primary
visual cortex has strong projections to the claustrum, whereas it is absent in other species. Indeed, we
have also shown that V1 has no projections to the claustrum in rodents (Smith and Alloway 2014).
Interestingly, LeVay and Sherk found that in cats, numerous visual areas, including area 17 contributed
profuse projections to the claustrum (LeVay and Sherk 1981). Thus, no clear pattern has yet emerged as
to why some sensory cortical areas project to the claustrum and others do not. But, though the functional
meaning of these differences is unclear, further systematic study of the cortico-claustral connectome
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across species, and their functional relation to behavioral specializations within those species, will
undoubtedly reveal crucial inferences as to the function of the claustrum.

Cortico-striatal and cortico-pontine sensorimotor integration

It has been well established that the striatum and basal pontine nuclei are organized into functional
domains, based largely on studies tracing cortico-striatal and cortico-pontine projections (Brodal 1978;
Dudman and Gerfen 2015; Flaherty and Graybiel 1991; Hoover and Strick 1993; Kunzle 1975, 1977; Oh et
al. 2014; Schmahmann and Pandya 1997; Wiesendanger and Wiesendanger 1982a,b). Furthermore,
functionally related cortical regions, such as sensory and motor cortex, converge onto overlapping areas
in both the striatum (Alloway et al. 2006; Charpier et al. 2020; Flaherty and Graybiel 1993, 1995; Hoffer et
al. 2001; Hooks et al. 2018; Hoover et al. 2003; Lee et al. 2019; Ramanathan et al. 2002 Stepniewska et al.
2020) and the pons (Bjaalie and Brodal 1989; Leergaard et al. 2000a,b; Leergaard et al. 2004; Legg et al.
1989; Schwarz and Thier 1995; Wiesendanger et al. 1972; Wiesendanger and Wiesendanger 1982a,b). In
our current study, we observed M1, S1, and S2 projections terminating in largely overlapping regions of
the striatum (both dorsolateral caudate and putamen) and the basal pons. However, closer analysis of
the anatomical reconstructions revealed significantly stronger overlap of S1 and M1 projections
compared to S1-S2 and M1-S2 projections. This pattern of convergence was comparable for both the
striatum and pons, indicating similar rules for sensorimotor integration. However, the functional
significance of integrating S1 and M1 information, but not the inputs from S2 is unclear. Additionally, this
preference for S1-M1 integration is contrary to our previous findings in rodents, which showed species
specific patterns of cortico-subcortical sensorimotor integration.

One possibility for explaining this finding could be if S2 projections are processed in parallel to S1 and
thus target different subregions within M1 and subcortical structures in cats. In our previous tracing
studies in rodents (Hoffer and Alloway 2001; Hoffer et al. 2003, 2005; Leergaard et al. 2004; Smith and
Alloway 2013), homotypic S1 and S2 whisker representations were found to have overlapping projections
in M1 as well as in other subcortical structures such as striatum and pons. While it has been shown that
S2 projects to M1 in cats (Mori 1997), no study has characterized whether S1 and S2 projections overlap
in M1 of cats. In the more elaborated sensory cortex of the cat, parallel processing streams from each
sensory area may target the same general region of a downstream structure, while targeting separate
neurons within that region, accounting for our limited ability to detect S1-S2 convergence compared to
S1-M1 projections.

A related observation from our current dataset reveals that S1 and S2 forepaw projections were
distributed into three distinct clusters in the ventrobasal thalamus (specifically VPL). As shown in Fig. 2
and Fig. 7, a core region of VPL contained almost exclusively S1 labeling, while a shell region located
more dorsally in VPL contained both ST and S2 labeled terminal inputs and retrogradely labeled neurons.
A third area on the very dorsal edge of VPL contained almost exclusively S2 connections. These findings
nicely align with previous dual-retrograde tracing experiments from S1 and S2 forelimb in cats (Spreafico
et al. 1981). When analyzed with high resolution using our overlap analysis, these thalamic projections
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from S1 and S2 yielded very weak overlap despite occupying similar regional domains in VPL and having
overlapping receptive fields of the forepaw. In contrast, S1-M1 overlap in thalamus was equally as weak
as S1-S2, despite significantly robust S1-M1 overlap in striatum and pons. Together these data indicate
that (1) S1-M1 integration is critical feature within the feline striatum and pons, though not in thalamus
and (2) S1 and S2 may represent parallel processing streams in each of these subcortical structures.

