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Abstract

The emergence and re-emergence of infectious diseases has been a
global cause of concern in the past few decades. Previous research in
the field has revealed that human connectivity and mobility behaviour
play a major role in the spreading of an infectious disease. In this
work, we propose multi-patch models that take into account the effects
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of human mobility on the evolution of disease dynamics in a multi-
population environment. In particular, we develop SEIRS multi-patch
and multi-group epidemic models, extending the work of [1] and [2] to
practically account for distinct epidemiological-status-dependent mobil-
ities in each patch. We rigorously show that the disease free equilibria
(DFE) for both models are stable when R0 ≤ 1. We also prove
that the models have a unique endemic asymptotically stable equi-
librium when R0 > 1. We also introduce new local reproduction
numbers from the point of view of the sub populations, and estab-
lish some important relation between them and the global reproduction
number. Various numerical simulations are conducted to study the
effects of mobility and the residence time matrix on the evolution
of the disease in individual patches and the overall environment.

Keywords: Epidemics, Mobility, Reproduction number, Residency, Stability

1 Introduction

In the current century, knowledge about the risks of the hosts coupled with
easier and faster communication of disease risk information by health officials
is very important in enabling individuals to prevent the spread of infectious
diseases. Another important component of disease risk assessment by individ-
uals and hosts is the ability of public health officials to measure and properly
communicate, in a timely manner, real or perceived information on disease risk
[3]. One way to conduct such analysis is through the use of meta-population
studies [1, 4, 5]. This can help assess the effect of movement of individuals
between different regions or cities (in general referred as patches) as far as the
spread of an infectious disease is concerned, taking into account the disease
risk in each of the cities/patches. A meta-population is network of patches
among which individuals can travel. This approach has been used in the study
of the spread and risks of various infectious diseases.

Most infectious diseases, for instance, SARS, SARS-COV-2, H1N1 etc can
be spread among individuals through their movements, known as mobility. At
the forefront of global concern are diseases that can be spread through various
forms of mobility including travel and trade [3, 6]. Consequently, it has increas-
ingly attracted the interest of theoreticians and epidemiologists to quantify the
impact of mobility on infectious disease dynamics [7]. Indeed, epidemiologists
are tasked to understand the cause of a disease, to predict its course, and to
develop approaches capable of preventing and controlling outbreaks/infections.
The potential impact of mobility and dispersal of population in propagat-
ing and fanning disease spread between neighboring environments cannot be
underestimated. In fact, mobility of individuals in face of an infectious disease
can lead to an epidemic or even a pandemic.

The potential threat of mobility has been the focus of many research works
which attempt to quantify and measure impact of mobility on disease spread
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within different environments. For instance, [8] proposed a patchy SIS model
with standard incidence to asses how population dispersal affects the distribu-
tion and overall size of infection in the environment. Through simulation, the
author revealed that fast diffusion decreases the basic reproduction number
but has a potential of increasing the total infection size. Another fundamental
finding is that patches with higher infection risks have higher disease preva-
lence in the face of human dispersal for the two-patch case, than for more than
two patches. Clearly, only a fraction of people are frequent travelers while most
people travel occasionally or never at all. Using this observation, [8] developed
an SIS multi-patch epidemic model which captured the traveling frequency
and showed, using both analytical and numerical procedures, that the model
tends to underestimate the infection risk when the difference in human travel
frequency is not captured and not clearly distinguished. The model led to the
conclusion that travelers residing in regions with high transmission rates are
at the highest risk of infection. However, the work by [8] did not incorporate
the time that the proportion of the traveling individuals spend in the patches
they have traveled to.

[9] considered a two-patch SIR epidemic model with state dependent
residence-time matrix to asses the impact of virtual dispersal on disease trans-
mission dynamics and optimal resource allocation in the two patches. They
established that patch-specific optimal control strategies reduce the number
of infections per patch. The use of state dependent residence time matrix was
also one of the goals of [1] in their SIS multipatch model, although their focus
was not on optimal resource allocation but a comparison of local and global
disease dynamics from a constant and state-dependent residence time matrix.

Multipatch epidemic models have also been used to study the effects of
media coverage on the the propagation of infectious disease in a multi-patch
environment. For instance, [10] considered a patchy SIS model with varying
transmission rates to investigate the effects of media coverage and human
mobility on the transmission dynamics of infectious diseases among patches.
They computed the basic reproduction number R0 of their model and estab-
lished that the Disease Free Equilibrium (DFE) is Globally Asymptotically
Stable (GAS) when R0 ≤ 1 and that when the travel rates of susceptible and
infectious individuals are equal, then the disease is uniformly persistent and
there exists a unique and GAS endemic equilibrium when R0 > 1.

[11] constructed two SIS epidemic models in a patchy environment; one
with and the other without linear recruitment. They established that both
models have the same basic reproduction number R0 which they used to asses
the global stability of the models. Moreover, they established that even though
R0 is an important threshold value, other factors can play an important role
in the prediction and control of infectious diseases. In particular, their results
showed that the variation of total population number can cause the disease
to be more threatening and difficult to control even when mobility of infected
and/or susceptible population tend to zero.
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[12] presented some analytical results for an SIS epidemic model that
describes the spread of an infectious disease in a population of individuals
characterized by travel between n-cities. They computed and obtained explicit
bounds on R0 in the presence of homogeneous interaction between individu-
als in each city. Their numerical simulations revealed that the disease dies out
when R0 ≤ 1 and remains endemic when R0 > 1. The same observation was
made by [13] who considered a SEIRS epidemic model which captures cross
infection between several species and track both the current patch and the
patch in which an individual usually resides, to investigate disease spread in
an environment divided into p patches.

[14] proposed a multi-patch SIR-SI model to study the effects of human
travel on the host vector dynamics of dengue disease in different patches. They
showed that the disease dies out if R0 < 1. Otherwise, the disease remains
endemic if R0 > 1. Their results showed that controlling mobility from disease
dominant patches to patches where the disease is less prevalent may result in
controlling the disease in the low-disease prevalent patches while the disease
remains more prevalent in the high-disease prevalent patches.

Multi-patch epidemic models have also been used to fit COVID-19 data.
For instance, [15] constructed a generalized n-patch SEIR epidemic model with
quarantine and hospitalization. They concluded that appropriate quarantine
strategy and control of the migration rate are important to reduce the spread
of covid-19 after numerically fitting their model to COVID-19 data from three
patches: Hubei, Chongqing and Hunan provinces in china. They also estab-
lished that their model has a unique DFE which is GAS when R0 < 1 and is
unstable when R0 > 1.

[16] studied the global stability of a multi-patch waterborne disease
epidemics model in a multi-patch network. Their model encapsulates the
dynamics of the susceptiple, asymptomatic and symptomatic individuals as
well as the bacteria dynamics at interacting patches. The patches are con-
nected by human mobility. They constructed Lyapunov functions to study the
global stability properties of the disease free and endemic equilibrium of their
model. Transmission of Ebola virus in a multi-patch environment was studied
by [17]. The set-up was such that humans carrying the pathogen can move
between patches, transmitting the disease in any patch. Their model captures
the dynamics of people who are susceptible, infectious, isolated, deceased but
not yet buried and still infectious as well as the dynamics of the pathogen at
interacting patches. The author constructed Lyapunov functions to establish
global stability properties of both the disease free and endemic equilibrium of
their model.

[18] constructed a SEIRS epidemic model for a spatially heterogeneous
environment with patches in which human mobility rates between patches
depends on disease statuses. They computed certain bounds on R0 and showed
that the DFE of their model is GAS when R0 < 1. Using two patch example,
they showed that propagation dynamics of a disease can greatly be influenced
by travel of infectious individuals in a patchy environment. [19] modelled the
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transmission dynamics of tuberculosis in Africa using a patcy model. they
computed R0 and demonstrated that the DFE is GAS when R0 < 1 and
unstable when R0 > 1, a condition which leads to the existence of one unique
endemic equilibrium.

Due to the ever increasing of human population together with advances
and efficiency in transportations, the connectivity that we are constantly gain-
ing between previously separated parts of the world is one of the main factors
that promotes an infectious agent spreading. Therefore, understanding the pat-
terns of interactions between humans, between humans and vectors and more
importantly, the pattern of the movement of individuals is very important to
develop health and public policies [3]. [20], by modeling mobility of individ-
uals between a large urban center and smaller satellite centers using a SIR
epidemic model, discovered that most of the behaviour of the whole system is
governed by the large urban center. In their analysis, they also concluded that
the population size of a satellite city and its connectivity to the main urban
center significantly contributes to the disease evolution of the whole system.
[1] examined the effects of mobility on disease levels in an environment divided
into n patches using SIS and SIR models. They introduced mobility residence
matrix which quantifies the effective contact time that individuals have with
the residents of the patches they move into. [2] proposed a multi-patch and
multi-group epidemic model which captures the heterogeneity of the epidemi-
ological groups in n patches. They used this model to asses the effects the
mobility of susceptible, infected, exposed, and recovered individuals on the dis-
eases levels in the various patches they move into/from. Inherent in the models
is the assumption that all individuals travel and have a similar visiting times
to other patches. This assumption is clearly not realistic. In all of these works,
non has considered mobility of individuals in real time. All of them, except [8]
models the effects of virtual human dispersal on disease dynamics in patchy
environments. In other words, the existing literature captures the proportion
of the population that travels and the time time they spend in the patch they
have moved to using one parameter; the residence time matrix, which other
literature calls the travel rates.

Our contributions are as follows. Using SEIRS model, We have generalized
the existing multi-patch SIS and SIR epidemic models in [1] in several impor-
tant directions. First, we separate the mobility and residence time for each
patch, thus leading to a more practical and general model. Second, we have
performed a complete rigorous analysis of our proposed model accompanied
by extensive numerical results. In particular, we have shown that the model is
locally Lipschitz and is biologically well posed. Under the proposed formula-
tion, we compute the global and patch specific basic reproduction numbers R0

as a function of the mobility parameters and the residence time matrix matrix.
We perform global analysis where we have ascertained that in the presence of
mobility, the disease dynamics purely depends on the global basic reproduc-
tion number R0 while the patch specific reproduction numbers Ri

0 controls
Patch i disease dynamics in the absence of mobility. We have shown that the
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DFE is GAS if R0 ≤ 1 and that there exists a unique EE which is asymptoti-
cally stable when R0 > 1. Third, a novel definition of the patch reproduction
number Ri,i

0 has also been introduced where we have shown, theoretically and
through numerical simulation, that there is a close relationship between R0

and Ri,i
0 as regards to the persistence and extinction of the disease. Our newly

defined patch reproduction numbers obeys the expected theoretical behaviour
of reproduction numbers in this regard as is discussed in the text. Fourth, we
have also introduced and analyzed a more generalized epidemiological-status-
mobility-dependent SEIRS epidemic model which encapsulates the idea that
Patch i disease levels can be determined when a proportion of the population
in the respective Patch Susceptible, Exposed, Infected and Recovered epi-
demiological groups travel and spend a proportion of their time in the other
patch.

The rest of this paper is organized as follows: In Section 2, we derive the
generalized n-Patch SEIRS model with mobility, residency and demography
after which, we explore the biological well-posedness of the model. Section 3
introduces, computes and analyzes relations of the global and different local
basic reproduction numbers. In Section 4, we consider the global stability of the
DFE, the existence and local asymptotic stability of a unique endemic equilib-
rium (EE). Section 5 explores, through small scale and large scale simulation,
the effects of heterogeneity in mobility and residence times on the patch and
global environment disease dynamics. In Section 6, we introduce and analyze
a more generalized epidemiological-statuses-mobility-dependent SEIRS model.
Finally, Section 7 concludes the paper.

2 An n-Patch SEIRS model with mobility,
residency and demography

In this section, we first devise an n-Patch SEIRS model taking into account
mobility, residency and demography. We then rigorously study the well-
posedness of the model, the disease free equilibrium (DFE), existence of the
unique endemic equilibrium (EE), and global stability of the equilibria.

