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ABSTRACT

Methods for controlling machines using physiological signals have been the focus of much research over the last decades.

One natural approach is to use brain signals for decoding subject-driven cognitive states. However, brain-based decoding

approaches often require costly, challenging to handle, and uncomfortable devices inadequate for daily use. We propose

an alternative method to decode cognitive states based on heart rate (HR). Although HR is capable of classifying general

physiological conditions (e.g., level of physical activities, stress, some diseases), it is less clear if HR signals can discriminate

cognitive states. To answer this question, we submitted 25 subjects (mean age ± standard deviation, 30.2±4.9 y.o.) to four

cognitive tasks: (i) resting quietly, (ii) remembering their day’s events, (iii) singing lyrics, and (iv) subtracting numbers. We

collected the electrocardiogram twice for each individual, separated by approximately one week. We used an inexpensive

commercially available chest sensor band to collect the HR. We trained a support vector machine to classify the cognitive tasks

using data collected on day one. Then we validated it in the dataset collected on day two. Our results show classification

accuracy higher than expected at random (p< 0.001, bootstrap test). Therefore, we conclude that we can use HR to help decode

cognitive states. Because we can easily monitor the HR using a wearable sensor, HR is potentially helpful for human-machine

interface applications in daily conditions.

1 Introduction

Brain decodification, i.e., the discrimination of specific cognitive states, has gained much attention over the last decades as

a tool for the human-machine interface1. Many approaches have yielded remarkable results in classification accuracy using

functional magnetic resonance imaging (fMRI)2, electroencephalography (EEG)3, electrocorticography (ECoG)4, or functional

near-infrared spectroscopy (fNIRS)5. However, brain signal-based methods present some critical limitations6. For example,

they are costly, present low signal-to-noise ratios, and limit individual mobility for daily use7.

In contrast to brain signals, we can measure heart signals using readily and inexpensively available systems, such as

smartwatches and chest bands 8. Moreover, heart rate signals have a larger signal-to-noise ratio than brain signals 9. Hence they

are more robust against body movements. Here, we propose to use heart rate variability (HRV), which measures the variation in

time between heartbeats, for decoding cognitive state. The rationale for using the HRV is that it is strongly associated with

autonomic nervous system (ANS) activity. The ANS regulates not only our heart rate, blood pressure, breathing, and digestion

but also modulates the interoceptive processes, i.e., the sense of the body’s internal state 10.

Given that several interoception-related brain areas are critical for cognitive processes, it is natural to ask whether

interoceptive processes modulate cognition11. Despite this theoretical possibility, studies using HR - a proxy of ANS activity -

have focused only on emotional and metabolic aspects of behavior. The possibility that HR may be associated with the cognitive

process is mainly unexplored12. We hypothesize that HR is a good proxy for the brain’s cognitive states. In particular, we

expect to be able to discriminate cognitive states using HR.

2 Materials and Methods

We want to test the hypothesis that the cardiac signal has information about the subject-driven cognitive state. To test this

hypothesis, we recruited 30 subjects (section 2.1), used a subject-driven cognitive states experiment (section 2.2), collected

(section 2.3), pre-processed (section 2.4), and extracted metrics from the HR (section 2.5), and finally used a machine learning

classifier to discriminate the cognitive states (section 2.6).



2.1 Subjects

Thirty healthy right-handed subjects (all males) aged 23–44 participated in this study. Eligible subjects were healthy and

right-handed males (to avoid dominant hand bias and gender effect) between 20 and 45 years old. Exclusion criteria were: the

presence of cardiorespiratory disease, use of drugs/medicine, ingestion of caffeine or alcohol, exhaustive exercises 24 hours

before data collection, and do not sleep well at least seven hours the night before data collection.

We excluded five subjects due to auto declaration of discomfort, nervousness, or caffeine consumption. Thus, our final

dataset comprised 25 subjects (mean age ± standard deviation, 30.2±4.9 y.o.). This number of subjects is similar to the one

described in13, the work we based our experimental design. Besides cardiac signal acquisition (please refer to section 2.4 for

further details), we also collected height, weight, frequencies of coffee consumption, and physical activity.

