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Abstract
Data on the monthly clinical episodes of malaria and prevalence from laboratory diagnosis of patients for malaria
infection was obtained from an array of data gathered from malaria parasite tests conducted on patients clinically
diagnosed for malaria in health centers within the study area in Akinyele Local Government Area of Ibadan city in
Nigeria, for years 1997, 1998, 1999, 2000, 2001 and 2005 (6years) which falls between years 1997-2005. Also, data was
gathered for climatic factors (rainfall, relative humidity, temperature and sunshine hours) for all years between years
1997 and 2005 (9years complete) from Geospatial Laboratory of International Institute of Tropical Agriculture IITA in
Ibadan, Oyo State, Nigeria.

Thereafter, we engaged statistical methods with computational support from Microsoft Excel version 2007, to generate
a climate based- simulation to predict periods of the years for which there were high malaria intensity for malaria. We
could not retrieve complete data for prevalence (laboratory positive results for tests) the month for October. So, we
proceeded to determine the correlation between clinical episodes and prevalence for the 6 years for which we retrieved
data.

The Pearson moment correlation coe�cient “r”between clinical symptomatic episode and positive outcomes of tests
(prevalence of infection) as computed from Microsoft Excel was +0.986265 This shows a high enough positive
correlation, upon which we could use the clinical episodes to compute of simulations to predict periods of high intensity
of clinical symptomatic episodes and which can then be related to the intensity for prevalence of malaria.

The statistical computations indicated high intensity of clinical episodes to correlate (correspond) with rise for the
climatic factors, and low intensities for lowered levels of most of the climatic factors for years 2002 and 2004, as they
both recorded positive ranges of correlation “r” values between clinical episode and climatic factors. This can be used to
predict periods of the year with high intensity of clinical episodes of malaria as our simulated prediction.

Then we conducted two test-runs using two observed variants in the climate based-yearly periods of high intensity
(those of years 1998 and 2001). The predictions indicated matches for periods of high intensity transmission using
statistical tool of Pearson’s moment correlation analysis derived relationships and other descriptive statistical attributes.
These range of correlative value matches were between the precise values of correlation coe�cients of the obtained
laboratory data and that of calculated predictive ranges of these values. Since the Pearson correlation between clinical
episode and prevalence of malaria was high (close to 1.0), these simulation can assist to predict prevalence of infection
obtained from the laboratory diagnosis. From our analysis and predictive simulations we suggest future extraction of
additional related data by other scientists to input into this simulation and run more tests with other support statistical
tools to further see how it perform. If successful, this simulative prediction of malaria transmission intensity can be built
into algorithm involving use of machine learning platforms.

Introduction
Malaria has persisted for a long period of time as one of the leading global health challenges, primarily prevalent in
tropical and sub-tropical countries of the world. It is one of the major causes of illness and death in sub-Saharan Africa
(World Malaria report, 2019; Dawak et al 2018; World Health Organization, 2022). Parasites of the genus Plasmodium
place a huge burden on human life as a result of the malaria disease they cause (Ozurumba et al, 2006), especially in
the tropics. Globally, approximately 214 million cases of malaria occur annually and 3.2 million people are at risk of
infection (Dawak et al 2018). In Nigeria, there is Nigeria high burden of vector borne diseases such as malaria (Okorie et
al, 2014). Malaria deaths and cases have been common among people living in tropical climatic countries and malaria
is one of the leading causes of deaths in these countries (Chimezie et al, 2020). Malaria incidence in Nigeria is neither
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close to eradication nor �rm control. Chimezie et al (2020) opined that malaria incidence in Nigeria rose at some period
over the last decade to hyper endemic levels while in some countries in the North Africa it got controlled or eradicated;
while positing factors like ecological, economic, infrastructural conditions, poor grass-root outreach, and accountability
issues  as part of the challenges. 

The range of malaria diseases is limited by climate to the warmer regions of the globe, and so anthropogenic global
warming (and climate change more broadly) now threatens to alter the geographic area for potential malaria
transmission, as both Plasmodium malaria parasite and Anopheles mosquito vector have highly-temperature dependent
lifecycles, while the aquatic immature Anopheles habitats are also strongly dependent on rainfall and local
hydrodynamics (Eckenberry et al, 2018).

Malaria is a disease resulting from infection by a Protozoan Plasmodium parasites (various species exist), (Ozurumba-
Dwight et al, 2020; WHO, 2022) and spread to people through the bites of infected female Anopheles mosquitoes.
Malaria is one of the most widespread vector-borne diseases, while about 8% of all cases are recorded in sub-Sahara
Africa, reappearing in areas were control efforts are effective (like in the developed western world where climate is cold,
and not conducive for the vector to breed well) and re-emerging in areas considered to be considered free from malaria
diseases (Ndamuzi et al, 2021). It is still a disease of notable impact in some countries.