2.1 Epidemic Model

Consider a population with n patches, with {Ni}
n
i=1 individuals. The disease

evolution of each patch is assumed to follow the SEIRS model with mobility
and demography. We assume that a proportion αi of patch i residents move
to and spend pij ∈ [0, 1] fraction of their time in patch j. In [1], pij was used
as a “proxy” to measure the contact time residents in patch i move and stay
in patch j. In their analysis pij has the inherent assumption that all patch i
individuals move to patch j and have pij contact time with residents of patch
j. This assumption, though greatly simplifying the analysis, is not realistic.
Clearly, there is always a percentage of (in fact most) individuals remaining
at home as the others travel for whatever reasons. Introducing the mobility
parameter αi is our contribution to address this shortcoming. The combination
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of αi and pij enables us to model not only any fraction traveling out of a patch
but also different sub-fractions spending time on other patches. Therefore, if
we consider tha individuals move independently, there are αiNipij patch i
residents in patch j at time t, and there are (1− αi)Ni patch i residents who
do not move out from their patch.

Since pij is the fraction of unit of time (days, for instance) that an indi-
vidual i, who travels out of his patch, spends it in patch j, then

∑n
j=1 pij = 1

for i = 1, . . . , n.
The effective population in patch j is given as

(1− αj)Nj︸ ︷︷ ︸
Total population of

people who stays in patch j

+

n∑

k=1

αkpkjNk

︸ ︷︷ ︸
Total population of people

who move to patch j

Similarly, the number of infected individuals in patch j is

(1− αj)Ij +

n∑

k=1

αkpkjIk.

The proportion of infected individuals in patch j is therefore given as

Patch j effective propotion
of infected individuals

=
(1− αj)Ij +

∑n
k=1 αkpkjIk

(1− αj)Nj +
∑n

k=1 αkpkjNk
.

Notice that the number of susceptible individuals from patch i who are
currently in patch j are αipijSi. Multiplying this with the effective proportion
of infected individuals in patch j and patch j risk/rate of infection βj , we
obtain the number of Si who is infected per unit time in patch j. It follows
that the total number of susceptible individuals of patch i who are infected
due to traveling reads

#Si infected per unit
time while traveling =

n∑

j=1

(
βjαipijSi

(1− αj)Ij +
∑n

k=1 αkpkjIk
(1− αj)Nj +

∑n
k=1 αkpkjNk

)
. (1)

Due to individuals in i, who travels out of its patch, can also spend a
fraction of their time in i, the sum in (1) does not exclude j = i.

Since total number of susceptible remaining in patch i is (1 − αi)Si, the
number of patch i susceptible infected per unit time while remaining in patch
i is

#Si infected per unit
time while remaining in patch i = βi(1− αi)Si

(1− αi)Ii +
∑n

k=1 αkpkiIk
(1− αi)Ni +

∑n
k=1 αkpkiNk

.
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Therefore, the total number of infected susceptible individuals in patch i per
unit time is given as

{
#Si infectedd per unit

time while remaining in patch i+
#Si infected per unit
time while traveling

}

= βi(1− αi)Si
(1− αi)Ii +

∑n
k=1 αkpkiIk

(1− αi)Ni +
∑n

k=1 αkpkiNk

+

n∑

j=1

(
βjαipijSi

(1− αj)Ij +
∑n

k=1 αkpkjIi
(1− αj)Nj +

∑n
k=1 αkpkjNk

)
.

(2)

We assume that the dynamics of each patches follow the SEIRS model
with mobility and demography. That is, we incorporate vital dynamics such as
birth (recruitment), natural and disease induced death rates, and the concept
of waning immunity. Waning immunity simply means that the recovered indi-
viduals loose immunity and become susceptible once again. We thus obtain a
patchy SEIRS model with mobility, residency and demography as





Ṡi = Λi − βi(1− αi)Si
(1−αi)Ii+

∑n
k=1

p̃kiIk
(1−αi)Ni+

∑
n
k=1

p̃kiNk

−
∑n

j=1

(
βj p̃ijSi

(1−αj)Ij+
∑n

k=1
p̃kjIk

(1−αj)Nj+
∑

n
k=1

p̃kjNk

)
− µiSi + τiRi

Ėi = βi(1− αi)Si
(1−αi)Ii+

∑n
k=1

p̃kiIk
(1−αi)Ni+

∑
n
k=1

p̃kiNk

+
∑n

j=1

(
βj p̃ijSi

(1−αj)Ij+
∑n

k=1
p̃kjIk

(1−αj)Nj+
∑

n
k=1

p̃kjNk

)
− (κi + µi)Ei

İi = κiEi − (γi + ψi + µi)Ii

Ṙi = γiIi − (τi + µi)Ri

(3)

where we have defined p̃kj = αkpkj and i ∈ [n] := {1, . . . , n}.
The parameters used in the model are described in Table 1.

Table 1 Description of the parameters

Parameters Description

αi The proportion of individuals that travel out of patch i
Λi Recruitment of Susceptible individuals in Patch i
βj Instantaneous risk of infection in Patch j
µi Per capita natural death rate in Patch i
γi Per capita recovery rate of individuals in Patch i
τi Per capita loss of immunity rate
ψi Per capita disease induced death rate of Patch i
κi Per capita rate at which the exposed individuals in patch i becomes infectious
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2.2 Well-posedness of the model

A dynamical system or a system of differential equations is said to be well-
posed if ∀t, the system has a unique solution that depends continuously on the
data. An additional condition for a dynamical system describing population
dynamics is that, given any non-negative initial conditions, the solutions of
the system should remain positive at all times [21]. Our proof for the well-
posedness of the proposed model (3) relies on the Picard-Lipchitz theorem,
which we now state.

Lemma 2.1 (Picard-Lipschitz theorem, [22]). Let t0 ∈ R and x0 ∈ Rn.
Consider the following initial valued problem

dx

dt
= f(t,x), x(x0) = x0, (4)

where f : R× R
n → R

n is Lipschitz continuous with respect to x on

Q := { (t,x) : t− t0 ≤ a, ∥x− x0∥ ≤ b}.

Then there exists δ > 0 such that the system (4) has a unique solution for any
t ∈ [t0 − δ, t0 + δ] and the solution depends continuously on [t0,x0].

We start by writing the system (3) in the matrix form. To that end,

let us define S =
(
S1, S2, · · · , Sn

)T
, E =

(
E1, E2, · · · , En

)T
, I =(

I1, I2, · · · , In
)T

, R =
(
R1, R2, · · · , Rn

)T
, N =

(
N1, N2, · · · , Nn

)T
,

β =
(
β1, β2, · · · , βn

)T
, γ =

(
γ1, γ2, · · · , γn

)T
, κ =

(
κ1, κ2, · · · , κn

)T
,

τ =
(
τ1, τ2, · · · , τn

)T
, ψ =

(
ψ1, ψ2, · · · , ψn

)T
Λ =

(
Λ1, Λ2, · · · , Λn

)T
,

P =




p11 p12 p13 · · · p1n
p21 p22 p23 · · · p2n
...

...
...

. . .
...

pn1 pn2 pn3 · · · pnn


 ,

and

P
⋆ =




(1− α1) + p11α1 p12α1 p13α1 · · · p1nα1

p21α2 (1− α2) + p22α2 p23α2 · · · p2nα2

...
...

...
. . .

...
pn1αn pn2αn pn3αn · · · (1− αn) + pnnαn,



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then the system (3) can be equivalently written in a compact form as





Ṡ = Λ− diag(S)P∗diag(β)diag(P∗TN)−1
P
∗T I − diag(µ)S + diag(τ )R

Ė = diag(S)P∗diag(β)diag(P∗TN)−1
P
∗T I − diag(κ+ µ)E

İ = diag(κ)E − diag(γ +ψ + µ)I

Ṙ = diag(γ)I − diag(τ + µ)R

(5)
We are in the position to show the well-posedness of the proposed system

(5).

Corollary 2.1. Given an initial condition (S0, I0, I0,R0) at t0. There
exists δ > 0 such that (5) has a unique solution continuous with respect to
(S0, I0, I0,R0) for any t ∈ [t0 − δ, t0 + δ].

Proof The result is a direct consequence of Lemma 2.1. We only need to show that
the right hand side of the system (5) is locally Lipschitz continuous, but this is
obvious as the right hand side is the composition of Lipschitz functions. □

We next show that system (3) is biologically well-posed. That is, given any
non-negative initial conditions, the solutions of the system remains positive at
all times.

Theorem 2.1. Suppose that initial conditions at t0 = 0 for system (3) are
non-negative. The states Ei(t), Ii(t) and Ri(t) ∀i ∈ [n] := {1, 2, · · · , n}
remains non-negative, while Si(t) and Ni(t) remains positive at all times.
Furthermore, the patch total population Ni(t), i ∈ [n], is bounded above by
max

{
Ni(0),Λi/µi

}
.

Proof The proof is inspired by [18]. Suppose Si, for some i ∈ [n], vanishes at t ≥ 0
before other variables. We conclude from the first equation of (3) that Si(t) ≥ 0 at
all times since Ṡi(t) = Λi + τiRi ≥ 0. Similarly, if Ei, for some i ∈ [n], vanishes at
t ≥ 0 before other variables, then from the second equation of (3), we have

Ėi(t) =

[

βi(1− αi)Si
(1− αi)Ii +

∑n
k=1 p̃kiIk

(1− αi)Ni +
∑n
k=1 p̃kiNk

+

n
∑

j=1

(

βj p̃ijSi
(1− αj)Ij +

∑n
k=1 p̃kjIj

(1− αj)Nj +
∑n
k=1 p̃kjNk

)]

≥ 0 at t ≥ t0,

and thus Ei(t) can never be negative. In the same vein, it is easy to show that
Ii(t) ≥ 0 and Ri(t) ≥ 0 at all times.

On the other hand, from the first equation of system (3), we have, for any i ∈ [n],

Ṡi ≥ −
(

βi(1− αi) +

n
∑

j=1

βj p̃ij + µi

)

Si,
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which implies that

Si(t) ≥ Si(0) exp

{

−
(

βi(1− αi) +

n
∑

j=1

βj p̃ij + µi

)

t

}

, ∀t ≥ 0,

which in turn implies Si(t) > 0 as long as Si(0) > 0. Therefore, Ni(t) > 0, ∀t ≥ 0 as
long as Si(0) > 0.

Now, summing all equations of system (3) gives Ṅi = Λi − µiNi − ψiIi ≤ Λi −
µiNi, which implies Ni(t) ≤ N(0) exp{−µit}+Λi/µi[1− exp(−µit)]. Hence Ni(t) ≤
max

{

Ni(0),Λi/µi
}

. □

From the last result, the environment total population N(t) =
∑n

i=1Ni(t)
is bounded above by

n∑

i=1

max

{
Ni(0),

Λi
µi

}
.

Now we define the patch population vector as N =
(
N1 N2 · · · Nn

)T
and

adding all equations in (5) altogether we obtain dynamics of the vector patch
population vector as

Ṅ = Λ− diag(µ)S − diag(µ)E − diag(µ)I − diag(µ)R− diag(ψ)I

= Λ− diag(µ)(S +E + I +R)− diag(ψ)I

= Λ− diag(µ)N − diag(ψ)I ≤ Λ− diag(µ)N = Λ− diag(µ)N .

It is easy to see that the set

DSEIRS = {(S ≥ 0,E ≥ 0, I ≥ 0,R ≥ 0) | S +E + I +R ≤ diag(µ−1Λ},

is a global compact attracting positively invariant set for the system in
Equation (5). Solutions of the system (5) will thus approach to and stay in
DSEIRS .

Recall that the disease free equilibrium (DFE) of system (5) is the point
where the population is free of disease. The below characterization of the DFE
is straightforward.

Proposition 2.1. The DFE of system (5) is given as

P0 = (N ,0,0,0) =

(
diag(µ)−1Λ,0,0,0

)
.

3 Global and Patches’ Reproduction numbers

Reproduction numbers are important threshold parameters in mathematical
epidemiology as their values help us determine if an infectious disease out-
breaks or dies out. This section derives the expressions for the global and local
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basic reproduction numbers R0 and propose some reproduction numbers con-
sidering the sub populations, and establish some important relation between
them and R0.

3.1 Basic reproduction number R0

The global behaviour and disease transmission dynamics of system such as (5)
can typically be characterized by the basic reproduction number R0. Following
[23, 24] we use the next generation to compute this crucial threshold quantity.
Clearly, the infected compartments in our model are E and I, corresponding
to the second and third equations of the system (5). We decompose the right
hand side of these equations as F(E, I)− V(E, I) with

F(E, I) =

(
diag(S)P∗diag(β)diag(P∗TN)−1

P
∗T I

0

)
,

and

V(E, I) =

(
diag(κ+ µ)E

−diag(κ)E + diag(γ +ψ + µ)I

)
,

where F(E, I) is the rate of appearance of new infections and V(E, I) is the
outgoing rate of transferring already infected individuals. Let F and V be the
Jacobians (with respect to (E, I) of F(E, I) and V(E, I), respectively) at the
diseases free equilibrium (DFE) P0.