Technical limitations

In our current study we observed different patterns in sensorimotor convergence which varied from
rodents. Primarily, in cats, we saw greater S1-M1 convergence, whereas in rodents we observed greater
S1-S2 convergence. Our findings here have two main caveats that limit making overly definitive
interpretations about their functional significance. First, whereas we injected the forepaw representation
in cats, our previous tracing studies largely targeted the whisker representations in rodents. These body
parts have very different behavioral roles and thus may have evolved unique neural circuit organization to
facilitate their specific needs. Second, the distance between these cortical representations varies between
the two species. In rodents, the whisker regions of S1 and S2 are spatially adjacent, whereas M1 is many
millimeters anterior. Thus, the higher S1-S2 convergence in striatum and pons may be due to a rule of
“cortical proximity”. We specifically chose the forepaw representation in cats, as the M1, S1 and S2
representations are equidistant, to mitigate effects of cortical proximity. In rodents, however, the M1 and
S1 forepaw representations are immediately adjacent with S2 significantly separated, which inherently
prevents an equivalent comparison of rodents to cats. Nonetheless, while more mapping studies for
different body regions in other species could reveal additional support for variations in cortico-subcortico
convergence patterns across different evolutionary lineages, our results indicate distinct differences in
the rules that govern sensorimotor corticofugal projection patterns in rodents and cats.
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Figures
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Figure 1

Representative example of cortical mapping and tracer injections from case TI-8. a Diagram illustrating
location of tracer injections into the forepaw representations of primary motor cortex (M1), primary
somatosensory cortex (S1), and secondary somatosensory cortex (S2). b Diagrams of cortical mapping
results, showing the forelimb/forepaw movements from M1 intracortical microstimulation (ICMS) as well
as receptive fields in S1 and S2 from case TI-8. Colors correspond to the receptive fields at different
cortical sites within S1 and S2. ¢ Nissl-stained coronal section showing location of M1 forepaw in TI-8.
Inset shows digital reconstruction of entire coronal section and location of injection sites of biotinylated
dextran amine (BDA,; injection shown in blue). ¢’ Brightfield photomicrograph showing BDA injection on
the adjacent serial section processed with DAB to visualize the tracer (see Methods). d,d’ Nissl (d) and
fluorescent (d) photomicrographs showing the location of Fluororuby (FR) injections into S1 forepaw. e,€

Page 23/31



Photomicrographs of Alexa-fluor 488 (AF) injections into the S2 forepaw. Coordinates relative to bregma.
Scale bars: T mmiin c.

s

Figure 2

Representative example of tracer labeling in the thalamus of case TI-8 (same case as injection sites
shown in Fig. 1). a Nissl-stained coronal section of thalamus. b Digital reconstruction showing labeling of
all three tracers in thalamus. Small dots represent anterogradely-labeled synaptic terminal boutons; large
dots represent retrogradely-labeled neuronal cell bodies. Colors correspond to different tracers (BDA, blue;
FR, red; AF, green). c-e Photomicrographs of BDA labeling in thalamus resulting from the M1 injection (c),
FR-labeling in thalamus from the S1 injection (d), and AF-labeling from the S2 injection (e).
Photomicrographs correspond to the lower-left (c), middle (d), and upper-right (e) insets in panel b,
respectively. Abbreviations: Hb, habenula; i.c., internal capsule; LP, lateral posterior nucleus; LGN, lateral
geniculate nucleus; MD, mediodorsal nucleus; o.t., optic tract; TRN, thalamic reticular nucleus; VB,
ventrobasal complex; VM, ventromedian nucleus; ZI, zona incerta. Scale bars: 1 mm in a, 250 mm in c.

Page 24/31



caudate

-4.20

Figure 3

Representative digital reconstruction of terminal labeling in striatum (caudate nucleus) of case TI-8.
Colors correspond to different tracers (BDA, blue; FR, red; AF, green). Note the dense intermingling of the

M1 (blue) and S1 (red) projections in the dorsolateral region. Coordinates relative to bregma. Scale bar: 1
mm.
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Figure 4

Representative overlap analysis of anterograde tracer labeling in striatum (caudate nucleus) from case
TI-8. Colors correspond to different tracers (BDA, blue; FR, red; AF, green). White bins represent overlap.
Bin size = 50mm?2. Each panel shows only two tracers, with M1 (blue) and S1 (red) in panel a, M1 (blue)
and S2 (green) in b, and S1 (red) and S2 (green) in panel c. Percentages represent proportion of total bins
containing overlap. Note the moderate overlap of M1 and S1 projections in the dorsolateral region shown
in panel a. Scale bars: T mm in a.
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Figure 5