It is well known that the morphological growth processes of mosquitoes strongly depend on ambient temperature, water
and availability of stagnant water bodies (Odu et al, 2021).

Several computational and statistically-mathematical approaches have been used to study and predict malaria
transmission and peak periods. Typical ones include mathematical modeling based on climatic parameters and data of
malaria cases (Eckenberry and Gumel 2018; Hoshen and Morse. 2004), negative binomial approach (Makinde et al,
2020), use of �eld based modeling study on ecological characterization of hourly-host seeking behavior and its
associated climatic variables in vector mosquito species (Yin et al, 2019), using mosquito surveillance and weather data
from regions or territories – such as that involving numerical simulation of non-autonomous model (Albelrazec and
Gumel, 2017), using related time series data (Shi et al, 2020) and use of machine leaning approach of different machine
learning classi�ers like Logistics regression LC, Random forest RF and K-Nearest Neighbor KNN (Odu et al, 2021) among
others.

For instance, a machine learning approach was used to classify this climate variability across the countries of sub-
Saharan Africa over a period of twenty-eight years in a study conducted by (Odu et al, 2021). These authors added that
the malaria incidence classi�cation model is an early detection mechanism that helps to monitor the spread of malaria,
in a unique data driven knowledge discovery system that will assist public health. The result showed non-seasonal
changes in three climatic factors (precipitation, temperature and surface radiation) signi�cantly contribute to the
outbreak of malaria.

In another study, Mariki et al, (2022) demonstrated machine learning models in diagnosing malaria using patient’s
symptoms and demographic features by extracting malaria diagnosis datasets in tow regions in Tanzania Morogoro
and Kilimanjaro. This study developed a regional speci�c malaria predictive model based on using machine learning
classi�ers. One key �nding in this study is that malaria transmission depends on climatic conditions that may affect the
number and survival of mosquitoes, such as rainfall patterns, temperature and humidity. Furthermore, the study
indicated that coughing and joint pain were signi�cant for malaria diagnosis in Morogoro, while dizziness and
confusion are important in the diagnosis of malaria in Kilimanjaro; and months that were in the rainy session or just
after the rainy session were signi�cant in malaria transmission. Similar study by David et al (2016) conducted in 2011
with data obtained from questionnaires and diagnostics done at the University of Maiduguri Teaching Hospital in
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Maiduguri town in Nigeria, using symptoms observed that vomiting had the highest occurrence at 100%. Other
symptoms such as fever, headache, joint pain and nausea ranked next to vomiting in occurrence with �gures of between
64.7% and 94.1%, while symptoms such as jaundice, loss of consciousness, weight loss, arthral�a, bleeding, pyrexia,
cough, backache, and reduced uterine output were the least in occurrence.  This study added that peak malaria
prevalence was recorded in the month of September and followed by June (15.58% and 14.02% respectively) while the
value was least for March followed by November (2.21% and 3.69% respectively).     

Malaria control in sub-Saharan Africa is lacking in disease maps which aids in guiding and effective targeting of
resources. Invariably, predictive models and the consequent disease maps needs supply of empirical data from health
information records, which are also neither adequately kept nor readily furnished to researchers.

Most malaria parasite transmission maps were developed during the optimistic “eradication era” which was eventually
shelved for the present “control era”, resulting from an inevitable paradigm shift. This is due to the prevailing socio-
economic problems plaguing the African continent and the Third World. The development and utilization of climate
based malaria predictive models and risk maps can be useful for pre-emptive interventions against the disease.

Recent epidemiological studies have con�rmed that the burden of malaria is still very well prevalent under conditions
that offer the risks of infection (Nyasa et al 2021;  Bhatt et al 2915;  Kimbi et al 2013), some of which could vary with
the various prevailing human, vector, environmental and climatic conditions.

In this study, we have used empirically gathered data on malaria incidence from clinics within the study area, to enable
us engage statistical computational approach to predict periods of high intensity of malaria transmission. The model
was also subsequently test-run for capability to predict intensity of clinical episode of malaria in comparison with the
actual �gures from the clinical episode of malaria. 

Objectives of study are to:

Use of statistical computational approach to predict malaria transmission pattern in the study area.

Test-run the model and determine nature of predictive ability based on the simulation performed.

Method
There was a collection of empirical data on yearly malaria incidence from malaria parasite tests conducted on patients
presumptively diagnosed for malaria in clinics within the study area in Ibadan, Oyo State, Nigeria; from a licensed
Medical diagnostic laboratory (FK International Diagnostic Laboratory) located in Akinyele Local Government Area of
the State in 2005. The data covered the period between 6th January, 1997 to 31st December, 2005, while a period in
between – of January 2002 to February 2004 was not retrieved- for which we made attempt to predict through our
simulative approach engaging Pearson’s correlation coe�cient analyses. 

