1. Smit M, Hofker HS, Leuvenink H, Krikke C, Jongman RM, Zijlstra JG, van Meurs M. A human model of intra-abdominal hypertension: even slightly elevated pressure lead to increased acute systemic inflammation and signs of acute kidney injury. Crit Care. 2013;17:425-6. doi:10.1186/cc12568.
2. Cobb WS, Burns JM, Kercher KW, Matthews BD, Norton HJ, Henniford BT. Normal Intraabdominal Pressure in Healthy Adults. J.Surg.Res. 2005;129(2):231-5. doi:10.1016/j.jss.2005.06.015.
3. Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190-1206. doi:10.1007/s00134-013-2906-z.
4. Sodha S, Nazarian S, Adshed JM, Vasdev N, Mohan-S G. Effect of Pneumoperitoneum on Renal Function and Physiology in Patient Undergoing Robotic Renal Surgery. Curr Urol. 2015;9:1-4.
5. Wiesenthal JD, Fazio LM, Perks AE, et al. Effect of pneumoperitoneum on renal tissue oxygenation and blood flow in a rat model. Urology. 2011;77(6):1508.e9–e15. doi: 10.1016/j.urology.2011.02.022.
6. Neves FM, Meneses GC, Sousa NE, et al. Syndecan-1 in acute decompensated heart failure--association with renal function and mortality. Circulation journal: official journal of the Japanese Circulation Society. 2015;79(7):1511-9. doi: 10.1253/circj.cj-14-1195.
7. de Melo Bezerra Cavalcante CT, Castelo Branco KM, Pinto Junior VC, et al. Syndecan-1 improves severe acute kidney injury prediction after pediatric cardiac surgery. The Journal of thoracic and cardiovascular surgery. 2016;152(1):178-186.e172. doi: 10.1016/j.jtcvs.2016.03.079.
8. Celie J, Katta KK, Adepu S, Melenhorst W, Reijmers R, Slot EM. Tubular epithelial Syndecan-1 maintains renal function in murine ischemia/reperfusion and human transplantation. Kidney Inter. 2012;81:651–61. doi: 10.1038/ki.2011.425.
9. Varga Z, Noske A, Ramach C, Padberg B, Moch H. Assessment of HER2 status in breast cancer: overall positivity rate and accuracy by fluorescence in situ hybridization and immunohistochemistry in a single institution over 12 years: a quality control study. BMC Cancer. 2013 Dec 30; 13:615. doi: 10.1186/1471-2407-13-615.
10. De Souza DB, Costa WS, Cardoso LEM, Benchimol M, Pereira-Sampaio MA, Sampaio FJB. Does prolonged pneumoperitoneum affect the kidney? Int Braz J Urol. 2013;39:30-6. doi: 10.1590/S1677-5538.IBJU.2013.01.05
11. Bickel A, Loberant N, Bersudsky M, Goldfeld M, Ivry S, Herskovits M, Eitan A. Overcoming reduced hepatic and renal perfusion caused by positive-pressure pneumoperitoneum. Arch Surg. 2007;142:119-124. doi:10.1001/archsurg.142.2.119.
12. Wallace DH, Serpell MG, Baxter JN, O'Dwyer PJ. Randomized trial of different insufflation pressures for laparoscopic cholecystectomy. Br J Surg. 1997;84(4):455-458. doi: https://doi.org/10.1046/j.1365-2168.1997.02628.x
13. Sefr R, Puszkailer K, Jagos F. Randomized trial of different intraabdominal pressures and acid-base balance alterations during laparoscopic cholecystectomy. Surg Endosc. 2003;17(6):947-950. doi: 10.1007/s00464-002-9046-9.
14. Joshipura VP, Haribhakti SP, Patel NR, Naik RP, Soni HN, Patel B, et al. A prospective randomized, controlled study comparing low pressure versus high pressure pneumoperitoneum during laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech. 2009;19(3):234-240. Doi: 10.1097/SLE.0b013e3181a97012.
15. Malbrain ML, Vidts W, Ravyts M, De Laet I, De Waele J. Acute intestinal distress syndrome: the importance of intra-abdominal pressure. Minerva Anestesiol. 2008;74:657-73.
16. Khoury W, Jakowlev K, Fein A, Orenstein H, Nakache R, Weinbroum AA. Renal apoptosis following carbon dioxide pneumoperitoneum in a rat model. J Urol. 2008;180:1554–8. doi: 10.1016/j.juro.2008.06.008.
17. Schietroma M, Pessia B, Stifini D, Lancione L, Carlei F, Cecilia EM, et al. Effects of low and standard intra-abdominal pressure on systemic inflammation and immune response in laparoscopic adrenalectomy: A prospective randomized study. J Minim Access Surg. 2016;12(2):109–17.
18. Post EH, Vincent JL. Renal autoregulation and blood pressure management in circulatory shock. 2018;22:8. doi: 10.1186/s13054-018-1962-8.
19. Bryan TM, Ducles H, Feng S, Hsiao ST, Kim HJ, Serbanovic-canic J, et al. Mechanoresponsive networks controlling vascular inflammation. Arterios Thromb Vasc Biol. 2014;34:2199–205. doi: 10.1161/ATVBAHA.114.303424.