Representative digital reconstruction of tracer labeling and overlap analysis of anterogradely labeled
terminals in claustrum of case TI-8. (a) Digital reconstruction of tracer labeling throughout anterior-
posterior extent of claustrum. Colors correspond to different tracers (BDA, blue; FR, red; AF, green). Small
dots represent terminal synaptic boutons, large dots represent neuronal cell bodies. Note the strong
presence of S1 projections. Coordinates relative to bregma. Scale bar: 1 mm. (b-d) Overlap analysis of
anterogradely labeled terminals. Colors correspond to different tracers (BDA, blue; FR, red; AF, green).
White bins represent overlap. Bin size = 50mm?2. Each panel shows only two tracers, with M1 (blue) and
S1 (red) in panel b, M1 (blue) and S2 (green) in ¢, and S1 (red) and S2 (green) in panel d. Percentages
represent proportion of total bins containing overlap. Note the moderate overlap of M1 and S1 projections
shown in panel b. Scale bars: 1T mm in a.
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Figure 6

Representative digital reconstruction of tracer labeling and overlap analysis of anterogradely labeled
terminals in the pontine nuclei of case TI-8. (a) Digital reconstruction of tracer labeling throughout
anterior-posterior extent of the pons. Colors correspond to different tracers (BDA, blue; FR, red; AF, green).
Small dots represent terminal synaptic boutons. Note the strong intermingling of M1, S1, and S2
projections. Coordinates relative to bregma. (b-d) Overlap analysis of anterogradely labeled terminals.
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Colors correspond to different tracers (BDA, blue; FR, red; AF, green). White bins represent overlap. Bin size
= 50mm2. Each panel shows only two tracers, with M1 (blue) and S1 (red) in panel b, M1 (blue) and S2
(green) in c, and S1 (red) and S2 (green) in panel d. Percentages represent proportion of total bins
containing overlap. Note the moderate overlap of all tracers. Scale bar: T mm in a.
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Figure 7

Representative digital reconstruction of terminal labeling in the striatum and claustrum (a), thalamus (b),
and pontine nuclei (c) of case TI-9. Note that in this case tracers were assigned to different cortical areas:
M1-BDA (blue), S1-AF (green), S2 FR (red). Scale bar: T mm in a and b, 500mm in c.
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Figure 8

Quantification of anterograde terminal labeling across all animals included in the final analysis (n=5). a
Analysis of total number of terminal synaptic boutons counted in the striatum, claustrum, thalamus and
pons for each cortical area injected across all animals included in the final analysis (not significant, 1-
way ANOVA, F = 1.85, p = 0.20). b Normalized distribution of anterograde terminal bouton labeling across
all subcortical regions for each cortical area injected (i.e. all M1 bars add up to 100%, all S1 bars add up
to 100%, etc.). Statistical analysis showed a significant effect (2-way ANOVA, interaction F = 43.24,
p<0.0001). Post-hoc Bonferroni comparisons showed M1 projections to striatum were significantly
stronger than S1 (t=8.11, p<0.001) and S2 (t=8.93, p<0.001), whereas in thalamus M1 projections were
significantly weaker than S1 (t=9.96, p<0.001) and S2 (t=11.47, p<0.001).
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Figure 9

Quantification of anterograde tracer overlap from sensorimotor cortex injections in cat and rat. a Injection
scheme from this study employing a triple tracer paradigm injecting M1, S1, and S2 in the same animal
with three different tracers. b Summary of overlap analysis using 50mmz2 bins, with a threshold requiring
two counts per bin revealed a significant effect (2-way ANOVA, interaction F = 4.00, p<0.01). Post-hoc
Bonferroni tests revealed that M1-S1 overlap was significantly greater than M1-S2 and S1-S2 in the
striatum (t=5.43, p<0.001 and t=5.38, p<0.001; respectively) and in the pons (t=3.44, p<0.05 and t=2.70,
n.s.; respectively). c Injection scheme showing location of anterograde tracer injections in rodents for
previous studies (see Table 1 in Leergaard et al., 2004 for information about injections and Figure 10 for
overlap data). d Graph summarizing findings from overlap analysis (bin size 50mm2) in rodent tracing
studies shows more S1-S2 overlap than M1-S1, that was significant in the pons (t=4.87, p<0.001).
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