The gathered data were estimates of the malaria parasite density (EMPD), an index conventionally deployed in
hospitals by medical practitioners for the management of malaria patients. The EMPD values ranged from +, 2+, 3+ and
4+ (for positive outcomes: PO whose total or overall PO is the prevalence of the disease) and – (for –ve or negative
outcomes: NO) of the obtained malaria parasite tests (MP) results. It is an approximate method for estimation of
parasite density and mostly used for routine laboratory diagnosis of malaria.

To enhance the construction of a climate-based predictive model for malaria transmission and intensity, a nine-year
empirical data on climatic factors prevailing in the city of Ibadan was retrieved from the Geospatial Laboratory, at the
International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. IITA is a research institute funded by International
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donor countries, agencies and foundations; and devoted to scienti�c research. Data on rainfall, temperature (minimum
and maximum), relative humidity (minimum and maximum) and amount of sunshine were all included in the retrieved
data that ranged from the period between the periods of January 1997 to December, 2005 (9 years data).  This is
notably, data for years 2002 to 2004, which we could not retrieve for malaria prevalence data, but present in the
gathered climatic data. 

Then, we selected two of the years having variants of the already known transmission pattern (the variants showed
divergences of either positively or negatively correlated in relation to relationship between malaria incidence and array
of climatic factors investigated; which were those of years 1998 and 2001now selected for the test-run). This was
because we had malaria incidence data gathered for these years, and we could check after our test run if our simulation
to predict did match the actual values.

The study area and study population:

The subjects who were sampled in the laboratory diagnostic test by Microscopy on blood smear were within the city of
Ibadan, precisely in Akinyele Local Government area. Ibadan is a city located in the Tropical rainforest belt in south
western Nigeria, with mean total rainfall of approximately 1230mm, mean daily temperature of 26.460C and relative
humidity of 74.53%. The city enjoys rainfall showers for at least 8 – 9 months annually, a feature of most cities in the
Tropical rainforest belt of the globe. There are two distinct seasons of Wet season (between March and October) -
through this can slightly overlap in the following month and Dry season (between November and February). This city is
located on GPS coordinates of approximately 70 22’ 36.24960N and 30 56’ 23.22960E (with slight variations depending
on the GPS instrument used) (LatLong.net, 2022).

A limitation to this study comes from extensiveness of retrieved data.

I had no access to the age and sex of the sampled subjects. This was a restriction on how further extensive I can
analyze that data obtained. So, it was not possible to stratify my analysis based on age and sex, to see what the picture
looks like when assessed from these angles. However, I did an overview from which other studies can be done from
other dimensions and the results and observations future synchronized in future.

Statistical analysis and computations

All gathered data on incidence and climatic factors were entered into Microsoft Excel Statistical Package (version 2007)
and used for various descriptive analyses for mean, standard deviation, variance, rank, maxima and minima values.
Comparisons between groups were done using Pearson moment correlation coe�cient values which were consequently
test-run.

Results
Table 1: Monthly Incidence and EMPD values and other deduced statistical parameters
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Months Clinical
Symptomatic
Episode

                              EMPD values Total for
Positives

Total for
Negatives

 Number
    of
years       +       2+      3+        4+

January
 
Mean ±
SD

36
 
7.2 ±3.9

11
 
2.2±1.2

13
 
2.6±2.0

1
 
0.2±0.4

0
 
0

25
 
5.0±2.3

11
 
2.2 ±2.2

6
 
-

February
 
Mean 

41
 
8.2± 5.8

15
 
3.0± 4.1

19
 
3.8± 1.7

1
 
0.2±0.4

0
 
0

35
 
7.0±4.7

6
 
1.2. ±1.2

6
 
-

March
 
Mean

80
 
13.3± 5.0

34
 
5.7±2.4

22
 
3.7± 3.5

0
 
0

0
 
0

56
 
9.3± 3.8  
     

24
 
4.0± 2.9

6
 
-

April
 
Mean

76
 
12.7± 6.0    
            

37
 
6.2± 3.0

21
 
3.5±3.6  
    

2
 
0.3±0.8
    

1
 
0.2±0.4

61
 
10.2±5.4  
      

15
 
2.5±1.6  
          

6
 
-

May
 
Mean

110
 
18.3±16.9    
                     
                     
             

53
 
8.8±9.7

24
 
4.0±3.2

1
 
0.2±
0.4

0
 
0

78
 
13.0±11.5

32
 
5.3±5.7

6
 
-

June
 
Mean

120      
 
20.0±6.6    

59
 
9.8±2.3
 

27
 
4.5±2.6  
             
             
         
     