F = DF(E, I)
∣∣∣
DFE

=

(
0 diag(N)P∗diag(β)diag(P∗TN)−1

P
∗T

0 0

)
=:

(
0 G

0 0

)

and

V = DV(E, I)|DFE =

(
diag(κ+ µ) 0

−diag(κ) diag(γ +ψ + µ

)

The inverse V −1 is given as

V −1 =




diag−1(κ+ µ) 0

diag−1(γ +ψ + µ)diag(κ)diag−1(κ+ µ) diag−1(γ +ψ + µ)


 ,

and the next generation matrix (NGM) reads

FV −1 =

(
Gdiag−1(γ +ψ + µ)diag(κ)diag−1(κ+ µ) Gdiag−1(γ +ψ + µ)

0 0

)
,

(6)
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where we have defined

G = diag(N)P∗diag(β)diag(P∗TN)−1
P
∗T . (7)

The global basic reproduction number is therefore given by the spectral
radius of the block matrix in the first row first column of FV −1. That is,

R0 = ρ
(
Gdiag−1(γ +ψ + µ)diag(κ)diag−1(κ+ µ)

)
. (8)

It can be shown (see, e.g., [24] and the references therein) that when
R0 > 1, the infection can spread to a large fraction of the population, and
afterwards go into extinction, or remain endemic in the global population (or
any of its respective patches). In the next sections we present three reproduc-
tion numbers that describe the number of cases that individuals in a patch
can produce and describe their relations with the global basic reproduction
number.

3.2 Only-local basic reproduction number {Ri
0
}

In the absence of mobility the patches act independently and then, for i =
1, 2, · · · , n, the Patch i has basic reproduction numbers given by

Ri
0 = βi︸︷︷︸

Risk of infection
in patch i

×
κi

(κi + µi)︸ ︷︷ ︸
Average fraction of

pop. in patch i surving
the latent period

×
1

(γi + ψi + µi)︸ ︷︷ ︸
Average time spent in the

infective compartment in patch i

, (9)

and the disease remains endemic in the population if Ri
0 > 1 for at least one i.

The global basic reproduction number in the presence of mobility R0 (8)
can be bounded by the local basic reproduction numbers Ri

0 [see e.g. 18, 25]
in the special case when the demographic and epidemiological parameters of
the patches differ only in the transmission rates βi, i = 1, 2, · · · , n.

Theorem 3.1. Suppose that Λi = Λ, µi = µ, κi = κ, ψi = ψ and γi = γ
for i ∈ {1, 2, · · · , n} with the epidemiological parameters of the patches only
differing in their contact rates βi, i = 1, 2, · · · , n, then

min
i

Ri
0 ≤ R0 ≤ max

i
Ri

0.

Proof Without loss of generality, we consider

βn ≥ βn−1 ≥ βn−2 ≥ · · · ≥ β2 ≥ β1, (10)

so that

min
i

Ri
0 = R1

0 =
β1κ

(κ+ µ)(γ + ψ + µ)
≤ · · · ≤

βnκ

(κ+ µ)(γ + ψ + µ)
= Rn

0 = max
i

Ri
0.
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Based on our assumption that the epidemiological parameters of the patches only
differ in their contact rates, we have that

G = P
∗diag(β)diag(P∗T1)−1

P
∗T .

Now we examine the sum of the columns of the next generation matrix FV −1 in
(6). Let C1 be the sum of the first column, then

C := 1
T
Gdiag−1(γ +ψ + µ)diag(κ)diag−1(κ+ µ)

with C1 being the first element of C. Define r = κ
(κ+µ)(γ+ψ+µ)

, then we have

C1 = rβ1
p∗11

p∗11 + p∗21 + · · ·+ p∗n1

(

p∗11 + p∗21 + · · ·+ p∗n1

)

+ rβ2
p∗12

p∗12 + p∗22 + · · ·+ p∗n2

(

p∗12 + p∗22 + · · ·+ p∗n2

)

+ · · ·+ rβn
p∗1n

p∗1n + p∗2n + · · ·+ p∗nn

(

p∗1n + p∗2n + · · ·+ p∗nn

)

= r
n
∑

j=1

βjp
∗
1j ≤ rβn

n
∑

j=1

p∗1j = rβn =
κβn

(κ+ µ)(γ + ψ + µ)
,

where the inequality follows from (10). We therefore have that

C1 ≤
κβn

(κ+ µ)(γ + ψ + µ)
= Rn

0 = max
i

Ri
0. (11)

In a similar fashion, we have

C1 ≥
κβ1

(κ+ µ)(γ + ψ + µ)
= R1

0 = min
i

Ri
0,

and
min
i

Ri
0 ≤ Cj ≤ max

i
Ri

0, j = 1, . . . , n.

For j = n+ 1, . . . , 2n, it is also straightforward to verify that

min
i

Ri
0 ≤ Cj ≤ max

i
Ri

0, j = n+ 1, . . . , 2n

where
Cj :=

[

1
T
Gdiag−1(γ +ψ + µ)diag(κ)diag−1(κ+ µ)]j−n

and [·]j−n denotes the (j − n)th element.
Since the spectral radius of a non-negative matrix is bounded below and above

by the minimum and maximum column sums respectively [26], we have that

min
i

Ri
0 ≤ R0 ≤ max

i
Ri

0.

□

3.3 R̃i
0
reproduction number

We can write the NGM as

M =




r11 r21 . . . rn1

r12 r22 . . . rn2

...
...

. . . . . .

r1n r2n . . . rnn,




(12)
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where rij can be interpreted as the number of expected new cases in patch
j that an infective individual in i produces. One may attempt to define the
patch i reproduction numbers R̃i

0 as the number of new cases that an infective
individual from patch i can produce (in early stages of the outbreak). Hence
R̃i

0 =
∑n

j=1 rij , i = 1, . . . , n, and R0 = ρ(M) as usual. The problem with this
definition of individual patch reproduction numbers is that while it is easily
computed, we cannot always determine if R0 is greater or smaller than the
critical value 1. Indeed, we have the following observations.

Since the NGM is a nonnegative matrix, that in several applications can
be considered irreducible, using the Perron-Frobenius theorem we have

min
i

R̃i
0 ≤ R0 ≤ max

i
R̃i

0.

Then, R0 > 1 if R̃i
0 > 1 ∀i = 1, . . . , n, and R0 < 1 if R̃i

0 < 1 ∀i = 1, . . . , n.
Otherwise, it is not clear how to estimate the value of R0.

The Perron-Frobenious theorem provides simple bounds for the spectral
radius of a matrix based on its row (column) sums, however it cannot specify
if R0 is above or below threshold if only some of the R̃i

0 are greater than
1. In these cases we can appeal to sharper bound for the spectral radius.
Although various proposals have been obtained, one attraction they can have
is that they are given in simple operation of the matrix elements. On this
direction, a theorem that allows knowing the location of all the eigenvalues
is the Gershgorin circle theorem that in contrast to the Perron-Frobenious,
is valid for reducible or irreducible matrices. This theorem states that given
Di = {z ∈ C : |z − rii| ≤

∑
j ̸=i |rij |}, then the eigenvalues of M lie in

D = D1 ∪D2 ∪ · · · ∪Dn.
Sharper lower bounds for the spectral radius of a real matrix are presented

in [27] that use the traces of the matrix and its square. [28] also provide
bound for the eigenvalues and when the matrix is nonegative, the lower bound
coincides with the optimal lower bound given in terms of n, the traces of the
matrix and its square. We present this result.

Theorem 3.2 (Lemma 7 and and Theorem 8 in [28]). Let A ⩾ 0 with a := trA
and b := trA2 being real numbers satisfying a2 ≤ nb then

l =
a

n
+

√
1

n(n− 1)

(
b−

a2

n

)

is optimal (i.e., the best possible lower bound for r, using only n, a, and b) if
and only if l ⩾

√
cb/n.

Example 3.1. We consider a two-patch population with mobility matrix

P
∗ =

(
0.84 0.16
0.16 0.84

)
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and parameters γ = (1/14, 1/14)T , ψ = (0.003, 0.003)T τ = (1/20, 1/20)T

λ = (9, 9)T µ = (1/9, 1/8)T κ = (1/15, 2/25)T , β1 = 0.1, and β2 = 0.7 Then
the resulting NGM is

M =

(
0.1851 0.2298
0.2110 0.9521

)
(13)

For this matrix we have that the row sums are 0.3961 and 1.1819 and we
cannot conclude that R0 = ρ(M) > 1. Based on the Gershgorin cirle theorem
we have that R0 ∈ (−0.0447, 0.4150) ∪ (0.7411, 1.16309) that contains values
above 1. However, using Theorem 3.2 we know that R0 > 1.01082.

3.4 Ri,i
0 reproduction number

Some recent works, [see, e.g., 1, 2] resorted to the ith diagonal element of the
Next Generation Matrix (NGM) as a measure of the reproduction in patch i,
but did not provide a clear rational and intuition to this selection. Moreover,
in some cases, at least in the numerical simulation study, R̃0,i = NGM[i, i]
contradicted the intuitive behaviour of the basic reproduction number in regard
to the persistence (or the extinction) of the disease. Indeed, [1] stated that

R̃0,i > 1 is necessary but not a sufficient condition for the persistence of the
disease in Patch i.

In this section we utilize the standard definition of the NGM, represented
as in (12), to define a new local reproduction number Ri,i

0 for patch i. This
reproduction number corresponds to the number of expected new cases in
Patch i originated by a typical case in i either by direct contact or after the
infection has transited to individuals in other patches. We also establish the
relations between this individual patch reproduction number and the global
reproduction number.

This reproductive number has the motivation of regarding Patch i as of
the primary interest and the rest of individuals in the patches as vectors [29].
For example, in a two patches population with irreducible NGM, the number
of new cases generated by a single infective v in the patch 1 (P1) correspond
to those individuals in P1 (⃝) who are directly infected by v plus all those
individuals from P1 directly infected by secondary cases in P2 (□), for which
the chain of infections has not yet included individuals in P1. See Figure 1.

Fig. 1 New cases in P1 originated by a single infective in P1.
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For this example, the number of new cases that we expect a typical infective
originates in P1, that we denote as R1,1

0 , is

R1,1
0 = r11 + r12r21 + r12r22r21 + r12r22r22r21 + r12r22r22r22r21 + · · · (14)

= r11 +
r12r21
1− r22

, (15)

where (15) follows when r22 < 1. We see that even if all the elements in M are
smaller than 1, R1,1

0 could be greater than 1. This scenario corresponds to the
outbreak due to the initial infectious cases in P1. If r22 > 1 and r12, r21 > 0,
it is easy to see that the increasing number of infectious cases in P2 will keep
contributing to the infected cases in P1. Clearly, if either r12 or r21 are null,
then all the new cases in P1 are originated only by direct infections, and in
that case R1,1

0 = r11.
When the population consists of n patches, the result can be generalized to

Ri,i
0 = rii + ri:−i

T r−i:i + ri:−i
TM[−i]r−i:i

+ ri:−i
TM[−i]2r−i:i + ri:−i

TM[−i]3r−i:i + · · · (16)

= rii + ri:−i
T (I−M[−i])−1r−i:i, (17)

where (17) holds if all the eigenvalues of the ith order principal subma-
trix M[−i] (the NGM without its row and column i) are between -1 and
1. We have defined ri:−i = (ri1, ri2, . . . , ri(i−1), ri(i+1), . . . , rin)

T and r−i:i =
(r1i, r2i, . . . , r(i−1)i, r(i+1)i, . . . , rni)

T .
When M[−i] is diagonalizable, the expression (17) can be written in terms

of its eigenvalues and eigenvectors as

Ri,i
0 = rii + ri:−i

TUDU−1r−i:i,

where U is the matrix whose columns are the eigenvectors of M[−i] and D is
the diagonal matrix with elements [D]jj = 1/(1− λj), j = 1, . . . , n.

Example 3.2. For the NGM (13), with ρ(M) = R0 = 1.0108, we have R1,1
0 =

1.1973 and R2,2
0 = 1.0116.

Example 3.3. If in Example 3.1 we use the values β1 = 0.1 and β2 = 0.65
the resulting NGM is

M =

(
0.1823 0.2153
0.1977 0.8844

)
, (18)

with R0 = 0.9405, R1,1
0 = 0.5505 and R2,2

0 = 0.9364.

