1. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315, 801–810 (2016).
2. Brecher, M. E. & Hay, S. N. Bacterial contamination of blood components. Clin. Microbiol. Rev. 18, 195–204 (2005).
3. Damgaard, C. et al. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations. PLoS One 10, e0120826 (2015).
4. Schierwagen, R. et al. Circulating microbiome in blood of different circulatory compartments. Gut 68, 578–580 (2019).
5. Païssé, S. et al. Comprehensive description of blood microbiome from healthy donors assessed by 16 S targeted metagenomic sequencing. Transfusion 56, 1138–1147 (2016).
6. Whittle, E., Leonard, M. O., Harrison, R., Gant, T. W. & Tonge, D. P. Multi-method characterization of the human circulating microbiome. Front. Microbiol. 3266 (2019).
7. D’Aquila, P. et al. Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Front. Microbiol. 2055 (2021).
8. Castillo, D. J., Rifkin, R. F., Cowan, D. A. & Potgieter, M. The healthy human blood microbiome: Fact or fiction? Front. Cell. Infect. Microbiol. 9, 148 (2019).
9. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 1–22 (2020).
10. Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, (2012).
11. Das, P., Ji, B., Kovatcheva-Datchary, P., Bäckhed, F. & Nielsen, J. In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis. PLoS One 13, e0195161 (2018).
12. Relvas, M. et al. Relationship between dental and periodontal health status and the salivary microbiome: bacterial diversity, co-occurrence networks and predictive models. Sci. Rep. 11, 1–22 (2021).
13. Risely, A. Applying the core microbiome to understand host–microbe systems. J. Anim. Ecol. 89, 1549–1558 (2020).
14. Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core microbiome: Challenges and prospects. Proc. Natl. Acad. Sci. 118, e2104429118 (2021).
15. Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome. Nature 486, 207 (2012).
16. Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 5029 (2019).
17. Glassing, A., Dowd, S. E., Galandiuk, S., Davis, B. & Chiodini, R. J. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 8, 24 (2016).
18. Hornung, B. V. H., Zwittink, R. D. & Kuijper, E. J. Issues and current standards of controls in microbiome research. FEMS Microbiol. Ecol. 95, fiz045 (2019).
19. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
20. Doern, G. V et al. A comprehensive update on the problem of blood culture contamination and a discussion of methods for addressing the problem. Clin Microbiol Rev 33, e00009-19 (2019).
21. Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016).
22. Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science (80-. ). 349, 1101–1106 (2015).
23. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
24. Hillmann, B. et al. SHOGUN: a modular, accurate and scalable framework for microbiome quantification. Bioinformatics 36, 4088–4090 (2020).
25. Al-Ghalith, G. & Knights, D. BURST enables mathematically optimal short-read alignment for big data. bioRxiv 2020.09.08.287128 (2020) doi:10.1101/2020.09.08.287128.
26. de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 (2018).
27. Chia, M. et al. Shared signatures and divergence in skin microbiomes of children with atopic dermatitis and their caregivers. J. Allergy Clin. Immunol. (2022) doi:https://doi.org/10.1016/j.jaci.2022.01.031.
28. Chng, K. R. et al. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat. Med. 26, 941–951 (2020).
29. de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).
30. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).
31. Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. n/a, (2020).
32. Tomás, I., Diz, P., Tobías, A., Scully, C. & Donos, N. Periodontal health status and bacteraemia from daily oral activities: systematic review/meta‐analysis. J. Clin. Periodontol. 39, 213–228 (2012).
33. Wells, C. L., Maddaus, M. A. & Simmons, R. L. Proposed mechanisms for the translocation of intestinal bacteria. Rev. Infect. Dis. 10, 958–979 (1988).
34. Janssens, Y. et al. Disbiome database: linking the microbiome to disease. BMC Microbiol. 18, 50 (2018).
35. Ruiz, L., Delgado, S., Ruas-Madiedo, P., Sánchez, B. & Margolles, A. Bifidobacteria and their molecular communication with the immune system. Front. Microbiol. 8, 2345 (2017).
36. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. 105, 16731–16736 (2008).
37. Domingue, G. J. & Schlegel, J. U. Novel bacterial structures in human blood: cultural isolation. Infect. Immun. 15, 621–627 (1977).
38. Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13, 660–665 (1996).
39. Yang, C.-C. et al. Characteristics and outcomes of Fusobacterium nucleatum bacteremia—a 6-year experience at a tertiary care hospital in northern Taiwan. Diagn. Microbiol. Infect. Dis. 70, 167–174 (2011).
40. DEMMLER, G. J., COUCH, R. S. & TABER, L. H. Neisseria subflava bacteremia and meningitis in a child: report of a case and review of the literature. Pediatr. Infect. Dis. J. 4, 286–288 (1985).
41. Oill, P. A., Chow, A. W. & Guze, L. B. Adult bacteremic Haemophilus parainfluenzae infections: seven reports of cases and a review of the literature. Arch. Intern. Med. 139, 985–988 (1979).