0
 
0

0
 
0

86
 
14.3±3.0  
       

34
 
5.7±4.3  
        

6
 
-

July
Mean

 140
23.3±11.2   

72
12.0±7.3
    

40
6.7±2.6  
   

5
0.8±0.7
     

1
0.2±0.4
    

118
19.7±8.8  
        

22
3.7±2.9  
        

6
-

August
 
Mean

159 
 
26.5±14.6    
             

82
 
13.7±9.1
  

44
 
7.3±3.5  
  

2
 
0.3±0.8
           
 

0
 
0

128
 
21.3±11.0
        

31
 
5.2±4.8  
        

6
 
-

September
Mean

112 
18.7±9.8   

44
7.3±3.8  
 

37
6.2±2.7  
         

2
0.3±0.5
            

0
0          

83
13.8±5.7  
    

29
4.8±4.2  
        

6
-

October
 
Mean

110
 
-

Na
 
-

Na
 
-

Na
 
-

Na
 
-

Na
 
-

Na
 
-

6
 
-

November
Mean

129
12.5±8.0      
                     
                     
         

50
8.3±4.7  
             
             
             
             
             
             
           

44
7.3±2.54

2
0.3±0.5

0
0

96
16±4.9

33
5.5±4.7

6
-

December
Mean

63
12.6±7.1      
                     
                     
       
 

25
5.0±2.1  
             
             
             
             
             
             
              

16
3.2±3.1

3
0.6±0.8

0
0

44
8.8±4.3

19
3.8±5.2

6
-
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TOTAL 1176 482        
             
             
             
             
             
           
 

 307 19 2  810 283 -

Mean 98.0 43.8 27.9 1.7 0.2 73.6 23.6 -
SD 38.8 22.4 11.4 1.4 0.4 33.2 9.6 -

 
*Pearson moment correlation coefficient “r” between Clinical symptomatic episode and positive outcomes of
tests (Prevalence of infection) as computed from Microsoft Excel was =  + 0.986265

This shows a high enough positive correlation, despite the incomplete data for October for the prevalence, which we
then left out of entry (Laboratory Test results conducted on the clinically diagnosed patients for October was not found
for some years, so we left it out).

Based on this high correlation “r” value, we then used the clinical episodes for our computational simulation to predict
the period of the year of high intensity of clinical symptomatic episodes for two (2) years 2002 and 2004 (for which we
had no retrieved laboratory data). Then, we used years 1998 and 2001 for which we had retrieved laboratory data, to
test run our simulation to see if the simulation matched in terms of predicted period of the year (in terms of the season
of the year) for which intensity of clinical symptomatic episodes of malaria was comparatively high.

Table 2: Predictive range of values for Pearson’s correlation coefficient relating to the incidence of 
                     Malaria and the climatic factors for the years in which data was not obtained.
                              Using 2000 (r +) for Incidence as (A); 2001 (r-) for Incidence as (B)
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 Months 2002(A) (r +)   2002 (B) (r -)  2003 (A) ( r +)  2003 (B) (r -) 2004 (A) (r +) 2004(B) (r -)

Jan  2 11 2 11 2 11

Feb 1 18 1 18 1 18

Mar 11 19 11 19 11 19

Apr 17 9 17 9 17 9

May 20 12 20 12 20 12

Jun 17 19 17 19 17 19

Jul 19 28 19 28 19 28

Aug 24 32 24 32 24 32

Sep 18 11 18 11 18 11

Oct 12 22 12 22 12 22

Nov 23 22 23 22 23 22

Dec 6 - 6 - 6 -

Mean 14.1667 18.4545 14.1667 18.4545 14.1667 18.4545

SD 7.779 7.3670 7.779 7.3670 7.770 7.3670

N 12 11 12 11 12 11

r1 0.57995 0.4660 0.3139 -0.2209 0.3791 -0.7904

r2 0.3795 0.0196 -0.2156 -0.1876 0.3614 -0.2272

r3 -0.7098 -0.4579 -0.6786 -0.5211 -0.6742 -0.4783

r4 0.8093 0.3006 0.7539 0,5124 0.7928 0.4070

r5 0.5821 0.0898 0.3665 0.5177 0.5947 0.1238

r6 0.4291 -0.3883 0.1275 -0.3582 -0.4162 -0.6649

Mean 0.589 0.220 0.305 -0.062 0.532 0.170

SD 0.152 0.176 0.345 0.340 0.177 0.176

Total  2.345 0.877 1.218 -0.249 2.128 0.679

Rank P1 N1 P3 N3 P2 N2S

 
Predictive range correlation coefficient ‘r’ values:
Year 2002:  +0.220 to    +0.589 (Positive correlation)
Year 2003:    -0.062 to +0.305   (Less of negative to more of positive correlation)
Year 2004:    +0.176   to   +0.177 (Positive correlation)
N: Number of months
P1-P3: Rank for r + column
N1-N3: Rank for r – column
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Table 3: Test-run of the predictive simulation for malaria transmission pattern using the                          
      year 1998 (for test-run)                      
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  1998 r+ve evaluation
(from year 2000
values)