We next discuss the relations between R0 and {Ri,i
0 }. We begin by recalling

some useful definitions and results, which will be useful in establishing our
main results in this section.
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Lemma 3.1 ([26, 30]). Let A ∈ R
n×n be a non-negative matrix and B ∈

R
(n−1)×(n−1) be the principal sub-matrix of A. Then, ρ(B) ≤ ρ(A). If A ∈

R
n×n is irreducible and B ̸= A, then ρ(B) < ρ(A).

Definition 3.1. (Perron complement, [31–34]) Let ⟨n⟩ =: {1, 2, · · · , n} be an
ordered set and both α and β = ⟨n⟩ \ α be non-empty ordered subsets of ⟨n⟩
with strictly increasing integer elements. The generalized Perron complement
of A[α] in A ∈ R

n×n is

Pt
(
A \A[α]

)
= A[β] +A[β, α]

(
tI−A[α]

)−1

A[α, β] (19)

where A[α, β] denotes the sub-matrix of A lying in the rows indexed by α and
columns indexed by β. In the case when α = β, then A[α, α] =: A[α] denotes
the principle sub-matrix of A lying in the row and column indexed by α.

Theorem 3.3. (Lemma 3 and Theorem 4 in [33]) If A is a non-negative
irreducible matrix, the Perron root of the generalized Perron complement,

ρ
(
Pt
(
A \ A[α]

))
, is a strictly decreasing function of t on

(
ρ
(
A[α]

)
,∞
)
.

Furthermore,

ρ
(
Pt
(
A \A[α]

))




< ρ(A) if t > ρ(A)

= ρ(A) if t = ρ(A)

> ρ(A) if ρ
(
A[α]

)
< t < ρ(A).

(20)

We now present our main results together with their proofs.

Corollary 3.1. If the NGM M is irreducible and R0 < 1, then Ri,i
0 < 1 for

i = 1, 2, . . . , n.

Proof Immediate from the Theorem 3.3. Ri,i
0 can be thought of as a generalized

Perron complement of MT [α] in MT with t = 1, β = {i} and α = ⟨n⟩ \ β. Now, for

any i = 1, . . . , n, Ri,i
0 = ρ

(

Pt
(

MT \MT [i]
)

)

with t = 1 > ρ(MT ) = ρ(M) = R0.

□

Proposition 3.1. Suppose the NGM is irreducible. If R0 > 1 then Ri,i
0 > 1

for i ∈ ⟨n⟩.

Proof Let i ∈ ⟨n⟩. From Lemma 3.1 we have that R0 = ρ
(

M
)

> ρ
(

M[−i]
)

. If
ρ
(

M
)

> 1 > ρ
(

M[−i]
)

then from Theorem 3.3, we have

Ri,i
0 = ρ

(

Pt=1
(

MT \MT [i]
)

)

> ρ
(

Pt=ρ(M)

(

MT \MT [i]
)

)

= ρ
(

M
)

> 1. (21)
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If ρ
(

M
)

> ρ
(

M[−i]
)

> 1, we have that the Neumann series in (16) diverges and

since ri:−i, r−i:i > 0, Ri,i
0 is unbounded from above. □

From this proposition the following corollary follows immediately.

Corollary 3.2. Suppose the NGM is irreducible. If Ri,i
0 < 1 for i ∈ ⟨n⟩, then

R0 < 1.

To include the reducible case we formulate the next proposition.

Proposition 3.2. If Ri,i
0 < 1 for i ∈ ⟨n⟩, then R0 < 1.

Proof Let M be a nonnegative reducible matrix. Then there exists a permutation
matrix P such that we obtain the normal form of a reducible matrix

PMPT =



























M1 0 · · · 0 0 · · · 0
0 M2 · · · 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . Mg 0 . . . 0
Mg+1,1 Mg+1.2 . . . Mg+1, Mg+1 . . . 0

...
...

. . .
...

...
. . .

...
Ms1 Ms2 . . . Msg Ms,g+1 . . . Ms



























.

where M1,M2, . . . ,Ms are irreducible matrices.
Then

R0 = ρ(M) = ρ(PMPT ) = max
{

ρ(Mi)
}

Now from Corollary 3.2 we have ρ(Mi) < 1 for i ∈ {1, . . . , g, g + 1, . . . , s} and
this concludes the proof. □

Proposition 3.3. If the NGM is irreducible and Ri,i
0 > 1 for some i ∈ ⟨n⟩

then Rj,j
0 > 1 for j ∈ ⟨n⟩.

Proof If for some i we have Ri,i
0 > 1 and

1. R0 > 1, then we have the conclusion by Proposition 3.1.
2. R0 = 1, by Theorem 3.3, Rj,j

0 = 1, that contradicts our assumption.

3. R0 < 1, then Ri,i
0 = ρ

(
Pt=1

(
MT \MT [i]

))
< ρ

(
Pt=R0

(
MT \MT [i]

))
=

R0 < 1, that also contradicts our assumption.

Hence the first case is the only one possible. □

4 GAS of the DFE, existence of a unique EE
and it’s local asymptotic stability

In this section we study the stability of the DFE of System (5) under the
assumption that there there is no disease induced deaths (i.e., ψ = 0). In this
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case, the dynamics of the total population of System (5) becomes

Ṅ = Λ− µ⊙N .

We therefore have that lim
t→∞

N = Λ⊙ 1
µ
=N . Note that our system (5) satisfies

the asymptotically autonomous condition in [35, 36] and its limit equation is
given by





Ṡ = Λ− diag(S)P∗diag(β)diag(P∗TN)P∗T I − diag(µ)S

+ diag(τ )R

Ė = diag(S)P∗diag(β)diag(P∗TN)P∗T I − diag(κ+ µ)E

İ = diag(κ)E − diag(γ + µ)I

Ṙ = diag(γ)I − diag(τ + µ)R.

(22)

Similar to the proofs for the original system (5) (see section 2.2), we can show
that limit system (22) is well-posed and its DFE is P0 = (N ,0,0,0).

4.1 GAS of the DFE

We now study the stability of the DFE P0 of the original system (5) via
the stability of the DFE P0 of the limit system (22). We use the same next
generation approach (see section 3.1) to obtain the basic reproduction number
of model (22). In this case, the F matrix remains the same while V now reads

V = DV(E, I)
∣∣∣
DFE

=

(
−diag(κ+ µ) 0

diag(κ) −diag(γ + µ),

)

and

−V −1 =




diag−1(κ+ µ) 0

diag(κ)diag−1 ((κ+ µ)⊙ (γ + µ)) diag−1(γ + µ)


 .

The basic reproduction number of the limit system (22) is then given as

R0 = ρ(−FV −1) = ρ(Gdiag(κ)diag−1 ((κ+ µ)⊙ (γ + µ))),

where we recall from (7):

G = diag(N)P∗diag(β)diag(P∗TN)−1
P
∗T .

Theorem 4.1. Suppose P∗P∗T is irreducible, then the following hold:
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1. if R0 ≤ 1, the disease free equilibrium (DFE) is globally asymptotically
stable

2. if R0 > 1, the DFE is unstable

Proof The second assertion is clear from [24]. For the first assertion, we adapt the
proof in [2] for our system (22). Since −FV −1 is nonnegative and irreducible, R0 =

ρ
(

−FV −1
)

is the largest positive eigenvalue of −FV −1 and its corresponding left

eigenvector (zE , zI) is positive, owing to the Perron-Frobenius theorem, [see 26]. In
particular

−(zE , zI)FV
−1 = R0(zE , zI).

Due to the fact that −V −1 is nonnegative if we define

L(E, I) := (zE , zI)(−V
−1)

(

E

I

)

,

then L(E, I) ≥ 0 and the derivative along any trajectory of (22) is given as

L̇(E, I) = (zE , zI)(−V
−1)

(

Ė

İ

)

= (zE , zI)(−V
−1)

(

−diag(κ+ µ) diag(S)P∗diag(β)diag(P∗TN)P∗T

diag(κ) −diag(γ + µ)

)(

E

I

)

.

(23)

Since diag(S) ≤ diag(N), we have

L̇(E, I) ≤ (zE , zI)(−V
−1)(F + V )

(

E

I

)

= (zE , zI)(−V
−1
F − I)

(

E

I

)

= (R0 − 1)(zE , zI)

(

E

I

)

≤ 0 if R0 ≤ 1.

(24)

Thus, by the LaSalle’s invariance principle, any solution of (22) approaches the largest
invariant set A in the inverse image L̇−1(0).

If R0 < 1, then L̇(E, I) = 0 if and only if I = E = 0, which is disease free, and
thus A = {P0}. In other words, P0 is globally asymptotically stable.

If R0 = 1, a simple algebra manipulation gives

L̇(E, I)

=
[

zTE + zTI diag(κ)diag
−1 (γ + µ)

]

diag−1(κ+ µ)diag(S −N)P∗diag(β)diag(P∗TN)P∗T I.

Thus, L̇(E, I) = 0 if and only if I = 0 or S = N . Either of the cases leads to the
same conclusion that A = {P0}. That is, P0 is also globally asymptotically stable
when R0 = 1. □

The following result is a direct consequence of Theorem 4.1 and results in
[35, 36].

Corollary 4.1. If R0 < 1, then P0 = (Λ ⊙ 1
µ
,0,0,0) is the global

asymptotically stable equilibrium for the original system (5).
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4.2 Existence and asymptotic stability of the unique EE

We first show that for R0 > 1 the original system (5) has a unique endemic
equilibrium (EE) using its limit equation (22). To achieve this, we follow
the approach in [2] to construct an auxiliary system which facilitates the
uniqueness of the EE of System (22). In the following we denote by ≫ the
componentwise strict inequality for two vectors.

Proposition 4.1. System (22) has an endemic equilibrium (S∗,E∗, I∗,R∗),
where

R∗ = UE∗, I∗ = JE∗, S∗ =N −LE∗,

if and only if E∗ is a fixed point of

g(r) := diag−1(κ+ µ)diag(N −Lr)P∗diag(β)diag(P∗TN)−1
P
∗TJr,

where we have defined

U := diag−1(τ + µ)diag(γ)diag−1(γ + µ)diag(κ),

J := diag(κ)diag−1(γ + µ),

L := diag−1(µ) [diag(κ+ µ)− diag(τ )U ] .

Furthermore, E∗ is a fixed point of g(r) if and only if E∗ is an equilibrium of
the system

ṙ = F (r) := diag(κ+ µ)
(
g(r)− r

)
. (25)

Proof The second assertion is obvious and we sketch the (simple but lengthy) proof
of the first assertion. Let (S∗,E∗, I∗,R∗) be an endemic equilibrium point (I∗ ≫ 0)
of system (22), then



































0 = Λ− diag(S∗)P∗diag(β)diag(P∗TN)−1
P
∗T
I
∗ − diag(µ)S∗

+ diag(τ )R∗

0 = diag(S∗)P∗diag(β)diag(P∗T
N)−1

P
∗T
I
∗ − diag(κ+ µ)E∗

0 = diag(κ)E∗ − diag(γ + µ)I∗

0 = diag(γ)I∗ − diag(τ + µ)R∗

(26)

The last two equations of (26) provide the expressions for I∗ and R∗ in terms of E∗,
while the first two equations yields S∗ in terms of E∗. Now, substituting I∗, S∗,
and R∗ into the first two equations of System (26), and with some simple algebra
manipulations we arrive at

E
∗ = g

(

E
∗), (27)

that is, E∗ is a fixed point of g. □

We now state and prove a theorem on the existence and uniqueness of EE
of the limit system (22).
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Theorem 4.2. Assuming that P∗
P
∗T is irreducible, then the limit system (22)

has a unique EE whenever R0 > 1.

Proof Proposition (4.1) shows that the existence of the unique EE of system (22),
when R0 > 1, is equivalent to the existence of the unique non-trivial equilibrium of
system (25). It is therefore sufficient to show the latter. We have

g′(r) = −diag−1(κ+ µ)diag
(

P
∗diag(β)diag(P∗TN)−1

P
∗T
Jr

)

L

+ diag−1(κ+ µ)diag(N −Lr)P∗diag(β)diag(P∗T
N)−1

P
∗T
J ,

and thus

F ′(r) = −diag
(

P
∗diag(β)diag(P∗TN)−1

P
∗T
Jr

)

L− diag(κ+ µ)I

+ diag(N −Lr)P∗diag(β)diag(P∗T
N)−1

P
∗T
J .