The Ethics Committee for Human Research at the Escola de Artes, Ciências e Humanidades (EACH) - the University of

São Paulo (USP) approved the experimental protocol (protocol number: 32732320.4.0000.5390; date of approval: June 9th,

2020). All experiments were performed in accordance with the ethics committee guidelines and regulations. Informed consent

was obtained from all participants.

2.2 Experimental design

The experimental design was the same as carried out by 13 in neuroscience. They designed these experiments to make the

cognitive states similar to reality.

We instructed the subjects to sit upright and close their eyes. All subjects completed four 10-min tasks described in13: (1)

a resting-state electrocardiogram, (2) an episodic memory task, (3) a music lyrics task, and (4) a subtraction task. Subjects

always completed the resting-state electrocardiogram first, and we balanced the order of the three cognitive tasks. Details of

each task are as follows:

1. Resting state. We instructed subjects to relax, let their minds wander, and try not to focus on anything.

2. Memory task. We asked subjects to recall the day’s events from when they awoke until the moment of the experiment.

3. Music task. We asked subjects to sing their favorite songs mentally.

4. Subtraction task. We asked subjects to count backward from some randomly chosen number greater than 5 000 by 7s.

We recruited the subjects twice, separated by approximately one week. In other words, each subject performed the four

tasks twice. We collected all the data before noon. We carried out most of the second-week data collection approximately at the

same time as the first collection.

2.3 Cardiac signal acquisition

We used the Polar H10 chest strap sensor (https://www.polar.com/br) to monitor the cardiac signal. Studies carried

out in controlled environments with the electrocardiogram (ECG), the gold standard, showed that this type of sensor presents

sampling rates and precision sufficient to capture HR7, 14. Also, Polar sensors present a high correlation to ECG15.

The Polar H10 sensor collects an electrocardiogram at a frequency of 1kHz. It transmits the RR interval (the time elapsed

between two successive R spikes in the QRS complex of the electrocardiogram wave) data through Bluetooth low energy

at a frequency of 1Hz. For continuous data collection, we developed a Python software. This software stores the data in a

document-based database.

2.4 Cardiac signal preprocessing

Although the heart’s positioning guarantees a clean signal, the ECG is not free of noise and artifacts. One natural cause is

ectopic beats, caused by electric conductivity originating in the fibers outside the sinoatrial node. The sinoatrial node is the

cardiac muscle region responsible for electric impulses. Other causes are the sensor’s lack of contact with the skin or lousy

detection of the QRS complex peaks. Thus, we preprocessed the data using the gHRV software 16. The preprocessing steps

were as follows:

1. We excluded the outliers, it i.e., RR intervals lower than 300ms and greater than 2 000ms.

2. We filtered out ectopic beats in short-term HR using the technique described by17. We followed the suggestions of 18 and

applied a 4Hz interpolation to complete the missing points.

3. We calculated the RR normalized intervals (NN).
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Because our Python software collected the data at a frequency of 1Hz and each individual carried out each task for

approximately 10 minutes, each cardiac signal time series comprised approximately 600-time points. We excluded the first 50

seconds of each task to guarantee that we considered data when the subjects were focused on the task. We constructed sliding

windows of 45 seconds for feature extraction, with a second displacement to calculate the next immediate sliding window.

Thus, we represented each individual with approximately 500 sliding windows.

2.5 Cardiac signal metrics

We calculated the most commonly used HRV metrics19 for each sliding window as follows. We describe between parenthesis

the unit of measurement.