1998 r--ve evaluation from year 2001
values

 

Jan  2 11

Feb 1 18

Mar 11 19

Apr 17 9

May 20 12

Jun 17 19

Jul 19 28

Aug 24 32

Sep 18 11

Oct 12 22

Nov 23 22

Dec 6  

Total 170 203

Mean 14.167 18.455

SD 7.779 7.367

N 12 11

                 Correlation values Mean from this Table Mean From Table
5

R1
 

0.5532                      
   

1.4046 (+)0.9789±0.6020 0.286

R2 0.1658                      
  

-0.3273 (+)0.0808±0.3486 0.311

R3 -0.8604                    
    

-0.7 (+)0.7802±0.1134 -0.108

R4 0.6963                      
   

0.4045 (+)0.5504±0.2063 0.281

R5 0.6998                      
   

0.4955 (+)0.5977±0.1445 0.392

R6 -0.1274                    
    

-0.6864 (+)0.4069±0.3953 -0.058

Using all 6 r values for the 6 climatic factors

Mean  0.1879 0.0985  

SD 0.6087 0.8237

Using only the 4 r values in the transmission defining climatic factors

Mean  0.5288 0.4943  

SD 0.2514 0.7099
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Table 4: Test-run of the developed bio-mathematical predictive model for climate based                            
        malaria transmission pattern using the year 2001 (for test-run).
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  2001 r+ve evaluation
(from year 2000 values)

2001 r-ve evaluation from year 2001 values  

Jan  2 -

Feb 1 -

Mar 11 19

Apr 17 17

May 20 53

Jun 17 23

Jul 19 39

Aug 24 51

Sep 18 38

Oct 12 25

Nov 23 31

Dec 6 24

Total 170 320

Mean 14.167 32

SD 7.779 12.,806

N 12 10

                 Correlation values Mean from this Table Mean From Table 5

R1   0.472 0.2546 (+) 0.3633±0.1537 -0.105

R2 0.2308 -0.3455 (-) 0.0574± 0.4075 0.12

R3 -0.6993 -0.5758 (-)0.6376±0.0873 -0.474

R4 -0.1364 -0.4909 (-)0.3137±0.2500 -0.474

R5 -0.085 -0.1515 (-)0.0933±0.0824 -0.453

R6 -0.6505 -0.3091 (-)0.4798±0.2414 -0.517

Using all 6 r values for the 6 climatic factors

Mean  -0.1364 -0.2697  

SD 0.4683 0.2961

Using only the 4 r values in the transmission defining climatic factors

Mean  0.1329 -0.1379  

SD 0.2741 0.3231

       

Note: r1 to r6 represents the investigated six climatic factors- rainfall, minimum and maximum temperature,
minimum and maximum relative humidity and amount of sunshine respectively.
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Table 5: Pearson’s correlation coefficient values (r1 to r6) indicating the relationship                        
  between incidence of malaria and the climatic factors under study
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 Month Years and values for Clinical symptomatic episodes of malaria  

1997 1998 1999 2000 2001 2005  

Jan  11 3 9 2 11 -  

Feb 4 9 9 1 18 -  

Mar 5 5 11 15 11 19  

Apr 8 4 21 17 9 17  

May 2 4 19 20 12 53  

Jun 15 13 15 17 19 23  

Jul 9 11 34 19 28 39  

Aug 12 7 33 24 32 51  

Sep 13 9 23 18 11 38  

Oct 13 11 27 12 22 25  

Nov 6 19 28 23 22 31  

Dec 14 4 15 6 - 24  

Total 112 105 266 170 203 320  

Mean 9.33 8.75 22.17 14.17 18.45 32  

SD 4.31 4.69 9.01 7.78 7.37 12.81  

Rank  5 6 2 4 3 1  

Pearson correlation coefficient “r” values Mean Total

 r1  0.336                   0.286 0.624 0.630      
     

-0.105 0.022 0.299±0.276    
    

1.793

r2 0.326                   0.311 0.073 0.555      
     

0.120 -0.519 0.144±0.335 0.866  

r3 -0.449                  -0.108 -0.823 -0.628      
     

-0.474 -0.604  -0.365±0.423  
     

-2.188  

r4 0.398                   0.281 0.808 0.781      
  

-0.474 0.613 0.406±0.426    
  

2.434  

r5 0.442                    0.392 0.699 0.589      
   

-0.453 0.618 0.381±0.387
        
 

2.287  

r6 -0.187                   -0.058 -0.627 -0.441    
  

-0.517 -0.419 -0.375±0.197  
  

-2.250  

For all 6 climatic factors   (Further computations on Pearson’s moment correlation coefficient “r”)  

  1997 1998 1999 2000 2001 2005    

Mean 0.145                                  0.184 0.126   0.248 -0.313 -0.048  

SD 0.338                        
              
 

0.193 0.647 0.560 0.237 0.529  

Total
r

0.867                                
  

1.105 0.7542 1.486 -1.876 -0.289  
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r1: Pearson correlation coefficient value (clinical episode with rainfall)
r2: Pearson correlation coefficient value (clinical episode with minimum temperature)
r3: Pearson correlation coefficient value (clinical episode with maximum temperature)
r4: Pearson correlation coefficient value (clinical episode with minimum relative humidity)
r5: Pearson correlation coefficient value (clinical episode with maximum relative humidity)
r6: Pearson correlation coefficient value (clinical episode with sunshine).