(28)

which is a Metzler matrix, since diag(N − Lr)P∗diag(β)diag(P∗TN)−1
P
∗TJ is

nonnegative, and

−diag
(

P
∗diag(β)diag(P∗TN)−1

P
∗T
Jr

)

L− diag(κ+ µ)I

is a diagonal matrix. Additionally, F ′(r) is irreducible owing to the irreducibility of
P
∗. Therefore, F (r) is strongly monotone (see, e.g., [37] and the references therein).

We observe that if a ≫ b, then F ′(a) < F ′(b). Hence, the map F ′ : Rn → R
n × R

n

is strictly antimonotone.
Next notice that 0 is an equilibrium for (25) and

F ′(r)
∣

∣

∣

r=0

= diag(κ+ µ)
(

g′(r)
∣

∣

∣

r=0

− I

)

. (29)

Since

ρ
(

g′(r)
∣

∣

∣

r=0

)

= ρ
(

diag(N)P∗diag(β)diag(P∗T
N)−1

P
∗T
Jdiag−1(κ+ µ)

)

= ρ
(

diag(N)P∗diag(β)diag(P∗T
N)−1

P
∗T diag(κ)diag−1((κ+ µ)⊙ (γ + µ)

)

)

= R0 > 1,

(30)

F ′(r)
∣

∣

∣

r=0

has at least one positive eigenvalue and hence the origin 0 is unstable

(see [38, page 310]). Therefore, according to [39, Theorem 6.1], there is a unique
equilibrium different from 0 of the system (25), and hence a unique EE for the limit
system (22)). □

We next show that the unique EE of the limit system (22) is asymptotically
stable. We follow the procedure presented in [40] and adapt the proof in [41]
to come up with the proof for our model.

Theorem 4.3. If R0 > 1, then the unique EE of the limit system (22) is
asymptotically stable.
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Proof Since we are dealing with the limit system, it suffices to consider the last three
equations of system (22). That is, after replacing S =N − K where K = E+I+R,
our system now becomes



















Ė = diag(N − K)P∗diag(β)diag−1(P∗T
N)P∗T

I − diag(κ+ µ)E

İ = diag(κ)E − diag(γ + µ)I

Ṙ = diag(γ)I − diag(τ + µ)R

(31)

We obtain the positive EE points by solving for E∗, I∗ and R∗ from the system

diag(N − K
∗)P∗diag(β)diag−1(P∗TN)P∗T I∗ − diag(κ+ µ)E∗ = 0

diag(κ)E∗ − diag(γ + µ)I∗ = 0

diag(γ)I∗ − diag(τ + µ)R∗ = 0



















(32)

from which we obtain that

E
∗ = diag(N − K

∗)Qdiag(κ)diag−1
(

(γ + µ)⊙ (κ+ µ)
)

E
∗ (33a)

I
∗ = diag−1(γ + µ)diag(κ)E∗ (33b)

R
∗ = diag−1(τ + µ))diag(γ)diag−1(γ + µ)E∗ (33c)

where Q = P
∗diag(β)diag−1(P∗TN)P∗T . Equation (33a) can be written as

E
∗ = BE∗ (34)

where

B = diag(N − E
∗

− I
∗

−R
∗)Qdiag(κ)diag−1

(

(γ + µ)⊙ (κ+ µ)
)

is an irreducible matrix owing to the assumption of the irreducibility of P
∗
P
∗T .

Notice that E∗ is the Perron-Frobenius vector of P . For any z ∈ C, we denote ℜz as
the real part of z. Let Y0 ∈ C

3n be the eigenvector corresponding to the eigenvalue
{z ∈ C : ℜz ≥ 0} of the Jacobian of system (31) evaluated at the endemic equilibrium
P ∗ = (E∗, I∗, R∗). Using the Krasnosel’kiis trick in [42], we show the asymptotic
stability of our system by showing that the linearized system has no solution of the
form

Y (t) = Y0exp(zt)

with ℜz ≥ 0. If Y0 = (U, V,W ) is the eigenvector corresponding to the eigenvalue z
such that ℜz ≥ 0 , then we have

z





U
V
W



 = J





U
V
W





where

J =















−diag(QI∗)− diag(κ+ µ) diag(N − K∗)Q− diag(QI∗) −diag(QI∗)

diag(κ) −diag(γ + µ) 0

0 diag(γ) −diag(τ + µ)














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We thus have that

zU = −diag(QI∗)U − diag(κ+ µ)U + diag(N − K
∗)QV

− diag(QI∗)V − diag(QI∗)W (35a)

zV = diag(κ)U − diag(γ + µ)V (35b)

zW = diag(γ)V − diag(τ + µ)W (35c)

We eliminate V and W from the system by substituting for their values

V = diag−1(z1+ γ + µ)diag(κ)U

and
W = diag−1(z1+ τ + µ)diag(γ)diag−1(z1+ γ + µ)diag(κ)U

which we obtain from Equations (35b) and (35c), into Equation (35a), of which, after
some rearrangements, we obtain

diag











1+ zdiag−1(κ+ µ)1+ diag−1(κ+ µ)QI∗+

diag(κ)diag−1
(

(z1+ γ + µ)⊙ (κ+ µ)
)

diag(κ)QI∗+

diag(γ)diag−1
(

(z1+ τ + µ)⊙ (z1+ γ + µ)⊙ (κ+ µ)
)

diag(κ)QI∗











U

= diag(N − K
∗)Qdiag−1(z1+ γ + µ)diag(κ)diag−1(κ+ µ)U

(36)

Making the transformation

U = diag(z1+ γ + µ)diag−1(γ + µ)Ũ =
(

I+ zdiag−1(γ + µ)
)

Ũ ,

Equation (36) becomes

diag(1+ ψ(z))(I + ψ̃(z))Ũ = BŨ (37)

where

ψ(z) = zdiag−1(κ+ µ)1+ diag−1(κ+ µ)QI∗

+ diag(κ)diag−1
(

(z1+ γ + µ)⊙ (κ+ µ)
)

diag(κ)QI∗

+ diag(γ)diag−1
(

(z1+ τ + µ)⊙ (z1+ γ + µ)⊙ (κ+ µ)
)

diag(κ)QI∗

and
ψ̃(z) = zdiag−1(γ + µ).

Equation (37) satisfies the condition

If ℜz ≥ 0 then ℜψ(z) > 0, ℜψ̃(z) ≥ 0. (38)

We assume that ℜz ≥ 0 and let ϑ(z) be the minimum of the real parts of the compo-
nents of the vector ψ(z) and the magnitude |Ũ | = (|Ũ1|, · · · , |Ũn|). The magnitude
of 37 gives

(

1 + ϑ(z)
)

|Ũ | ≤ B|Ũ | (39)

Let ω be the minimum number such that

|Ũ | ≤ ωE∗ (40)
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By Theorem (4.2), E∗ is a strictly positive vector and hence ω < ∞. Now,
sequentially using Equations (40) and (34) in Equation (39) we have

(

1 + ϑ(z)
)

|Ũ | ≤ B|Ũ | ≤ ωBE∗ = ωE∗. (41)

We have from condition (38) that if ℜz ≥ 0 then ϑ(z) > 0. Equation (41) then
leads to a contradiction of the assumption that ω is the minimum number such that
40 holds. We therefore conclude that ℜz < 0. This proves the (local) asymptotic
stability of the EE. □

The following result is a direct consequence of Theorem 4.2, Theorem 4.3
and results in [35, 36].

Corollary 4.2. If R0 > 1, then there exists a unique (locally) asymptotically
stable EE for the original system (5).

5 Numerical results

This section is dedicated to small scale and large scale numerical simulation
study of the proposed model. The first subsection deals with numerical com-
parison of our model with that from [1]. The second sub-section deals with
a detailed and in-depth numerical study on the role of mobility and patch
residence times between highly risky and less risky patches. The numerical
studies in the first and second subsections are based on a simple two-patch
case with the last sub-section delving into large scale simulation of how
mobility of individuals between the geostatistical units called Área Geoes-
tad́ıstica Básicas (AGEBs), influences disease dynamics in Hermosillo, the
state of Sonora, Mexico. For the two-patch case, we have used the parame-
ters β1 = 2.0, β2 = 0.5, γ1 = γ2 = 1/14, κ1 = 1/15, κ2 = 2/25,Λ1 = Λ2 =
9, µ1 = 1/9, µ2 = 1/8, τ1 = 1/10, τ2 = 1/20 and ψ1 = ψ2 = 0.003 and
N1 = Λ1

µ1

= 81 and N2 = Λ2

µ2

= 72. The initial conditions used in the simula-

tion were E1(0) = 10, E2(0) = 15, I1(0) = 5, I2(0) = 7, R1(0) = 0, R2(0) = 0,
S1(0) = 66 and S2(0) = 50. There is no specific reason why these values were
chosen. They are hypothetical and are meant to be used for illustrative pur-
poses. The contact parameter values β1 = 2.0 and β2 = 0.5 were however
chosen because we are interested in the assessment of the effects of mobility
of individuals on the evolution of disease in high and low risk patches and on
the global environment. These parameter values will be used throughout the
simulation study in this subsection unless stated otherwise.

5.1 Comparison of actual mobility and virtual mobility

Using two patches, we compare the performance of our model with actual
mobility against that proposed by [1] with virtual dispersal. As mentioned
in the introduction, the model by [1] was constructed under the inherent
assumption that the whole population can travel from their patch and spend
homogeneous proportion of their time in any other patch. In order to account
for the practical situations in which only a fraction of population traveling, we
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extend the model in [1] by introducing partial mobility through the parameter
αi, i = 1, 2, · · · , n whose significance has been discussed in the introduction.
Our model is thus more general in the sense that if we substitute αi = 1.0,
i = 1, 2, · · · , n in our model and maintain the residence times P = (pij)

j=1,··· ,n
i=1,··· ,n ,

our model reduces to that of [1]. The infection curves from the two models
are presented in Figure (2) (the moving population spend half of their time in
the other patch) and Figure (3) (traveling population spend all of their time
in the other patch). Figure (4) shows the global infection dynamics obtained
by summing the infection dynamics in Figures (2) and (3). Observe that in
both graphs, different combinations of mobility describe heterogeneity in the
infection curves that would otherwise have been impossible to discern using
the model in [1] (green curve with αi = 1.0). More importantly, our model
generally reveals that a larger population spending a larger proportion of their
time in a highly risky patch results into high levels of infections in that patch.
This can be observed across Figures (2) and (3). In other words, it would be
impossible to decipher the contribution of the mobility parameters αi if it was
left coupled with the residence times as in [1].

(a) Patch 1 infection dynamics (b) Patch 2 infection dynamics

Fig. 2 Comparison of the two models when p12 = p21 = 0.5: Patch 1 and Patch 2 infection
dynamics

(a) Patch 1 infection dynamics (b) Patch 2 infection dynamics

Fig. 3 Comparison of the two models when p12 = p21 = 1.0: Patch 1 and Patch 2 infection
dynamics
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(a) Global infection dynamics when p12 =
p21 = 0.5

(b) Global infection dynamics when p12 =
p21 = 1.0

Fig. 4 Comparison of the two models: Global infection dynamics

5.2 Small scale numerical study: The two-patch case

For the numerical simulation of the proposed patchy SEIRS models, we have
considered a simple two-patch case for which, our intention is to perform an
in-depth analysis of the effects of the mobility parameters αi and the residence
time matrix P on the evolution of the disease in each patch and global environ-
ment based on the basic reproduction numbers of the models. The idea is to
asses the effects of mobility between low-risk and high-risk patches on disease
levels in the respective patches and the overall environment.

(a) Patch 1 and Patch 2 infection dynamics
when there is no mobility, α1 = α1 = 0 and
t = 20

(b) Patch 1 and Patch 2 infection dynamics
when there is no mobility, α1 = α1 = 0 and
t = 1000

Fig. 5 Patch 1 and Patch 2 infection dynamics in the absence of mobility: the patches are
in isolation. In this case, R1

0
= 4.0423 and R

2

0
= 0.9908

To begin with, it suffices to analyse the disease dynamics in the two patches
in the absence of mobility. The patches are thus in isolation and act indepen-
dently. In this case, Patch 1 basic reproduction number is R1

0 = 4.0423 and
that of Patch 2 is R2

0 = 0.9908. In order to understand the infection dynamics
at the beginning of the infection period and in the long-time behavior (t→ ∞),
we have plotted the infection curves for t = 20 and t = 1000 in the various
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plots. Figure 5 shows the evolution of the disease in Patch 1 and Patch 2 in
the absence of mobility. We can see that Patch 1 infections in Patch 1 starts
increasing at about t = 2 up until t = 17.5 after which the disease remains
endemic in the patch. This is an expected result since R1

0 = 4.0423 > 1. Patch
2 disease dynamics portrays an opposite scenario from those of Patch 1 since
its infections curve shows a decline in infections levels from the onset until
the disease goes into extinction. This too is expected since R2

0 = 0.9908 ≤ 1.
Figure 14 shows the basic reproduction number computed for different combi-
nations of the infection parameters β1 and β2 and in the absence of mobility.
The figure reveals that in the absence of mobility, the disease will die out in
both patches if approximately βi < 0.6, i = 1, 2. Otherwise, the disease will
remain endemic in both patches.

