Aloisi, I., Parrotta, L., Ruiz, K.B., Landi, C., Bini, L., Cai, G., Biondi, S., Del Duca, S., 2016. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts. Front Plant Sci., 18(7):656
Bhargava, A., Schuka, S., Ohri, D., 2006. Chenopodium quinoa – an Indian perspective. Ind. Crops Products, 23(1):73-87.
Burrieza, H.P., Rizzo, A.J., Moura Vale, E., Silveira, V., Maldonado, S., 2019. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chem., 293:299-306.
Dakhili, S., Abdolalizadeh, L., Hosseini, S.M., Shojaee-Aliabadi, S., Mirmoghtadaie, L.,2019.
Quinoa protein: Composition, structure and functional properties.Theor. Appl. Genet., 112(8):1593-600.
Das, S.S., Gauri, S.S., Misra, B.B., Biswas, M. D.,2013. Purification and characterization of a betanidin glucosyltransferase from Amaranthus tricolor L catalyzing non-specific biotransformation of flavonoids. Plant Sci. 211:61-9.
David, E.J., Yung, S.H., Damien, J. L., Sandra, M. S., Bo, ., Theo, J. A. B., Hajime, O., Katsuhiko, M., Craig, T., Michell, N.S., Najeh, M. K., Ryan, R. R., Aaron, R. S., Nadine, D., Berin, A.B. et al., 2017. Corrigendum: The genome of Chenopodium quinoa. Nature, 542, 307–312.
Dehaye, L., Duval, M., Viguier, D., Yaxley, J.Job., 1997. Cloning and expression of the pea gene encoding SBP65, a seed-specific biotinylated protein.Plant Mol Biol., 35(5):605-21.
FAO, IFAD, WFP. The state of food security in the world, 2014: strengthening the enabling environment to improve food security and nutrition[EB/OL]. http://www.fao.org/, 2014-12-11.
Fiallos-Jurado, J., Pollier, J., Moses, T., Arendt, P., Barriga-Medina, N., Morillo, E., Arahana, V., de Lourdes Torres, M., Goossens, A.L.,2016. Saponin determination, expression analysis and functional characterization of saponinbiosynthetic genes in Chenopodium quinoa leaves.Plant Sci., 250:188-197.
Fuentes, F.F., Bhargava, A., Martinez, E.A., 2012. Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J. Agric. Sci., 150:702-716.
Galau, G. A., Hughes, D. W., Dure, L., 1986. Abscisic-acid induction of cloned cotton late embryogenesis-abundant (Lea) Messenger-Rnas. Plant Mol. Biol., 7: 155–170.
Gomez-Caravaca, A. M., Iafelice, G., Verardo, V., Marconi, E., Caboni, M. F. Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd.). Food Chem. 2014, 157, 174−178.
Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G., Soppe, W.J., 2012. Molecular mechanisms of seed dormancy. Plant Cell Environ., 35: 1769–1786
Han, J.Y., Kim, M.J., Ban, Y.W., Hwang, H.S., Choi, Y.E., 2013. The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol., 54(12):2034-46.
Hong, B., Uknes, S.J., Ho, T.H.,1988. Cloning and characterization of a cDNA encoding a mRNA rapidly-induced by ABA in barley aleurone layers.Plant Mol. Biol., 11(4):495-506.
Hu, Y., Zhang, J., Zou, L., Fu, C., Li, P., Zhao, G., 2017. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Int. J. Biol. Macromol., 99: 622–629.
Isayenkova, J., Wray, V., Nimtz, M., Strack, D., Vogt, T., 2006. Cloning and functional
characterisation of two regioselective flavonoid glucosyltransferases from Beta
vulgaris, Phytochemistry, 67: 1598–1612.
Janek, K., Niewienda, A., Wöstemeyer, J., Voigt, J., 2016.The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors.Food Chem., 15, 211:320-8.