Computational process *1(a-f), leading to the predictive (simulative) analysis (Refer to Tables 2, 3 and 5)

(a). Correlation coe�cient “r” analysis of the relationship between clinical episode and the engaged six climatic factors
for transmission pattern for all the years of gathered data (presented on Table5).

(b). Estimation of various descriptive values comprising the mean and standard deviation of all “r” values (r1 to r6 in
this case) for all the years of gathered data to determine “r” values from the �eld (presented on Table5).

(c ). Selection of the two extremely divergent years form Table 5, the one with the highest positive correlation “r” value
(coded r+ve) and the second with the least “r” value (coded r-ve). 

(d). Engaging each of the investigated climatic factors for the years of unknown periods of high intensity in a
correlation coe�cient  “r” analysis with the incidence values for each of the months of the years already coded as r+ve
and r-ve respectively (presented on Table 2).

(e). Estimation of the various descriptive values comprising the mean and standard deviation values for each of the 2
extremely divergent years (presented on Table 2).

(f). Estimation** of the range of obtained individual and grand “r” values (Table 2).

Computational process 2 in the test-run is as follows (Tables 3 and 4).

We engaged steps *1(a-f) steps a-f from Process*1.

(g). Selection of two of the years of variants which are the already known period of the year with high intensity of
transmission showing divergence (either positively or negatively correlated with respect to the relation between clinical
episode and array of climatic factors investigated) (years 1998 and 2001 were randomly selected for the test-run), since
we had malaria incidence data gathered for these years, and we could check after our test run if our simulation to
predict did match the actual values.

(h). Comparison of all the computed predictive range of “r” values on each of Tables 3 and 4 with the actual “r” values
(on Table 5) earlier obtained from various correlation analysis from the �eld.

Thus, two test-runs were conducted.

Discussion
Based on a Pearson moment correlation coe�cient “r” analysis previously conducted on all the years in relation to the 6
engaged climatic factors, the obtained order of decreasing “r” values was: minimum relative humidity > maximum
relative humidity > rainfall > minimum temperature > maximum temperature > sunshine hours ( “r” value using both
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mean and total “r” values for comparison) ( +0.41 and +2.43 > +0.38 and +2.29 > + 0.30 and +1.79 > + 0.14 and +0.87 >
-0.37 and -2.19 > -0.38 and -2.25 for the “r” values of each of the  respectively listed climatic factors above, obtained
from the study area) (Figures 1 and 2; Table 5).

This implies that relative humidity, rainfall, minimum temperature and maximum temperature, were the climatic factors
(coded 4ecf) that were observed to be positively correlated (with a positive relationship) with values for clinical episodes
of malaria for the period of data gathered. As such, they appeared to be the major de�ning factors for clues to periods
of high intensity of malaria transmission in the study area.

From Table 1, involving part of the predictive model whose data were not retrieved, the order of increasing correlation
with the climatic factors is:

2002 (r+ve) <  2004 (r+ve) < 2003 (r+ve) – in terms of all the r+ve correlation comparisons [ 0.589 ± 0.152 and 2.354
(P1) < 0.532 ± 0.177 and 2.128 (P2) < 0.305 ± 0.345 and 1.218 (P3) respectively for mean and total “r” values ], and
2002 (r-ve) < 2004 (r-ve) < 2003 (r-ve) – in terms of the “r-ve” correlation comparison [ 0.220 ± 0.176 and 0.877 (N1) <
0.170 ± 0.176 and 0.679 (N2) < -0.062 ± 0.340 and -0.249 (N3) respectively for the mean and total “r” values in the “r-ve”
analysis ]. Thus, the predictive range of correlation coe�cient “r” values for years 2002, 2003 and 2004 all enumerated
beneath Table 2  indicates only year 2003 to have the highest possibility or likelihood of a negative correlation (
predictive range of  r = - 0.062 to +0.305) with the six climatic factors engaged. 