42. Chan, J. F. W. et al. First report of spontaneous intrapartum Atopobium vaginae bacteremia. J. Clin. Microbiol. 50, 2525–2528 (2012).
43. Mendes, R. E. et al. Assessment of linezolid resistance mechanisms among Staphylococcus epidermidis causing bacteraemia in Rome, Italy. J. Antimicrob. Chemother. 65, 2329–2335 (2010).
44. Choi, J. Y. et al. Mortality risk factors of Acinetobacter baumannii bacteraemia. Intern. Med. J. 35, 599–603 (2005).
45. Wertlake, P. T. & Williams, T. W. Septicaemia caused by Neisseria flavescens. J. Clin. Pathol. 21, 437–439 (1968).
46. Shah, S. S., Ruth, A. & Coffin, S. E. Infection due to Moraxella osloensis: case report and review of the literature. Clin. Infect. Dis. 30, 179–181 (2000).
47. Felten, A., Barreau, C., Bizet, C., Lagrange, P. H. & Philippon, A. Lactobacillus species identification, H2O2 production, and antibiotic resistance and correlation with human clinical status. J. Clin. Microbiol. 37, 729–733 (1999).
48. JeŽek, P. et al. Corynebacterium imitans isolated from blood culture in a patient with suspected bacteremia-the first isolation from human clinical material in the Czech Republic. Klin. Mikrobiol. Infekc. Lek. 20, 98–101 (2014).
49. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput Biol 8, e1002687 (2012).
50. Anhê, F. F. et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat. Metab. 2, 233–242 (2020).
51. Emery, D. C. et al. Comparison of blood bacterial communities in periodontal health and periodontal disease. Front. Cell. Infect. Microbiol. 10, 799 (2021).
52. Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. R. Soc. B Biol. Sci. 282, 20143085 (2015).
53. Blauwkamp, T. A. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 4, 663–674 (2019).
54. Grumaz, C. et al. Rapid Next-Generation Sequencing–Based Diagnostics of Bacteremia in Septic Patients. J. Mol. Diagnostics 22, 405–418 (2020).
55. Tan, C. C. S., Acman, M., van Dorp, L. & Balloux, F. Metagenomic evidence for a polymicrobial signature of sepsis. Microb. genomics 7, (2021).
56. Grumaz, S. et al. Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med. 8, 73 (2016).
57. Grumaz, S. et al. Enhanced performance of next-generation sequencing diagnostics compared with standard of care microbiological diagnostics in patients suffering from septic shock. Crit. Care Med. 47, e394 (2019).
58. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
59. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. 112, 6449–6454 (2015).
60. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).
61. Cross, A. & Levine, M. M. Patterns of bacteraemia aetiology. Lancet Infect. Dis. 17, 1005–1006 (2017).
62. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007).
63. Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943 (2017).
64. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science (80-. ). 352, 539–544 (2016).
65. Brenner, T. et al. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial): study protocol of a prospective, observational, noninterventional, multicenter, clinical trial. Medicine (Baltimore). 97, (2018).
66. Shah, N. B. et al. Blood microbiome profile in CKD: a pilot study. Clin. J. Am. Soc. Nephrol. 14, 692–701 (2019).
67. Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68, 1516–1526 (2019).
68. Wu, D. et al. Large-scale whole-genome sequencing of three diverse Asian populations in Singapore. Cell 179, 736–749 (2019).
69. Foong, A. W. P. et al. Rationale and methodology for a population-based study of eye diseases in Malay people: The Singapore Malay eye study (SiMES). Ophthalmic Epidemiol. 14, 25–35 (2007).
70. Lavanya, R. et al. Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians. Ophthalmic Epidemiol. 16, 325–336 (2009).
71. Tan, K. H. X. et al. Cohort profile: the Singapore multi-ethnic cohort (mec) study. Int. J. Epidemiol. 47, 699-699j (2018).
72. Soh, S.-E. et al. Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int. J. Epidemiol. 43, 1401–1409 (2014).
73. Teo, Y.-Y. et al. Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations. Genome Res. 19, 2154–2162 (2009).
74. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. bioinformatics 25, 1754–1760 (2009).
75. Gourlé, H., Karlsson-Lindsjö, O., Hayer, J. & Bongcam-Rudloff, E. Simulating Illumina metagenomic data with InSilicoSeq. Bioinformatics 35, 521–522 (2019).
76. Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 44, 139–160 (1982).
77. Van den Boogaart, K. G. & Tolosana-Delgado, R. “Compositions”: a unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).
78. Shaw, L. The phylogenetic range of bacterial and viral pathogens of vertebrates: dataset and supplementary material. (2020) doi:10.6084/m9.figshare.8262779.v2.
79. Jorgensen, J. et al. Manual of Clinical Microbiology. (American Society for Microbiology Press, 2015). doi:10.1128/9781555817381.
80. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
81. Morgan, M., Pagès, H., Obenchain, V. & Hayden, N. Rsamtools: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import. R package version 2.8.0. (2021).
82. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11, e1004226 (2015).
83. Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, complex Syst. 1695, 1–9 (2006).
84. Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).