1. Mean of heart rates (beats per minute - bpm):

MHR =
1

n

n

∑
i=1

HRi (1)

2. Mean of RR intervals (milliseconds - ms):

MRR =
1

n

n

∑
i=1

RRi (2)

3. Root mean square of successive RR interval differences (ms):

rMSSD =

√

1

n

n−1

∑
i=1

(RRi+1 −RRi)2 (3)

4. Heart rate standard deviation (bpm):

HRSTD =

√

1

n−1

n−1

∑
i=1

(HRi −MHR)2 (4)

5. Standard deviation of the normalized RR (NN) (ms):

SDNN =

√

1

n−1

n

∑
i=1

(NNi −MRR)2 (5)

6. Coefficient of variation of normalized RR intervals:

CV_RR = SDNN/MRR (6)

7. Percentage of successive normalized RR intervals that differ by more than 50 ms (%):

pNN50 =
#(NN > 50)

#(NN)
(7)

8. Power of the low-frequency (LF) band (0.04–0.15Hz) (ms2).

9. Power of the high-frequency (HF) band (0.15–0.4Hz) (ms2).

10. Ratio of LF-to-HF power (LFHF) (%).

11. The approximate entropy (ApEn) measures the regularity and complexity of a time series20. Let Cm(r) be the prevalence

of repetitive patterns of length m, and r be the similarity criterion; then, the approximate entropy is defined as follows:

ApEn = ln

[

Cm(r)

Cm+1(r)

]

(8)
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Figure 1. Within-day subject-driven cognitive states classification accuracies. (A) We obtained the classification accuracies

using the first half of day one data as the training dataset and the second half as the validation set. (B) We obtained the

classification accuracies using the first half of day two data as the training set and the second half as the validation set.
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12. The fractal dimension (FracDim) measures the complexity of the HRV signal. It quantifies the time series self-similarity

characteristics. We performed the calculations according to the algorithm described in21. Let Cm be the prevalence of

repetitive patterns of length m, and ra and rb be two different similarity criteria. Then, the fractal dimension is defined as

follows:

FracDim =
ln(Cm(rb))− ln(Cm(ra))

ln(rb)− ln(ra)
(9)

We did not calculate the ULF (≤ 0.003 Hz) and VFL (0.0033− 0.04 Hz) bands because they are only helpful for data

measured using 24 hours recordings.

2.6 Data classification

We used the support vector machine (SVM) with radial basis functions kernel as suggested by22 for ECG classification.

SVMs are supervised learning methods for classification analysis. Suppose we have a training set, i.e., a set of cardiac

signals, each labeled as belonging to one of the four groups (resting-state, memory, music, subtraction). Then, an SVM training

algorithm builds a model that assigns new cardiac signals to one of the groups. SVM maps training cardiac signals to points in

space to maximize the width of the gap between the groups. For new cardiac signals, SVM maps them into that same space and

predicts to which group the new (unlabeled) cardiac signal belongs based on which side of the gap they fall.

SVMs can efficiently perform linear and nonlinear classifications. SVM uses the kernel trick for nonlinear classification,

mapping the inputs into high-dimensional feature spaces. Here we used the nonlinear classification suggested by22 for cardiac

signal classification.

To evaluate the classification accuracy, we performed two experiments. One was to test whether we could discriminate the

subject’s physiological condition within the day. To this end, we split the data into two parts for each individual: the first half of

the time series as the training dataset and the second half as the validation dataset. The other was to test whether we could

discriminate the subject’s physiological condition between days. To this end, we used the dataset collected on day one as the

training dataset and the dataset collected on day two as the validation dataset.

To compare our results to the ones obtained by 13, we used the same leave-one-out cross-validation (LOOCV). LOOCV

consists of using one observation as the validation set and the remaining observations as the training set. We repeat it for all

observations.

We used D-optimal Design 23, a Julia library24, to identify the most critical features described in section 2.5 for task

classification. We converted the importance to percentages for better interpretation.

2.7 Statistical analysis
We used Spearman’s correlation to test the association between the cognitive state classification accuracy and clinical variables,

such as height, weight, and frequency of physical activity. Spearman’s correlation is a nonparametric method to test the

statistical dependence between the rankings of two variables. It assesses how well we can describe the relationship between

two variables using a monotonic function25. We assumed a p-value cutoff of 0.05 for statistical significance in a bootstrap test.