The degree of �tting-in (match) was more noticed when all engaged climatic factors (6cf) were used for the model than
when only the ascertained and previously determined actual climatic factors  (4ecf in this study) that in�uenced the
periods of high intensity transmission of the disease in the study area. The wider the pool of climatic factors engaged in
the model, the more the level of �tting-in or accuracy. Hence, the actual periods of high intensity transmission de�ning
climatic factors were used as a check within the simulation and to create a broader picture of understanding of the
relationship amongst the varying groups of factors (Table 2).

The statistical computations indicated high intensity of clinical episodes to correlate (correspond) with rise for the
climatic factors, and low intensities for lowered levels of most of the climatic factors for years 2002 and 2004, as they
both recorded positive ranges of correlation “r” values between clinical episode and climatic factors. This was used to
predict periods of the year with high intensity of clinical episodes of malaria as our simulated prediction.

The four climatic factors we found to determine the period of high intensity of transmission which have linkages with
the provisions or enabling of a humid (wet) condition in the environment (minimum and maximum relative humidity,
rainfall and minimum temperature),. They enhance the provision of suitable conditions for the vector to breed and
participate in the process of transmission through infection and re-infection of unsusceptible and susceptible humans
recorded. 

Similar �nding from Mariki et al (2022) opined that malaria transmission depends on climatic conditions that may
affect the number and survival of mosquitoes, such as rainfall patterns, temperature and humidity. This study further
observed that symptoms were important in the diagnosis of malaria in Kilimanjaro province of Tanzania in the months
of rainy session or just after the rainy session, during which they were signi�cant in malaria transmission.

In a related �nding from the study of Abdelrazec and Gumel (2017), it was reported that observed peak mosquito
abundance for temperature and rainfall values recorded for months of July and August in Peel region of Ontario in
Canada. These are in the season of summer in Canadian which is called the rainy season in the hot tropical and sub-
tropical climates where malaria is a more common disease and endemic here. A related �nding from a study by David et
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el (2016) revealed that Peak malaria prevalence was recorded in the month of September and followed by June (15.58%
and 14.02% respectively) while the value was least for March followed by November (2.21% and 3.69% respectively). 

Singh et al (2019) used a dynamic model (VECTR) for malaria transmission that accounts for the in�uence of
population and climatic conditions to investigate malaria transmission dynamics for a highly endemic region in India
(State of Odisha) to do numerical simulations for years 2000-2013 and found out that temperature, adult mosquito
population and infective biting rates have increased over this period and malaria vector abundance higher during the
summer monsoon season. The peak malaria transmission occurred when the monthly mean temperature is in the range
of 28-290C and monthly rainfall accumulation in the range of 200-360mm.

According to Stuckey et al (2013), evaluating the effectiveness of malaria control interventions on the basis of their
impact on transmission is increasingly important as countries move from malaria control to pre-eradication programs.
They added that mathematical modeling can examine relationships between malaria indicators, allowing translation of
measured data into measures of transmission, as simulations show nature of statistical correlation, allowing direct
comparisons of malaria transmission using data collected across a range of transmission intensities and seasonal
patterns.

 

Test-run of predictive analysis as simulated

The test-run was necessary in order to check the correctness of the predictions on periods of high malaria intensity
made for years 2002, 2003 and 2004, and the capability (effectiveness) of the model. It was more of a validation of
previous predicted results and from the model. Basically, the procedures in the sequence of operations earlier outlined
were followed up to the stage of estimation of the range in the obtained results. Thus, comparison of predicted ranges
of “r’ values and the actual �eld values in the case of the test-run could be conducted unlike in the earlier predictions
done for years 2002, 2003 and 2004. This is because there were actual �gures from the �eld to compare with and help
validate results for consistency.

Predictive correlation ‘r’ value ranges for 1998 and 2001 are given below: 

(I) for 1998 are as follows (Table 3):

(+) 0.0985 to (+) 0.1879 (for all 6cf)

(+) 0.4043 to (+) 0.5288 ± 0.2178 (for only 4ecf)

Actual values of correlation coe�cient ‘r’ values from the incidence obtained from �eld studies:

(+) 0.184 ± 0-193 (for all 6cf)

(+) 0.318 ± 0.044 (for 4ecf).

(II) For 2001 are as follows (Table 4):

 (-) 0.2975 to (-) 0.1364 (using all 6cf)

(-) 0.1379 to (+) 0-1329 (using only 4ecf).

Actual values of correlation coe�cient ‘r’ values for the year 2001 from the incidence obtained from �eld data:
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(-) 0.313 ± 0-235 (using all 6cf)

(-) 0-221 ± 0-242 (using 4ecf).

Note: The incidence for year 2005 was used for the r+ve and r-ve evaluations of incidence in relationship with climatic
factors of year 2001 by Person correlation coe�cient analysis.

(  ) Brackets have deliberately been for easy understanding, clarity positive and negative correlative values with respect
to the two seasons of the year. 