Jo, H.J., Han, J.Y., Hwang, H.S., Choi, Y.E., 2017. β-Amyrin synthase (EsBAS) and β-amyrin 28-oxidase (CYP716A244) in oleanane-type triterpene saponin biosynthesis in Eleutherococcus senticosus. Phytochemistry, 135:53-63.
Konishi, Y., Hirano, S., Tsuboi, H. , Wada, M., 2004. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Biosci. Biotechnol. Biochem., 68: 231–234.
Kuljanabhagavad, T. , Wink, M., 2009. Biological activities and chemistry of saponins from Chenopodium quinoa Willd. Phytochem. Rev., 8:473–490
Lintschinger, J., Fuchs, N., Moser, H., Jäger, R., Hlebeina, T., Markolin, G., Gössler, W.,1997. Uptake of various trace elements during germination of wheat, buckwheat and quinoa. Plant Foods Hum. Nutr. , 50(3):223-37.
Lopes, C.O., Barcelos, M.F.P., Vieira, C.N.G., de Abreu, W.C., Ferreira, E.B., Pereira, R.C., de Angelis-Pereira, M.C., 2019.. Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet. J. Food Sci. Technol., 56(1):40-48.
Lim, J., Lim, C.W., Lee, S.C., 2018.The Pepper Late Embryogenesis Abundant Protein, CaDIL1, Positively Regulates Drought Tolerance and ABA Signaling. Front Plant Sci., 9:1301.
Mariana, A., Silva, A., Juriaan, R., Timothy, J., Dennis, J.M. F., Wilco, L., Henk, H. , 2019. Structural Plasticity of Intrinsically Disordered LEA Proteins from Xerophyta schlechteri Provides Protection In Vitro and In Vivo.Front Plant Sci., 10: 1272.
Massawe, F., Mayes, S. & Cheng, A., 2016. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci., 21:365–368
Medina-Meza, I.G., Aluwi, N.A., Saunders, S.R., Ganjyal, G.M.,2016. GC-MS Profiling of Triterpenoid Saponins from 28 Quinoa Varieties (Chenopodium quinoa Willd.) Grown in Washington State. J. Agric. Food Chem., 64(45):8583-8591.
Mohammad, S.S., Katayoun, Z., Tahmineh, L., Mohammad, A., Malboobi, M.V., 2018. Functional Assessment of an Overexpressed Arabidopsis Purple Acid Phosphatase Gene (AtPAP26) in Tobacco Plants. Iranian J. Biotech. , 16(1):e2024:31-41.
Mundy, J., Rogers, J.C., 1985. Selective expression of a probable amylase/protease inhibitor in barley aleurone cells: comparison to the barley amylase/subtilisin inhibitor. Planta, 169:51-63.
Ne´e, G., Xiang, Y. and Soppe, W.J., 2017a. The release of dormancy, a wake up call for seeds to germinate. Curr. Opin. Plant Biol., 35: 8–14.
Oelke, E.A., Putnam, D.H., Teynor, T.M., Oplinger, E.S., 1992. Quinoa. Alternative Field Crops Manual. University of Wisconsin-Extension. Madison, Wisconsin/center for Alternative Plant and Animal Products, University of MInnesota Extension Service, St Paul, Minnesota
Pertl-Obermeyer, H., Trentmann, O., Duscha, K., Neuhaus, H.E., Schulze, W.X., 2016. Quantitation of Vacuolar Sugar Transporter Abundance Changes Using QconCAT Synthtetic Peptides.Front Plant Sci., 12;7:411.
Rai, A., Suprasanna, P., D'Souza, S.F., Kumar, V., 2012. Membrane topology and predicted RNA-binding function of the 'early responsive to dehydration (ERD4)' plant protein. PLoS One. 7(3).
Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., Mittler, R., 2004. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134 1683–1696.
Ruiz, G. A., Xiao, W., van Boekel, M., Minor, M., Stieger, M.,2016. Effffect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd). Food Chem., 209: 203–210.
