1. Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis. 2019,1865(7):1718-1744. doi: 10.1016/j.bbadis.2018.08.039.
2. Faria JA, Correa NC, de Andrade C, et al. SET domain-containing Protein 4 (SETD4) is a Newly Identified Cytosolic and Nuclear Lysine Methyltransferase involved in Breast Cancer Cell Proliferation. J Cancer Sci Ther. 2013, 5(2):58-65.
3. Ye S, Ding YF, Jia WH, et al. SET Domain-Containing Protein 4 Epigenetically Controls Breast Cancer Stem Cell Quiescence. Cancer Res. 2019, 79(18):4729-4743. doi: 10.1158/0008-5472.CAN-19-1084.
4. Tian JZ, Xing S, Feng JY, et al. SETD4-expressing cells contribute to pancreatic development and response to cerulein induced pancreatitis injury. Sci Rep. 2021, 11(1):12614. doi: 10.1038/s41598-021-92075-5.
5. Xing S, Tian JZ, Yang SH, et al. Setd4 controlled quiescent c-Kit(+) cells contribute to cardiac neovascularization of capillaries beyond activation. Sci Rep. 2021, 11(1):11603. doi: 10.1038/s41598-021-91105-6.
6. Feng X, Lu H, Yue J, et al. Deletion of Mouse Setd4 Promotes the Recovery of Hematopoietic Failure. Int J Radiat Oncol Biol Phys. 2020, 107(4):779-792. doi: 10.1016/j.ijrobp.2020.03.026.
7. Dai L, Ye S, Li HW, et al. SETD4 Regulates Cell Quiescence and Catalyzes the Trimethylation of H4K20 during Diapause Formation in Artemia. Mol Cell Biol. 2017;37(7):e00453-16. doi: 10.1128/MCB.00453-16.
8. Zhong Y, Ye P, Mei Z, et al. The novel methyltransferase SETD4 regulates TLR agonist-induced expression of cytokines through methylation of lysine 4 at histone 3 in macrophages. Mol Immunol. 2019, 114:179-188. doi: 10.1016/j.molimm.2019.07.011.
9. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018, 233(9):6425-6440. doi: 10.1002/jcp.26429.
10. Williams JW, Giannarelli C, Rahman A, et al. Macrophage Biology, Classification, and Phenotype in Cardiovascular Disease: JACC Macrophage in CVD Series (Part 1). J Am Coll Cardiol. 2018, 72(18):2166-2180. doi: 10.1016/j.jacc.2018.08.2148.
11. Bifeld E. Generation of Bone Marrow-Derived Macrophages for In Vitro Infection Experiments. Methods Mol Biol. 2019, 1971:237-247. doi: 10.1007/978-1-4939-9210-2_12.
12. Yang S, Yang Y, Wang F, et al. TREM2 Dictates Antibacterial Defense and Viability of Bone Marrow-derived Macrophages during Bacterial Infection. Am J Respir Cell Mol Biol. 2021, 65(2):176-188. doi: 10.1165/rcmb.2020-0521OC.
13. Wang Y, Jia Q, Zhang Y, et al. Amygdalin Attenuates Atherosclerosis and Plays an Anti-Inflammatory Role in ApoE Knock-Out Mice and Bone Marrow-Derived Macrophages. Front Pharmacol. 2020, 11:590929. doi: 10.3389/fphar.2020.590929.
14. Lin B, Xie W, Zeng C, et al. Transfer of exosomal microRNA-203-3p from dendritic cells to bone marrow-derived macrophages reduces development of atherosclerosis by downregulating Ctss in mice. Aging (Albany NY). 2021, 13(11):15638-15658. doi: 10.18632/aging.103842.
15. Iwamoto C, Ohuchida K, Shinkawa T, et al, Bone marrow-derived macrophages converted into cancer-associated fibroblast-like cells promote pancreatic cancer progression. Cancer Lett. 2021, 512:15-27. doi: 10.1016/j.canlet.2021.04.013.
16. Weiser-Evans MC, Wang XQ, Amin J, et al. Depletion of cytosolic phospholipase A2 in bone marrow-derived macrophages protects against lung cancer progression and metastasis. Cancer Res. 2009, 69(5):1733-1738. doi: 10.1158/0008-5472.CAN-08-3766.
17. Miyauchi JT, Caponegro MD, Chen D, et al. Deletion of Neuropilin 1 from Microglia or Bone Marrow-Derived Macrophages Slows Glioma Progression. Cancer Res. 2018, 78(3):685-694. doi: 10.1158/0008-5472.CAN-17-1435.