The year 2001 incidence results showed least correlation coe�cient ‘r’ value by inspection of results obtained (on Table
5), next to that of year 2005 (minimum ‘r’ value for all 6 years studied) form the actual values. Hence, it (year 2001) was
utilized for the evaluations.

Test run for 1998 (Table 3)

A comparison of the actual correlation coe�cient ‘r’ values (on Table5 ) and the predictive correlation ‘r’ values for 1998
of (+0.184 ± 0-.93) on Tables 2 and 3 (using all 6climatic factors - 6cf) is in line with the results from the model.

Firstly, both results from the actual values shown on Table 5 (for 1998) and the predictive one on Table 2, both indicate
a positive correlation between malaria incidence and the six climatic factors. This shows exactness in this area of
prediction (100%).

Secondly, the actual (+) 0.184 ± 0.193 ‘r’ values (for all 6cf) is well within the predictive (+) 0.0985 to (+) 0.1879 ‘r’ range
of values (for all 6cf). The former (actual values) �ts in 100% within the latter’s predictive range.

A predictive analysis of the years 2002, ’03 and ’04 (on Table 2) in which data on incidence were not obtained, indicated
a most likely tendency towards high intensity of transmission that was related to the seasons, with respect to the
climatic factors in�uencing it and a  yearly non-perennial high intensities in transmission for the years 2002 and 2004
with positive ‘r’  value  ranges, while year 2003 predictably had the most likely tendency for a non-season related high
intensity transmission (range of ‘r’ = -0.062 to +0.305) amongst the three years. This formed the basis for the
“developed mathematical predictive model”, which was also test-run as a check for its predictive outcome of which was
alright and in line with actual �eld ‘r’ values.

The capacity of climate based simulations to predict periods of high intensity of malaria transmission could be of
bene�t to control measures in areas of policy formulation, planning and proper execution of such control measures in
such endemic and bio-geographical area; with added cost-bene�t attributes in addition to possibly reducing incidence
(perhaps to insigni�cant levels in some or most areas), and associated health and economic burdens..

 The predictions from the model on Table 3 indicate a positive correlation and association of malaria incidence with
climatic factors (season related high intensity of malaria transmission). This is exactly what was previously obtained
from the actual results on Table 2.

In view of the foregoing, the predictive simulation for malaria intensity was able to predict periods of high intensity of
transmission correctly. In terms of the precision of the exact value (which is a greater or more demanding task, of- the
extent of association (correlation) between malaria incidence and climate, the capability is alright. The predictive range
of correlation coe�cient ‘r’ values was well within the range of actual ‘r’ values’ obtained from the �eld studies, which
was used to test-run for the exact relationship existing between clinical episode of malaria and climatic factors probed
for.
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Test run for 2001 (Table 4)

A comparison of the actual correlation coe�cient ‘r’ values for 2001 and the predictive one on Tables 2 and 5 of the
constructed predictive model indicate the following:

Firstly, the results from the actual values shown on Table 5 (for year 2001) showed a negative correlation between
clinical episode and the 6cf combined. This indicates exactness in this area of prediction (100%).

Secondly, the actual (-) 0.313 ± 0.235 ‘r’ values for all 6cf is well within the predictive (-) 0.2697 to (-) 0.1364 ‘r’ value
range for all 6cf (from Tables 4 and 5 respectively). When values are taken to one decimal place, it �ts in 100% within
the predictive range.

These deductions above indicate a negative correlation and association of clinical episode of malaria with the engaged
climatic factors (non-seasonal regarding mean correlation with the engaged 6 climatic factors). A cross-check also,
showed that this was exactly what had been previously obtained from the actual �eld data on Table 5 (graphically
depicted in Figure 2).

Conclusion
In view of the foregoing analysis and discussions, the simulation method was able to predict the periods of high
intensity for malaria transmission. In terms of the precision of the exact value of the extent of association (correlation)
between clinical episode of malaria and climate, the actual correlation “r” values were within the predictive ranges of “r”
values. From our analysis and predictive simulations we suggest future extraction of additional related data by other
scientists to input into this simulation and run more tests with other support statistical tools to further see how it
perform. If successful, this simulative prediction of malaria transmission intensity can be built into algorithm involving
use of machine learning platforms. We encourage other researchers working on other approaches to predictive
simulations for intensity of malaria transmission and other diseases, as we are all in a scienti�c community where we
share ideas and build-up on insights.

Studies that emerge with climate-based predictive simulations to predict periods of high intensity of malaria
transmission, if found to maintain predictive performance, could be of bene�t to preventive medical and public
healthcare, and in planning to support avenues for control. Then seek how to write software program on such predictive
simulations to enhance ease of usage, where the performance shows that it is sustained.
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Figure 1

Monthly malaria incidence for the years 1997-2001 & 2005



Page 23/23

Figure 2

Pearson’s correlation coe�cient values of incidence with the six investigated climatic parameters
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