Saucedo, A.L., Hernández-Domínguez, E.E., de Luna-Valdez, L.A., Guevara-García, A.A., Escobedo-Moratilla, A., Bojorquéz-Velázquez, E., Del Río-Portilla, F., Fernández-Velasco, D.A., Barba de la, R.A.P., 2017. Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Amaranthus cruentus: An Intrinsically Disordered Protein Involved in Protection against Desiccation, Oxidant Conditions, and Osmotic Stress. Front Plant Sci., 7:8:497.
Schlick, G., Bubenheim, D.L., 1996. Quinoa: candidate crop for NASA’s controlled ecological life support systems. In: Janick J, editor. Progress in New Crops. Arlington, VA: ASHS Press. pp.630-640.
Shen, W., Yao, X., Ye, T., Ma, S., Liu, X., Yin, X., Wu, Y., 2018. Arabidopsis Aspartic Protease ASPG1 ffects Seed Dormancy, Seed Longevity and Seed Germination. Plant Cell Physiol., 59(7):1415-1431
Stevens, M.R., Coleman, C.E., Parkinson, S.E., Maughan, P.J., Zhang, H.B., Balzotti, M.R., Kooyman, D.L., Arumuganathan, K., Bonifacio, A., Fairbanks, D.J., Jellen, E.N., Stevens, J.J., 2019. Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Food Chem. , 112(8):1593-600
Vega-Galvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., Martínez, E. A., 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J. Sci. Food Agric., 90:2541−2547.
Wu, G., Morris, C.F., Murphy, K.M., 2014. Evaluation of texture differences among varieties of cooked quinoa. J. Food Sci., 79(11):S2337-45.
Vilcacundo, R., Martínez-Villaluenga, C., Hernández-Ledesma, B. , 2017. Release of dipeptidyl peptidase IV. α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. J. Funct. Foods, 35: 531–539.
Vilcacundo, R., Miralles, B., Carrillo, W., 2018. Hernández-Ledesma B in vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd) protein under simulated gastrointestinal digestion. Food Res. Int., 105:403–411.
Wang, W.Q., Møller, I.M., Song, S.Q., 2012. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J. Proteomics., 21:77:68-86.
Wu, G.Y., 2016. Quinoa Improvement and sustainable production[M]//Kevin Murphy, Janet Matanguiban. (Eds.), Nutritional Properties of Quinoa. Wiley Blackwell, pp.193.
Xu, S.X., Huang, Q.Y., Lin, C.S., Lin, L.X., Zhou, Q., Lin, F.C., He, E.M., 2016.Transcriptome comparison reveals candidate genes responsible for the betalain-/anthocyanidin-production in bougainvilleas. 43(3): 278-286.
Xu, S.X., Huang, Q.Y., Lin, C.S., Lin, F.C., Lin, L.X., Shen, Q.Y., 2015. Rapid generation and analysis of expressed sequence tags to uncovering inflorescence secondary metabolism of Bougainvillea spectabilis ‘Splenders’ by pyrosequencing. Euphytica 205, 747–759.
Yamada, K., Osakabe, Y., Mizoi, J., Nakashima, K., Fujita, Y., Shinozaki, K., et al., 2010. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J. Biol. Chem., 285:1138–1146.
Zevallos, V.F., Herencia, L.I., Chang, F., Donnelly, S., Ellis, H.J., Ciclitira, P.J., 2014. Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients[J]. Americ. J. Gastroenterology, 109(2): 270—278.
Zhou, Y., Jiang, Y., Shi, R., Chen, Z., Li, Z., Wei, Y., Zhou, X., 2019. Structural and antioxidant analysis of Tartary buckwheat (Fagopyrum tartaricum Gaertn.) 13Sglobulin. J. Sci. Food Agric. doi: 10.1002/jsfa.10133.
Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S.-E. & Schwember, A. R., 2014. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Mol. Breed., 34:13–30.