20. Jin ZG, Ueba H, Tanimoto T, Lungu AO, Framme MD, Berk BC. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res. 2003;93(4):354-63. doi: 10.1161/01.RES.0000089257.94002.96.
21. Dela Paz NG, Melchior B, Frangos JA. Early VEGFR2 activation in response to flow is VEGF-dependent and mediated by MMP activity. Biochem Biophys Res Commun. 2013;434(3):641-46. doi: 10.1016/j.bbrc.2013.03.134.
22. Bovens SM, Foin N, O’Clery N, Van Der Heiden K, Cuhlmann S, Carlsen H, Barahona M, Evans PC, Krams R. Shear stress and nitric oxide transport affect NFkB dynamics in endothelial cells. Eur Heart J. 2013;34(suppl1):P582. Doi: 10.1093/eurheartj/eht307.P582.
23. Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE. Cardiovascular and Ventilatory Consequences of Laparoscopy Surgery. Circulation. 2017;135:700-1. doi:10.1161/circulationaha.116.023262.
24. Yap S, Park SW, Egan B, Lee HT. Cytokine elevation and transaminitis after laparoscopic donor nephrectomy. Am J Physiol Renal Physiol. 2012;302: F1104-11. doi: 10.1152/ajprenal.00543.2011.
25. Park SW, Chen SW, Kim M, Brown KM, Kolls JK, D’Agati VD, Lee HT. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab Invest. 2011;91:63–84. doi: 10.1038/labinvest.2010.151.
26. Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalyx. J Surg Res. 2001;165:136-41. doi:10.1016/j.jss.2009.04.034.
27. Shimizu T, Tanabe K, Ishida H, Toma H, Yamagushi Y. Histopathological evaluation of biopsy specimens of donor kidney procured by laparoscopic donor nephrectomy. Clin Transplant. 2004;18(11):24-8. doi: 10.1111/j.1399-0012.2004.00243.x.
28. Kolálová H, Ambruzová B, Šindlerová LS, Klinke A, Lukáš Kubala L. Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions. Mediators of Inflammation. 2014; doi:10.1155/2014/694312.
29. Adepu S, Rosman CW, Dam W, van Dijk MC, Navis G, van Goor H, Bakker SJ, van den Born J. Incipient renal transplant dysfunction associates with tubular Syndecan-1 expression and shedding. Am J Physiol Renal Physiol. 2015;309:F137–45. doi: 10.1152/ajprenal.00127.2015.
30. Jing Z, Wei-Jie Y, Yi-Feng ZG, Jing H. Downregulation of Syndecan-1 induce glomerular endothelial cell dysfunction through modulating internalization of VEGFR-2. Cellular signalling. 2016 Apr;28(8):826-37. doi:10.1016/j.cellsig.2016.04.001.
31. Bjornson A, Moses J, Ingemansson A, Haraldsson B, Sorensson J. Primary human glomerular endothelial cells produce proteoglycans, and puromysin affects their posttranslational modification. Am J Renal Physiol. 2005;288:F748-56. Doi: 10.1152/ajprenal.00202.2004.
32. Kanellis J, Paizis K, Cox AJ, Stacker SA, Richard EG, Mark EC, David AP. Renal ischemia-reperfusion increases endothelial VEGFR-2 without increasing VEGF or VEGFR-1 expression. Kidney International. 2002;61:1696–706. doi: 10.1046/j.1523-1755.2002.00329.x
33. Ebefors K, Granqvist A, Ingelsten M, Molne J, Haraldsson B, Nystrom J. Role of glomerular proteoglycan in IgA nephropathy. PloS ONE. 2011;6(4):e18575. http://10.1371/journal.pone.0018575.
34. Sison K, Eremina V, Baelde H, Min W, Hirashima M, Fantus IG, et al. Glomerular structure and function require paracrine not autocrine VEGF-VEGFR-2 signaling. J. Am. Soc. Nephrol. 2012;12: 1691-1701. doi: 10.1681/ASN.2010030295.
35. Sato W, Tanabe K, Kosugi T, Hudkins K, Lanaspa MA, Zhang L, et al. Selective stimulation of VEGFR2 accelerates progressive renal disease. Am J Pathol. 2011;179:155–66. doi: 10.1016/j.ajpath.2011.03.024.
36. Nekouei S, Ahmadnia H, Abedi M, Alamolhodaee MH, Abedi MS. Resistive index of the remaining kidney in allograft kidney donors. Exp Clin Transplant. 2012;5:454-7. doi:10.6002/ect.2012.0054.
37. Machado C, Malheiros DM, Adamy A, Santos LS, Silva Filho AF, Nahas WC, et al. Protective response in renal transplantation: no clinical or molecular differences between open and laparoscopic donor nephrectomy. Clinics. 2013;68(4):483-8. doi:10.6061/clinics/2013(04)08.
38. Lu Z, Song N, Shen B, Xu X, Fang Y, Shi Y, et al. Syndecan-1 Shedding Inhibition to protect against ischemic acute kidney injury through HGF target signaling pathway. Transplantation. 2018 Jul;102(7):e331-e344. doi:10.1097/tp.0000000000002170.
39. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210–21. doi: 10.1172/JCI45161.