With the accumulation of data, it is possible to study the long-term variation of Fluxgate Magnetometers (FGM) of High Precision Magnetometer (HPM) onboard the China Seismo-Electromagnetic Satellite (CSES). The calibration method of HPM depends on an assumption that the linear parameters of FGM, including the gain factors, the offsets, and nonorthogonal angles are stable. However, HPM exhibits some unexpected trends in the scalar residuals when processed according to the assumption. Study on the residual finds out that under changing space thermal conditions, the non-orthogonal angles of FGM change periodically, suggesting that the data calibration method we used before should be modified. A multi-dimensional polynomial model is established for defining the change of nonorthogonal angles of FGM as a function of the sun incidence angles, geographic latitude and sensor temperature. Apply the polynomial model to data from August 2018 to May 2021, the standard deviation of the scalar residuals is reduced to around 0.5 nT and tends to be more random and in line with the normal distribution. Meanwhile, the variation trend in gain factors and offset factors are eliminated. Results show that the model can correctly reflect the period variation of the non-orthogonal angles of FGM with the space thermal conditions.