18. Stock AT, Collins N, Smyth GK, et al. The Selective Expansion and Targeted Accumulation of Bone Marrow-Derived Macrophages Drive Cardiac Vasculitis. J Immunol. 2019, 202(11):3282-3296. doi: 10.4049/jimmunol.1900071.
19. Srivastava A, Srivastava P, Verma R. Role of bone marrow-derived macrophages (BMDMs) in neurovascular interactions during stroke. Neurochem Int. 2019, 129:104480. doi: 10.1016/j.neuint.2019.104480.
20. Liao X, Wu C, Shao Z, et al. SETD4 in the Proliferation, Migration, Angiogenesis, Myogenic Differentiation and Genomic Methylation of Bone Marrow Mesenchymal Stem Cells. Stem Cell Rev Rep. 2021, 17(4):1374-1389. doi: 10.1007/s12015-021-10121-1.
21. Xu L, Shi L, Liu L, et al. Analysis of Liver Proteome and Identification of Critical Proteins Affecting Milk Fat, Protein, and Lactose Metabolism in Dariy Cattle with iTRAQ. Proteomics. 2019, 19(12):e1800387. doi: 10.1002/pmic.201800387.
22. Lavin Y, Mortha A, Rahman A, et al. Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol. 2015, 15(12):731-744. doi: 10.1038/nri3920.
23. Jeffrey PD, Russo AA, Polyak K, et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature. 1995, 376(6538):313-320. doi: 10.1038/376313a0.
24. Svendsen P, Etzerodt A, Deleuran BW, et al. Mouse CD163 deficiency strongly enhances experimental collagen-induced arthritis. Sci Rep. 2020, 10(1):12447. doi: 10.1038/s41598-020-69018-7.
25. Rios FJ, Touyz RM, Montezano AC. Isolation and Differentiation of Murine Macrophages. Methods Mol Biol. 2017, 1527:297-309. doi: 10.1007/978-1-4939-6625-7_23.
26. Cho DI, Kim MR, Jeong HY, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med. 2014, 46(1):e70. doi: 10.1038/emm.2013.135.
27. Dillon SC, Zhang X, Trievel RC, et al. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005, 6(8):227. doi: 10.1186/gb-2005-6-8-227.
28. Mosammaparast N, Shi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem. 2010, 79:155-179. doi: 10.1146/annurev.biochem.78.070907.103946.
29. Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129(4):823-837. doi: 10.1016/j.cell.2007.05.009.
30. He X, Yang Y, Mu L, et al. A Frog-Derived Immunomodulatory Peptide Promotes Cutaneous Wound Healing by Regulating Cellular Response. Front Immunol. 2019, 10:2421. doi: 10.3389/fimmu.2019.02421.
31. Takahashi N, Nishihira J, Sato Y, et al. Involvement of macrophage migration inhibitory factor (MIF) in the mechanism of tumor cell growth. Mol Med. 1998, 4(11):707-714.
32. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017, 17(2):93-115. doi: 10.1038/nrc.2016.138.
33. Dabrowska S, Andrzejewska A, Kozlowska H, et al. Neuroinflammation evoked by brain injury in a rat model of lacunar infarct. Exp Neurol. 2021, 336:113531. doi: 10.1016/j.expneurol.2020.113531.
34. Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog Mol Biol Transl Sci. 2017, 147:1-73. doi: 10.1016/bs.pmbts.2017.02.005.
35. Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol. 2019;10:1084. doi: 10.3389/fimmu.2019.01084. Erratum in: Front Immunol. 2020;11:234. .
36. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012, 122(3):787-795. doi: 10.1172/JCI5964.
37. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010, 11(10):889-896. doi: 10.1038/ni.1937.
38. Wang LX, Zhang SX, Wu HJ, et al. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019, 106(2):345-358. doi: 10.1002/JLB.3RU1018-378RR.
39. Harper SJ, Bates DO. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer. 2008, 8(11):880-887. doi: 10.1038/nrc2505.
40. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019, 176(6):1248-1264. doi: 10.1016/j.cell.2019.01.021.
41. Hardbower DM, Singh K, Asim M, et al. EGFR regulates macrophage activation and function in bacterial infection. J Clin Invest. 2016, 126(9):3296-3312. doi: 10.1172/JCI83585.
42. Hardbower DM, Coburn LA, Asim M, et al. EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis. Oncogene. 2017, 36(27):3807-3819. doi: 10.1038/onc.2017.23.
43. Slichenmyer WJ, Elliott WL, Fry DW. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin Oncol. 2001, 28(5 Suppl 16):80-85. doi: 10.1016/s0093-7754(01)90285-4.