3 Results

Figure 1 shows the classification accuracies for all classification combinations using the first (panel A) and second days (panel

B). As expected, the classification accuracies decreased as the number of considered cognitive states increased in both cases.

The average classification accuracy was more significant for all of them than we expected at random (p < 0.001, bootstrap test).

In other words, for two, three, and four class comparisons, we obtained average accuracies more significant than 50, 33, and

25%. The classification accuracies obtained within the first and second days were similar.

The second experiment tested whether we could discriminate against the subject’s physiological condition between days.

To this end, for each individual, we used the data collected on the first day as the training set and the data collected on the

second day as the validation dataset. Figure 2 shows the classification accuracies for the 25 participants in each classification

combination. As expected, the classification accuracies decreased as the number of considered cognitive states increased. Again,

the average accuracy was significantly greater for all between-day classifications than we expected at random (p < 0.001, ,

bootstrap test). However, here, the accuracies were smaller than the within-day equivalent comparison. Thus, it seems that the

cardiac signal was day-dependent. In other words, we had an information loss between days. One intuitive normalization factor

in improving the classification accuracy could be the resting state cardiac signal. Thus, we included it as a covariate, but the

accuracy did not increase.

To compare our results to the ones obtained by 13 using the fMRI, we performed the leave-one-out cross-validation

(LOOCV) analysis for the four-classes classification. We achieved an average accuracy of approximately 46% in this analysis

(p < 0.001, bootstrap test).
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Figure 2. Between-day subject-driven cognitive states classification accuracies. We used the day one data as the training set

and day two as the validation set.

We also asked if the individual physical differences were relevant for classification performance. Hence, we tested whether

classification accuracy correlates to other participants’ height, weight, and physical activity practice. None were statistically

significant (p > 0.05, bootstrap test), showing that physical differences between individuals were not predictive of the accuracy

of the classifier.

Among all the features we used for classification, it is natural to ask which features are the most relevant ones. Figure 3

shows the importance of each feature for task classification. We can see that HR and NN intervals are the first and second most

critical task classification characteristics.

4 Discussion

We presented the HR-based cognitive state classification results obtained in two conditions: within and between days. For

both within and between-day experiments, the accuracy was more significant than we expected at random. This result is

consistent with the hypothesis that HR can be used to encode cognitive states. We also analyzed which HR-based features were

essential for the classification. The two most important are the raw HR and NN (RR normalized intervals), which correspond to

approximately 40% of the features.

We used four self-driven cognitive tasks previously used in an fMRI study to decode cognitive states: (i) resting, (ii)

memory, (iii) music, and (iv) subtraction13. This experimental design presented at least two main challenges. First, we acquired

the HR in continuous runs with no stimulus presentation and no investigator-imposed temporal landmarks other than the scan’s

start and end of the session. Hence, there was no apparent onset or offset for events. This is an experimental design that better

mimics a more realistic situation than event-based brain decoding experiments 26–35. Second, we based the decoding on a single

HR signal, which presents a much smaller degree of freedom than high-dimensional brain signals. To compare our classifier

based on the HR to what we would expect by using an fMRI-based approach, we carried out a LOOCV experiment similar to

the one presented in 13. In the LOOCV experiment for four classes classification, we obtained an average accuracy of 46%,

significantly lower than the 85% obtained by 13. This result is expected, given that we used only one signal. In contrast,13 used

90 regions of interest (ROI) of the brain.