In order to asses the effects of mobility between the two patches on disease
dynamics, we elected to combine larger values of α1 (first fixed at α1 = 1
and then varying in decreasing order) with varying values of α2 (increasing
in order of magnitude). We combined these with the time that the moving
proportion of individuals take in the patch that they have moved to before
they go back to their own patch. We consider two instances: a proportion of
individuals move and take half (p12 = p21 = 0.5) or all (p12 = p21 = 1.0) of
their time in the patch they have moved to. The disease evolution in the two
patches with different mobility patterns are shown in Figures 6, 8, 10 and 12
while the global environment infection dynamics (sum of Patch 1 and Patch
2 infection counts) are given in Figures 7, 9, 11 and 13. The patch specific
and global basic reproduction numbers corresponding to the above figures are
given in Tables 2 and 3. We make the following observations.

1. Larger (fixed at α1 = 1) and smaller values of α1 combined with larger
values of α2 leads to higher levels of infections in both patches. This can
be seen in Figures 6, 8, 10 and 12 with an exception of Patch 1 infection
curves in Figure 10 where there is a slight deviation so that there is a low
infection level when α1 = 1.0, α2 = 1.0 and p12 = p21 = 1.0. The high
infection levels can be confirmed from Table 2 and Table 3 where we see the
global basic reproduction numbers R0 increasing with the combination of
fixed and then decreasing α1 with increasing α2. The figures also reveal that
there is an increased level of infection when the proportion of individuals
travel and take all their time in the other patch compared to when they
take only 50% of their time in the patch they have moved to. This can be
visualized from the infection curves in Figure 10 and Figure 12 which are
somewhat widely spread out as compared to the infection curves in Figure 6
and Figure 8 which are generally closely packed. This observation coincides
with our previous analysis where we indicated that in the presence of a high
risk patch, a larger proportion of the population of individuals moving and
taking a larger proportion of their time in the patch they have moved to
may result into high infection levels to the point where the disease remains
endemic in the patches.
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(a) Infection dynamics of Patch 1 for t = 20 (b) Infection dynamics of Patch 2 for t = 20

(c) Infection dynamics of Patch 1 for t =
1000

(d) Infection dynamics of Patch 2 for t =
1000

Fig. 6 Patch 1 and Patch 2 infection dynamics in the presence of mobility when t = 20,
t = 1000, p12 = p21 = 0.5 and fixed α1 = 1 while varying α2 .

(a) (b)

Fig. 7 Global environment infection dynamics in the presence of mobility when t = 50 and
t = 1000 for p12 = p21 = 0.5 and fixed α1 = 1 while varying α2 .

2. As can be seen in Figure 10, infections in Patch 1 generally increases at
the beginning the remains endemic with an exception of Patch 1 infection
curves when α1 = 1.0 with α2 increasing and p12 = p21 = 1.0. Whereas
Patch 1 infections levels generally increases before stabilizing at endemic
levels, infections in Patch 2 generally decreases first then remains endemic.
This could be attributed to the fact that Patch 1 is high risk and Patch 2 is
low risk so that there is a high contact rate in Patch 1 leading to increased
rate of infection at the beginning of the infection period before mobility of
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individuals (coupled with the high contact rate) maintains the infections at
endemic levels. The same argument holds for low risk patch 2 where the low
contact rate results into a decrease in the infection levels at the beginning of
the infection period: then mobility within the Patch maintains the disease
at endemic levels.

3. The disease remains endemic in all the patches. This is expected and is
confirmed by the global basic reproduction numbers R0 given in Table 2
and Table 3 whose values are all greater that 1. Notice that the global basic
reproduction numbers given in Table 2 and Table 3 increases both when
fixed α1 = 1 is combined with increasing α2 values and when decreasing α1

values are combined with increasing α2 values. However, the increase of R0

is larger in the case when individuals move and spend 100%, as opposed
to when they spend 50% of their time in the other patch. This is observed
from about 0.6 differences of R0 values down the R0 columns of Table 2
and Table 3 when p12 = p21 = 1.0 as opposed to just an increment of about
0.2 when p12 = p21 = 0.5. The global infection curves corresponding to
these global basic reproduction numbers R0 have been plotted in Figures
7, 9, 11 and 13. We can see from these figures that indeed large values of α1

(fixed at α1 = 1) combined with increasing values of α2, which increases R0

values, results into increasing global infection counts with a combination of
α1 = 1 and α2 = 1 resulting into the largest R0 value and subsequently,
the highest infection counts. Observe this from Figure 7 and Figure 11.
This trend is repeated when we combine reducing α1 with increasing α2

values whereby we observe that the lowest α1 = 0.3 combined with the
highest α2 = 0.8 gives the largest R0 both when p12 = p21 = 0.5 and
p12 = p21 = 1.0 and subsequently, we observe the highest global infection
curves as portrayed in Figure 9 and Figure 13. The large increment in R0

values when p12 = p21 = 1.0 have been captured by the corresponding
increment in the global infection counts displayed by Figure 11 and most
conspicuously, by the large spacing in the global infection curves in Figure
13.

4. Generally, since Patch 1 is higher risk, its infection levels are higher when
individuals take 50% of their time in the other Patch as compared to when
individuals take all (100%) of their time in the other patch.

5. The local patch specific basic reproduction numbers Ri,i
0 in the presence of

mobility given in Table 2 and Table 3 reveals that in all instances, Ri,i
0 > 1

whenever R0 > 1 so that the disease remains persistent in Patch i, i = 1, 2.
This is in line with Proposition (3.1) and consequently, with the expected
theoretical behaviour of reproduction numbers. It is also noteworthy that
Ri,i

0 increases with increase in R0 > 1. This may not be clearly visible in

the cases when Ri,i
0 → +∞ but we noticed that in such instances, the rate

of divergence of Ri,i
0 increased. This implies that in the instances where

Ri,i
0 → +∞, the values of rii > 1 in the NGM were increasing with increase

in R0. Moreover, it can be noted in the tables that both Ri,i
0 and R0 > 1

increased with increase in mobility from Patch 2 to Patch 1, signifying
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(a) Infection dynamics of Patch 1 for t = 20 (b) Infection dynamics of Patch 2 for t = 20

(c) Infection dynamics of Patch 1 for t =
1000

(d) Infection dynamics of Patch 2 for t =
1000

Fig. 8 Patch 1 and Patch 2 infection dynamics in the presence of mobility for t = 20,
t = 1000, p12 = p21 = 0.5 and varying both α1 and α2 .

(a) (b)

Fig. 9 Global environment infection dynamics in the presence of mobility when t = 50 and
t = 1000 for p12 = p21 = 0.5 and varying both α1 and α2 .

increasing levels of contact and infection in Patch 1 (which is a highly risky
patch) and consequently in the global environment. The distinct scenario
which appears in red in Table 2 is the case where the NGM was reducible.
Even in this case, it is noteworthy that the contrapositivity of Proposition
(3.2) is fulfilled with the global R0 being equal to the largest Ri,i

0 , which is

R2,2
0 in this case. The relationship between Ri,i

0 and R0 > 1 suggests that
in order to have a complete understanding of the patch and global disease
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dynamics and evolution in the presence of mobility, it is important not
to use Ri,i

0 in isolation but to also consider the global basic reproduction
number R0 as well.

Table 2 Patch specific and global R0 for different combinations of α1 = 1 and varying α2

p12 = p21 = 0.5 p12 = p21 = 1.0

α combination R
1,1
0

R
2,2
0

R0 R
1,1
0

R
2,2
0

R0

(α1 = 1.0, α2 = 0.3) 3.3921 +∞ 2.1769 +∞ 1.8945 1.6211
(α1 = 1.0, α2 = 0.5) 4.9972 +∞ 2.2267 +∞ 2.4891 2.2049
(α1 = 1.0, α2 = 0.8) 40.3571 +∞ 2.3744 +∞ 3.3813 3.2115
(α1 = 1.0, α2 = 1.0) +∞ +∞ 2.50323 1.0106 3.9633 3.9633

Table 3 Patch specific and global R0 for different combinations of varying α1 and α2

p12 = p21 = 0.5 p12 = p21 = 1.0

α combination R
1,1
0

R
2,2
0

R0 R
1,1
0

R
2,2
0

R0

(α1 = 0.9, α2 = 0.2) 3.1403 +∞ 2.3132 4.0190 2.2448 1.4561
(α1 = 0.7, α2 = 0.4) 4.5522 +∞ 2.5608 +∞ 24.6354 2.0519
(α1 = 0.5, α2 = 0.6) 7.7368 +∞ 2.8281 +∞ +∞ 2.6501
(α1 = 0.3, α2 = 0.8) 23.0951 +∞ 3.1056 +∞ +∞ 3.2493

Notice that the above analysis on the effects of mobility on patch and
global environment disease dynamics is not very exhaustive as we have only
considered R0 for specific combinations of the values of α1 and α2 for both
p12 = p21 = 0.5 and p12 = p21 = 0.5. In order to have a complete and
exhaustive view about the values of R0 and consequently, the evolution of
the disease in the specific patches and the global environment, we elected
to compute R0 from the combination of different values of α1 and α2, both
when p12 = p21 = 0.5 and p12 = p21 = 0.1. These values are plotted as both
heatmaps and surface plots in Figure 17 and Figure 18. The surface plots are
just to help us view the R0 values at different angles. Our intention is to help
the reader to have a complete and exhaustive panoramic visualization of the
R0 values obtained from the various combination of mobility parameters.

Both graphs in Figure 17 and Figure 18 confirm our assertion above that
the disease will remain endemic in both patches regardless of the proportion
of individuals moving from Patch 1 to Patch 2 and from Patch 2 to Patch 1
and the time they take in the patches they have moved to. In addition, Figure
17 (a) and (b) shows that when individuals travel and take half of their time
in the patch they have moved to, all the values of α1 combined with with
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values of α2 > 0.5 will result into lower values of the global R0 while Figures
18 (a) and (b) reveal that when individuals travel and take all of their time
in the patch they have traveled to, a combination of α1 < 0.6 and α2 > 0.5
values results into low values of R0 and hence low infection levels. It is there-
fore evident that there are high infection levels when individuals travel and
take a longer period (100% in this case) of their time in the other patch. This
confirms our previous assertion. In fact, we see from Figure 18(a) and (b) that
a combination of values of α1 ≥ 0 with α2 < 0.4 and α1 > 0.6 with α2 > 0.4
results into larger R0 values and consequently signifying high infection levels
when p12 = p21 = 1.0. We thus have a larger combination of mobility patterns
that results into high infection levels when individuals travel and take all of
their time in the patch they have moved to than when they take half of their
time in the patches they are visiting. Simply put: there is a larger red area in
both graphs in Figure 18 than in both graphs of Figure 17.

(a) Infection dynamics of Patch 1 for t = 20 (b) Infection dynamics of Patch 2 for t = 20

(c) Infection dynamics of Patch 1 for t =
1000

(d) Infection dynamics of Patch 2 for t =
1000

Fig. 10 Patch 1 and Patch 2 infection dynamics in the presence of mobility for t = 20,
t = 1000, p12 = p21 = 1.0 and fixed α1 = 1 with varying α2 .

Figure 19(a–d) shows the global R0 computed for all combinations of β1
and β2 values with various combinations of α1 and α2 values and when the
moving individuals take half of their time in the patch they have moved to.
Figure 20(a–d) shows the global R0 values computed from the same combi-
nation of values but when the traveling individuals take all of their time in
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(a) (b)

Fig. 11 Global environment infection dynamics in the presence of mobility when t = 50
and t = 1000 for p12 = p21 = 1.0 and varying both α1 and α2 .

the patches they have to. We can observe from both figures that when α1 is
decreasing and α2 is increasing, we obtain lower R0 values with a combination
of increasing β1 and decreasing β2 (up-to some constant) values. The graphs
reveals that the line separating the larger and smaller R0 values is non-linear
in the case when individuals travel and take half of their time in the other
patch and is linear when the travelers take all of their time in the patches they
are visiting. Generally, in both cases, a combination of small β1 (< 0.7) and
β2 (< 0.5) values should give R0 < 1 values thereby leading to low infection
rates in the specific patches and hence the global environment.

Figure 15 (a) and (b) and Figure 16 (a) and (b) reveal the heterogeneity in
infection levels in terms of R0 when we respectively vary the proportion of the
moving patch population and proportion of time the moving population take
in the patch they have moved to. Figure 15 shows surface plots of R0 values
when varying α1 and α2 values while fixing p12 = 0.1, p21 = 0.9 (Figure 15
(a)) and fixing p12 = 0.9, p21 = 0.1 (Figure 15 (b)). We can see from Figure
15 (a) that R0 values are high when a small proportion of Patch 1 individuals
move and spend a small proportion (10%) of their time in Patch 2 and a small
proportion of Patch 2 individuals move and spend a large proportion (90%) of
their time in Patch 1. This combination of mobility scenarios thus results into
a high infection levels in the high-risk Patch 1 and subsequently in the global
environment. The values of R0 decreases, but not as fast, with an increase in
the proportion of Patch 1 individuals moving to (and spending 10% of their
time in ) Patch 2 and a small proportion of (0%) of individuals moving from
Patch 2 to (and spending 90% of their time in) high-risk Patch 1.

Figure 15 (a) further reveals that R0 decreases with a combination of
increasing values of α1 and increasing values of α2, up-to α2 = 0.6, where we
achieve the lowest value of R0 which starts to increase for values of α2 > 0.6.
This reveals that an increasing proportion of Patch 1 individuals moving and
spending 10% of their time in Patch 2 and an increasing proportion (up-to
60%) of Patch 2 population moving and spending 90% of their time in Patch
1 results into decreasing infection levels in the specific patches (especially
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Patch 2) and subsequently in the global environment. It is noteworthy from
Figure 15 (a) that R0 > 1 regardless of any mobility combination patterns.
The disease therefore remains endemic in both Patch 1 and Patch 2 and
subsequently in the global environment. A combination of large proportion of
Patch 1 population moving and spending 10% of their time in Patch 2 and
large proportion of Patch 2 population moving and spending 90% of their
time in Patch 1 results into high global R0 values and thus infection levels.
However, these R0 values (and thus infection levels) are not as high as when a
low proportion of Patch 1 population moves and to (and spends 10% of their
time in) Patch 2 and a low proportion of Patch 2 population moves to (and
spends 90% of their time in) Patch 1. Figure 15 (b) shows that a combination
of a low proportion of Patch 1 population who move to (and spend 90% of
their time in) Patch 2 with whichever proportion of Patch 2 individuals who
move to (and spend 10% of their time in) Patch 1 results into the largest
values of R0 and consequently, the highest levels of infections in Patch 1 and
the global environment. Put differently, we see that the global R0 decreases
for the combination of increasing values of α1 and any values of α2. We recall
that Patch 1 is a high risk patch and hence having more people in Patch 1
will result into high infections at the beginning of the infection period before
the mobility and the amount of time taken within the Patch maintains the
infections levels and endemic levels. Notice that as in Figure 15 (a), Figure 15
(b) shows that R0 > 1 for any combinations of the values of α1 and α2. The
disease thus remains endemic in both Patches and in the global environment.
However, contrary to Figure 15 (a) which shows that the lowest R0 = 3.2,
the mobility scenarios captured by Figure 15 (b) results into the lowest basic
reproduction number of R0 = 1.25.

Figure 15 (a) and (b) are respectively similar to Figure 16 (a) and (b). This
means that similar interpretations as the ones we have carried out for Figure
15 (a) and (b) can respectively be applied in the interpretations of Figure 16
(a) and (b). We only need to realize that whereas in Figure 15 we are varying
α1 and α2 and fixing p12 = 0.1, p21 = 0.9 (Figure 15 (a)) and p12 = 0.9,
p21 = 0.1 (Figure 15 (b)), in Figure 16, we are varying p12 and p21 and fixing
α1 = 0.1, α2 = 0.9 (Figure 16 (a)) and α1 = 0.9, α2 = 0.1 (Figure 16 (b)). This
implies that we can either fix p12 = p1 and p21 = p2 and vary α1 and α2 or
fix α1 = p1 and α2 = p2 and vary p12 and p21 and obtain similar surface plots
with similar interpretations.

5.3 Large scale simulation studies

Our interest is to compare if there are any structural differences in the for-
ward simulations obtained by using randomly generated residence matrix and
mobility parameters with estimated ones from real data. This comparison
is important as it validates the performance and the use of the proposed
model in a real rather than theoretical world. For this purpose, we consider
forward map simulations for patches of sizes n ∈ {103, 203, 303, 403, 503}. The
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(a) Infection dynamics of Patch 1 for t = 20 (b) Infection dynamics of Patch 2 for t = 20

(c) Infection dynamics of Patch 1 for t =
1000

(d) Infection dynamics of Patch 2 for t =
1000

Fig. 12 Patch 1 and Patch 2 infection dynamics in the presence of mobility for t = 20,
t = 1000, p12 = p21 = 1.0 and varying both α1 and α2 .

(a) (b)

Fig. 13 Global environment infection dynamics in the presence of mobility when t = 50
and t = 1000 for p12 = p21 = 1.0 and varying both α1 and α2 .

residence-time matrix P and the mobility parameter α for each of the n sized
patches were randomly simulated.

As an application to the real world situation, the residence matrix P and the
mobility parameter α for the AGEBs in Hermosillo, Sonora Mexico were esti-
mated using the Brownian bridge technique. We refer the reader to the work by
[43] in order to have an idea of how this estimation was carried out. The total
number of AGEBs (which we consider as patches in this analysis) for which
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Fig. 14 Global R0 values obtained from different combinations of infection risk parameters
β1 and β2 in the absence of mobility .

(a) (b)

Fig. 15 Surface plot for global R0 values obtained from the combinations of different values
of α1 and α2 for fixed p12 = 0.1, p21 = 0.9 and fixed p12 = 0.9, p21 = 0.1 .

these parameters were estimated were n = 503. This explains why we have
considered forward simulations for patch sizes of n ∈ {103, 203, 303, 403, 503}.
Our intention is to see if any structural differences exists between the for-
ward simulations obtained using randomly generated residence-time matrix
and mobility parameters for a patch of size n = 503 and using the estimated
residence-time and mobility parameter values from the AGEBs in Hermosillo.
In both cases, we used constant epidemiological parameter values for each
patch: Λ = 9, γ = 1/14, κ = 1/7, µ = 1/140, ψ = 0.003 and τ = 1/10. We used
random values between a minimum of 0 and a maximum of 3 for the infection
parameters β. We also assumed the same E0 = 0 and R0 = 0 for each patch
with I0 randomly generated uniformly between 10 and 15.

In order to achieve our comparison objective, we only give a plot of the
epidemiological curves for each patch for n = 503. Figure 21 (a) shows the
results from randomly generated residence-time matrix while Figure 21 (b)
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(a) (b)

Fig. 16 Surface plot for global R0 values obtained from the combinations of different values
of p12 and p21 for fixed α1 = 0.1, α2 = 0.9 and fixed α1 = 0.9, α2 = 0.1 .

(a) (b)

Fig. 17 Heatmap and surface plot for global R0 values obtained from the combinations of
different values of α1 and α2 when p12 = p21 = 0.5 .

(a) (b)

Fig. 18 Heatmap and surface plot for global R0 values obtained from the combinations of
different values of α1 and α2 when p12 = p21 = 1.0 .

shows the same curves obtained by using estimated P andα from the AGEBs in
Hermosillo, Sonora, Mexico. A comparison of the two graphs reveals that there
are structural differences between the respective curves. That is, the respective



Springer Nature 2021 LATEX template

40 Multi-patch epidemic models with partial mobility, residency, and demography

(a) (b)

(c) (d)

Fig. 19 Global R0 values obtained from the combinations of different values of the Patch
infection risk parameters β1 and β2 when there is mobility and p12 = p21 = 0.5

.

Table 4 Global R0 values for large scale simulation

n 103-rand 203-rand 303-rand 403-rand 503-rand 503-estimated
R0 6.9815 6.8218 6.9536 7.4680 7.2618 9.7775

curves do not have structural uniformity with those generated by estimated P

and α from the AGEBs being somewhat non-homogeneous. Of importance to
note from Table 4 is that the global basic reproduction numbers for the random
P and α for n = 503 was R0 = 7.2618 while that for the estimated P and α
from the AGEBs was R0 = 9.7775. As such, we have the disease remaining
endemic in all the patches and the global environment (since R0 > 1) for both
cases. This can respectively be verified from the infected curves in Figure 21 (a)
and Figure 21 (b). Notice the large difference in the global basic reproduction
numbers for the two cases. This confirms the heterogeneity and variability of
the epidemiological curves as can be seen in Figure 21 (b) compared with the
somewhat homogeneous and nob-variable epidemiological curves in Figure 21
(a).

Figure 22 shows a comparison of the global curves (sum of the susceptible,
exposed, infected and recovered for each patch) for varying patch sizes, the
AGEBs and a plot of the single patch SEIRS model. Figure 21(a) and 21(b)
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(a) (b)

(c) (d)

Fig. 20 Global R0 values obtained from the combinations of different values of the Patch
infection risk parameters β1 and β2 when there is mobility and p12 = p21 = 1.0

.

are plots of the global curves for t = 50 and t = 150 respectively. The graphs
reveal that the infections in the global environment peaks (save for the sin-
gle SEIRS model) at t = 25, slightly reduces and then remains endemic. The
endemicity of the infections in the global environment is due to the fact that
R0 > 1 in the considered cases as can be seen in Table 4. The slight structural
difference in the curves obtained by randomly simulated and estimated P and
α has been confirmed in Figure 21. It can be seen that the global curves corre-
sponding to these scenarios are somewhat comparably different with only the
susceptible global curve obtained from the estimated parameters being slightly
above the global susceptible curve obtained from the randomly generated ones.
The rest of the global exposed, infected and recovered curves obtained from
the estimated P and α are slightly below the same global curves obtained
from the randomly generated P and α. There are higher counts as n increases.
This is expected since the global curves are obtained from the addition of the
individual patch points, which should be high when n is large.

Theorem 3.1 holds in this large scale simulation case as it was con-
firmed that all the global basic reproduction numbers for all n ∈
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{103, 203, 303, 403, 503} as in Table 4 are bounded below and above respec-
tively by the minimum and maximum Patch i, i = 1, 2, · · · , n basic reproduc-
tion numbers Ri

0 when the patches are acting as isolated units, that is, when
the patches are not connected through mobility.
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(a) Forward simulations obtained from randomly generated residence time matrix and
mobility parameters for n = 503 patches
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(b) Forward simulations obtained from estimated residence time matrix and mobility
parameters for n = 503 AGEBS in Hermosillo

Fig. 21 Susceptible, Exposed, Infected and Recovered curves simulated by randomly gener-
ated and estimated residence matrices and mobility parameters for n = 503 patches/AGEBS



Springer Nature 2021 LATEX template

44 Multi-patch epidemic models with partial mobility, residency, and demography

0 10 20 30 40 50

0

1

2

3

4

5

6
co
un

t

1e5 Susceptibles
n=103
n=203
n=303
n=403
n=503
Estimated

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

1e5 Exposed
n=103
n=203
n=303
n=403
n=503
Estimated

0 10 20 30 40 50
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

co
un

t

1e5 Infected
n=103
n=203
n=303
n=403
n=503
Estimated

0 10 20 30 40 50
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
1e5 Recovered

n=103
n=203
n=303
n=403
n=503
Estimated

(a) Global curves for t = 50

0 20 40 60 80 100 120 140

0

1

2

3

4

5

6

co
un

t

1e5 Susceptibles
n=103
n=203
n=303
n=403
n=503
Estimated

0 20 40 60 80 100 120 140

0.0

0.5

1.0

1.5

2.0

2.5

1e5 Exposed
n=103
n=203
n=303
n=403
n=503
Estimated

0 20 40 60 80 100 120 140
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

co
un

t

1e5 Infected

n=103
n=203
n=303
n=403
n=503
Estimated

0 20 40 60 80 100 120 140
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
1e5 Recovered

n=103
n=203
n=303
n=403
n=503
Estimated

(b) Global curves for t = 150

Fig. 22 Global curves from the AGEBS in Hermosillo, the varying n-sized patches obtained
from the randomly generated residence matrix/mobility parameters and the single patch
model.
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6 The generalized Multi-Patch SEIRS model

The SEIRS model that we have analyzed above is formulated on the premise
that Patch i i = 1, 2, · · ·n population is moving as a whole group without
any discrimination and separation of the moving population into their specific
epidemiological or clinical groups. In this section, we derive a generalization
of the already analyzed SEIRS model where we assume that a proportion of
each Patch i epidemiological population groups Si, Ei, Ii and Ri move and
spend a proportion of their time in Patch j, j = 1, 2, · · ·n. This is to say that
we now discriminate and capture the effects of the mobility of each of the
population belonging to different clinical statuses on Patch j, j = 1, 2, · · ·n
disease dynamics. We therefore introduce and capture heterogeneity in the
mobility of Patch i different epidemiological groups.