One may ask why we could distinguish the four cognitive tasks using only the cardiac signal. One possible explanation

is that the HRV measures interoception, i.e., the perception of the body’s physiological conditions36, 37. HRV represents

compressed information about how the body interacts with the brain. Also, as aforementioned, the brain and heart are connected

by the autonomic nervous system. HRV represents the organism’s internal state. It is considered an indicator of the autonomic
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10.68% 7.87% 13.65% 17.18% 13.29% 13.60% 14.21% 13.30% 13.04% 10.85% 11.96%

32.37% 19.20% 29.67% 15.11% 20.46% 26.66% 27.32% 28.90% 28.99% 18.38% 27.17%

6.15% 17.66% 6.52% 0.52% 6.75% 4.27% 7.92% 9.54% 8.99% 7.35% 7.88%

7.12% 12.67% 8.01% 0.86% 1.84% 2.39% 4.10% 5.20% 4.93% 6.07% 6.79%

0.32% 7.67% 0.00% 0.00% 0.00% 0.00% 0.54% 0.00% 1.74% 0.00% 0.00%

6.80% 8.25% 7.13% 6.53% 7.37% 9.60% 9.02% 7.22% 7.53% 8.46% 8.97%

4.53% 9.79% 5.34% 1.38% 4.29% 2.14% 1.91% 2.89% 3.19% 5.34% 4.08%

0.00% 0.58% 2.67% 6.53% 6.14% 3.20% 0.00% 3.18% 2.32% 2.94% 2.18%

9.06% 0.20% 6.23% 12.37% 6.54% 5.86% 8.19% 7.22% 4.34% 5.69% 4.61%

6.80% 4.99% 5.34% 8.77% 8.59% 8.80% 7.38% 6.36% 7.83% 9.01% 8.15%

2.91% 4.80% 2.97% 7.73% 5.52% 6.39% 3.55% 2.89% 5.21% 7.54% 5.43%

0.32% 0.00% 0.00% 7.39% 4.29% 3.20% 5.19% 0.57% 0.00% 2.57% 0.00%

7.12% 0.38% 7.42% 12.54% 12.27% 9.60% 7.65% 8.96% 7.53% 10.85% 8.69%

5.82% 5.95% 5.05% 3.10% 2.66% 4.27% 3.01% 3.76% 4.34% 4.97% 4.08%

Figure 3. Features importance in between-day analyses. The darker the cell is, the more critical the respective feature. The

number in each cell describes the importance of the feature in percentage.

nervous system, i.e., a global parameter representing the body’s behavioral state 14, 38.

Although the brain-scanning based classifier had better performance than our proposal, they present some critical dis-

advantages. For example, we need specialized knowledge for equipment set up and powerful computational resources for

data processing. Besides, they are costly and present low signal-to-noise ratios. Furthermore, mobility is very limited or

impossible, making their use in our daily lives prohibitive7. In our experiments, instead of using an ECG usually present in

hospitals, we used a wearable sensor (Polar H10 chest strap), focusing on the future daily use of the HRV. Our proposal is

noninvasive, inexpensive, and with a simple setup. Also, HRV collected using the Polar H10 sensor presents a high correlation

to electrocardiography (ECG), which is considered the gold standard for HRV measurement. Finally, ECG presents orders of

magnitude higher signal-to-noise ratio than brain-scanning technologies because the heart’s electrical signal is large. Therefore,

HRV is a viable alternative solution for cognitive decoding.

Our raw data for this work is available on the following website:

https://github.com/caiki/HRV_DB_CognitiveStates.

We believe this dataset may be helpful for AI researchers looking for well-controlled benchmarks to evaluate their computational

approaches.

5 Conclusions

Here we provided evidence that the HRV contains information regarding cognitive states. Also, results in subjective-driven

tasks suggest its usefulness in situations closer to daily conditions. Altogether, HRV can be an alternative for brain-based

cognitive states classification for daily life use.
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Figure legends

Figure 1. Within-day subject-driven cognitive states classification accuracies. (A) We obtained the classification accuracies

using the first half of day one data as the training dataset and the second half as the validation set. (B) We obtained the

classification accuracies using the first half of day two data as the training set and the second half as the validation set.

Figure 2. Between-day subject-driven cognitive states classification accuracies. We used the day one data as the train-

ing set and day two as the validation set.

Figure 3. Features importance in between-day analyses. The darker the cell is, the more critical the respective feature.

The number in each cell describes the importance of the feature in percentage.
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