6.1 Derivation of the model

Let us denote Si, Ei, Ii, Ri as the number of susceptible, exposed, infected
and recovered people in patch i. Let αSi , α

E
i , α

I
i and αRi respectively be the

proportion of susceptible, exposed, infected and recovered population moving
out of Patch i into Patch j. Further, let sij , eij , iij and rij be the proportion of
time spent respectively by Patch i susceptible, exposed, infected and recovered
population in Patch j. The defined proportions of time should be such that

n∑

j=1

sij = 1,

n∑

j=1

eij = 1,

n∑

j=1

iij = 1,

n∑

j=1

rij = 1 (42)

As such, we assign different factors (proportion of time) for different subgroup
thereby accounting for heterogeneity. These factors consider that only a pro-
portion of the population move out from their own community. Further, by
assigning different factors to each subgroup, heterogeneity in their movement
is captured. Based on the above definitions, we observe that there are

αSi Sisij + αEi Eieij + αIi Iiiij + αRi Ririj

patch i residents in patch j on average at time t and that there are

(1− αSi )Sisij + (1− αEi )Eieij + (1− αIi )Iiiij + (1− αRi )Ririj

patch i residents that do not move to patch j. The number of infected people
in patch j is ∑

i

αIi Iiiij +
∑

k

(1− αIj )Ijijk,

where the first term represents the total infected people moving into patch j,
the second term represents the total infected population that stays at patch
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j. The second term can be further simplified using the identity
∑n

j=1 iij = 1.
Therefore, the effective infected people in patch j is given as:

∑

i

αIi Iiiij + (1− αIj )Ij .

The effective population in patch j is therefore given as:

EJ =

n∑

k=1

[
(1− αSj )sjkSj + (1− αEj )ejkEj + (1− αIj )ijkIj

+ (1− αRj )rjkRj

]
+
∑

i

[
αSi sijSi + αEi eijEi + αIi iijIi + αRi rijRi

]

=
[
(1− αSj )Sj + (1− αEj )Ej + (1− αIj )Ij + (1− αRj )Rj

]

+
∑

i

[
αSi sijSi + αEi eijEi + αIi iijIi + αRi rijRi,

]

where the second equality is obtained after using the identities in Equation
(42) on the first equality. The first part on of the RHS of the second equality
represents the remaining population in patch j, whereas the second part rep-
resents people coming into j. Therefore, proportion of infected individuals in
patch j is:

Zj =
(1− αIj )Ij +

∑
i α

I
i Iiiij

EJ
.

Number of susceptible from patch i who are currently in patch j is αSi Sisij
and hence we have the Si population infected per unit time in patch j as

βjα
S
i SisijZj . (43)

The effective population in Patch i (the sum of those who remain in Patch i
and those who visit from Patch j) is:

EI =
[
(1− αSi )Si + (1− αEi )Ei + (1− αIi )Ii + (1− αRi )Ri

]

+
∑

k

[
αSk skiSk + αEk ekiEk + αIkikiIk + αRk rkiRk.

]

Hence the effective proportion of infected individuals in patch i is:

Zi =
(1− αIi )Ii +

∑
k α

I
kIkiki

EI
.

But notice that the total Si population that remain in patch i is:
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∑

j

(1− αSi )Sisij = (1− αSi )Si.

Therefore, Si population infected per unit time in patch i is given as:

βi(1− αSi )SiZi. (44)

Therefore, total Si infected per unit time based on Equation (43) and Equation
(44) is:

βi(1− αSi )SiZi +
∑

j

βjα
S
i SisijZj .

Now incorporating the dynamics of SEIRS model, we get the following
ODE system:





Ṡi = Λi − βi(1− αSi )SiZi −
∑

j

βjα
S
i SisijZj − µiSi + τiRi

Ėi = βi(1− αSi )SiZi +
∑

j

βjα
S
i SisijZj − (κi + µi)Ei

İi = κiE − (γi + ψi + µi)Ii

Ṙi = γiIi − (τi + µi)Ri,

(45)

where Zi and Zj are as defined previously. The definitions of the parameters
used in the above model are in Table 5.

Table 5 Description of the parameters for SEIR model

Parameters Description

αS
i The proportion of susceptible individuals moving out of patch i
αE
i The proportion of exposed individuals moving out of patch i
αI
i The proportion of infected individuals moving out of patch i
αR
i The proportion of recovered individuals moving out of patch i

Λi Recruitment of Susceptible individuals in Patch i
sij Proportion of time spend by susceptible population of patch i in patch j
eij Proportion of time spend by exposed population of patch i in patch j
iij Proportion of time spend by infected population of patch i in patch j
rij Proportion of time spend by recovered population of patch i in patch j
βj Instantaneous risk of infection in Patch j
µi Per capita natural death rate in Patch i
γi Per capita recovery rate of individuals in Patch i
τi Per capita loss of immunity rate
ψi Per capita disease induced death rate of Patch i
κi Per capita rate at which the exposed individuals in patch i becomes infectious

The above system can also be written in matrix form as follows:
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



Ṡ = Λ− diag(S)s⋆diag(β)diag−1(s⋆TS + e⋆TE + i⋆T I + r⋆TR)i∗tI

−diag(µ)S + diag(τ )R

Ė = diag(S)s⋆diag(β)diag−1(s⋆TS + e⋆TE + i⋆T I + r⋆TR)i∗tI

−diag(κ+ µ)E

İ = diag(κ)E − diag(γ +ψ + µ)I

Ṙ = diag(γ)I − diag(τ + µ)R

(46)

where,

s⋆ =




(1− αS1 ) + s11α
S
1 s12α

S
1 · · · s1nα

S
1

s21α
S
2 (1− αS2 ) + s22α

S
2 · · · s2nα

S
2

...
...

...
. . .

...
sn1α

S
n sn2α

S
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6.2 The basic reproduction number and mathematical

analysis of the model

Using the next generation approach, we obtain the next generation matrix of
system (46) as

FV −1 =

(
Hdiag(κ)diag−1 ((κ+ µ)⊙ (γ +ψ + µ)) Hdiag−1(γ +ψ + µ)

0 0

)

where
H = diag(N)s⋆diag(β)diag−1(s⋆TN)i⋆T

From which we obtain the basic reproduction number as

RGe
0 = ρ(Hdiag(κ)diag−1 ((κ+ µ)⊙ (γ +ψ + µ)))

The local Lipschitz continuity and positive boundedness of system (45) can be
shown using a similar procedure for the system (3). Theoretical and simula-
tion studies on the effects of heterogeneity in mobility and patchiness on the
basic reproduction number RGe

0 is still an ongoing work. However, analysis of
the global stability of equilibria of system (46) in its current form is quite chal-
lenging. In fact, such models exhibits intricate non-linearity that may lead to
the existence of multiple endemic equilibria (see, e.g., [44]). It may therefore
be meaningful to explore an analysis of global stability of equilibria for some
particular cases of the generalized system (46). In this sense, we consider a
particular case where we ignore the epidemiological-statuses-dependent mobil-
ity. That is, we assume that s⋆ = e⋆ = i⋆ = r⋆. Further, as in the previous
global stability analysis, we assume that there is no disease induced mortality,
in which case, the total population dynamics is given as

Ṅ = Λ− µ⊙N

and hence we have that lim
t→∞

N = Λ ⊙ 1
µ

= N . Consequently, an applica-

tion of a mix of the above two assumptions and the theory of asymptotically
autonomous systems for triangular systems as discussed by [36] and [45], the
system (46) is asymptotically equivalent to





Ṡ = Λ− diag(S)s⋆diag(β)diag−1(s⋆TN)i∗tI − diag(µ)S

+diag(τ )R

Ė = diag(S)s⋆diag(β)diag−1(s⋆TN)i∗tI − diag(κ+ µ)E

İ = diag(κ)E − diag(γ +ψ + µ)I

Ṙ = diag(γ)I − diag(τ + µ)R

(47)

We denote the basic reproduction number of system (47) as RGA
0 and obtain

its expression, using the next generation approach, as
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RGA
0 = ρ(diag(N)s⋆diag(β)diag−1(s⋆TN)i∗tdiag(κ)diag−1 ((κ+ µ)⊙ (γ + µ))).

Theorem (6.1) gives the global stability of the DFE and the existence of a
unique EE of system (47).

Theorem 6.1.

i) If RGA
0 ≤ 1, the DFE P0 is GAS. Otherwise if RGA

0 > 1, then the DFE is
unstable.

ii) If RGA
0 > 1, then there exists a unique EE which is locally asymptotically

stable (LAC).

The proof of the first and second parts of Theorem (6.1) is respectively
similar to that of Theorem (4.1), Theorem (4.2) and Theorem (4.3).

7 Conclusion

We have generalized the existing multi-patch SEIRS epidemic model [1] in
several important directions. First, we introduce the proportion αi of Patch
i individuals who move and the time pij that the moving Patch i individu-
als take in Patch j. Second, we have performed a quite complete analysis of
the proposed model. In particular, we have shown that the model is locally
Lipschitz and is biologically well posed. Under the proposed formulation, we
compute the global and patch specific basic reproduction numbers R0 as a
function of the mobility parameters αi and the residence time matrix elements
pij . We perform global analysis where we have ascertained that in the presence
of mobility, the disease dynamics purely depends on the global basic repro-
duction number R0 while the patch specific reproduction numbers Ri

0 controls
Patch i disease dynamics in the absence of mobility. We have shown that the
DFE is GAS if R0 ≤ 1 and that there exists a unique EE which is asymptoti-
cally stable when R0 > 1. Third, a novel definition of the patch reproduction
number Ri,i

0 has also been introduced where we have shown, theoretically and
through numerical simulation, that there is a close relationship between R0

and Ri,i
0 as regards to the persistence and extinction of the disease. Our newly

defined patch reproduction numbers obeys the expected theoretical behaviour
of reproduction numbers in this regard as is discussed in the text. Fourth, we
have also introduced and analyzed a more generalized epidemiological-status-
mobility-dependent SEIRS epidemic model which encapsulates the idea that
Patch i disease levels can be determined when a proportion of the population
in the respective Patch Susceptible, Exposed, Infected and Recovered epi-
demiological groups travel and spend a proportion of their time in the other
patch.

We have carefully formulated and run a simple two-patch forward map sim-
ulation in order to asses the role of the mobility parameter α, the residence
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matrix P, and the environmental risk parameters βi playing in the evolution of
the disease in the two patches. In our simulation study, we have shown that the
synergy between these parameters can lead to the disease remaining endemic
or going into extinction in the individual patches. For example, we have ascer-
tained that a larger proportion αi of Patch i individuals moving and spending
more of their time pij in a sufficiently high risk Patch j (βj ≫ βi) may lead to
the disease remaining endemic in Patch j. The simulation results reveal that
there are high infection levels in a high risk patch regardless of the proportion
of individuals moving and the proportion of time those moving spend in low
risk patch. Our formulation and analysis has revealed that heterogeneity of
mixing distributions in terms of mobility and residence times are vital on the
spread of infectious diseases.

The performance of the proposed model in the face of a large scale forward
simulation scenario has also been considered in this research. We have com-
bined this large scale simulation analysis with an application of the model in a
real world scenario where we have used an estimated residence-time matrix P

and mobility parameter α from AGEBs in the city of Hermosillo, the state of
Sonora, Mexico. A comparison of the forward map simulations obtained from
use of randomly generated and estimated P and α reveals some structural
differences and variability. Consequently, real data should be incorporated to
accurately simulate and forecast of an ongoing infectious disease.
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