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Abstract21

The Southern Annular Mode (SAM) is the leading mode of atmospheric vari-22

ability in the extratropical Southern Hemisphere and has wide ranging effects23

on ecosystems and societies. Despite the SAM’s importance, paleoclimate24

reconstructions disagree on its variability and trends. Here, we use data assim-25

ilation to reconstruct the SAM over the last 2000 years using temperature26

and drought-sensitive climate proxies. Our method does not assume a station-27

ary relationship between proxy records and the SAM over an instrumental28

calibration period, so our reconstruction is less sensitive to the teleconnec-29

tion variability that has hindered previous reconstructions. Our approach also30

allows us to identify critical paleoclimate records and quantify reconstruction31

1
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uncertainty through time. We find no evidence for a forced response in SAM32

variability prior to the 20th century. We also find the modern positive trend is33

outside the range of the prior 2000 years, but only on multidecadal time scales.34

Introduction35

The Southern Annular Mode (SAM) is the leading mode of atmospheric vari-36

ability in the extratropical Southern Hemisphere and is characterized by a mostly37

zonally-symmetric mass oscillation with anti-correlated pressure anomalies over the38

mid-latitudes and Antarctica [1–4, and see Figure 1]. The SAM’s phases capture the39

strength and position of the mid-latitude westerly winds and the subtropical jet, such40

that positive phases promote a poleward shift of storm tracks and intensification of41

the circumpolar westerly belt, while negative phases promote an equator-ward shift42

of storm tracks and weakening of the westerly winds. Variability in the SAM there-43

fore has wide ranging effects across the Southern Hemisphere. Positive phases of the44

SAM are linked to cooling over Australia and central Antarctica, as well as warm-45

ing over the Antarctic Peninsula and southern South America [5–11]. Hydroclimate46

effects of the positive phase include drying over southern South America, western47

South Africa, southern Australia, and New Zealand, as well as increased precipitation48

over central and eastern Australia and southeastern South America [7, 10, 12–16].49

SAM variations have also been linked to wildfire activity in South America and50

south-east Australia [17–21], changes in sea ice distribution [8, 22–25], and ocean-51

atmosphere carbon exchange [26–28]. Understanding SAM variability is therefore52

important for both societies and ecosystems throughout the Southern Hemisphere,53

particularly in sub-tropical-temperate regions projected to experience a future drying54

climate.55

Since the 1950s, the SAM has exhibited a trend toward a more positive state56

[4, 29, 30], which is attributed to stratospheric ozone depletion and rising concen-57

trations of atmospheric CO2 [31–35]. This positive trend has potentially contributed58

to severe droughts, including the Day Zero Cape Town drought [36] and Millennium59

Drought in Australia [37, 38], as well as increased fire activity [17–19]. Given these60

impacts, it is important to place the SAM’s recent behavior in a long-term perspec-61

tive and assess the relative influence of anthropogenic forcing and natural climate62

variability. In the context of multi-decadal trends, reconstructions spanning multiple63

centuries are necessary to resolve forced responses from the SAM’s internal variabil-64

ity. Instrumental records of the SAM only extend through the mid-1900s and longer65

reanalysis-derived indices show low correlations with one another and differences66

in variability prior to the 1950s [30, 39], so characterizing the SAM’s long-term67

behavior requires paleoclimate reconstructions derived from natural climate archives.68

There are several existing multi-century SAM reconstructions [40, 41, 42]69

(henceforth, V12, A14, and D18), but they show limited agreement prior to the 1850s70

[42, 43]. Most indicate a negative phase in the SAM during the late 1400s, but both71

trends and decadal-scale variability show large discrepancies aside from this feature.72
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There are several potential reasons for these differences. Firstly, all three reconstruc-73

tions rely on the calibration of proxy records directly with an instrumental SAM74

index. This implicitly makes two important assumptions for each reconstruction: first,75

that the relationship of proxy records to local climate variables is stationary over time;76

and second, that the SAM’s teleconnections with local climate variables are station-77

ary and well-represented by the instrumental record. While the first is reasonable and78

a necessary assumption of most paleoclimate analyses, multiple studies cast doubt on79

this second point, and regional complexity in the climate response to specific SAM80

phases further decreases the likelihood of this assumption holding. For instance, even81

over the instrumental period, SAM exhibits non-stationary connections with precip-82

itation and temperature anomalies in southern South America, Australasia, and the83

Antarctic Peninsula [13, 44], and many of the proxy records in existing SAM recon-84

structions come from these areas [43]. Evolving concentrations of greenhouse gases,85

stratospheric ozone, connections with ENSO, and stochastic climate variability can86

also affect the SAM’s influence on regional climates over multi-decadal time scales87

[29, 32, 45, 46]. Pseudo-proxy experiments have also shown that non-stationary tele-88

connections cause reconstruction skill to vary widely with the selection of different89

calibration windows [47]. This effect is particularly pronounced for proxy networks90

with fewer than 20 sites, which is common in the early portions of SAM recon-91

structions. To mitigate such effects, D18 explicitly screened for stationarity in their92

reconstruction, although this required calibration with a longer and therefore less93

reliable observational record [48].94

Differences between SAM reconstructions may also result from the selection of95

different reconstruction targets and proxy networks. For example, A14 targets an96

annual SAM index, whereas V12 and D18 target an austral summer (DJF) SAM97

index. D18 found that annual reconstructions were much more sensitive to the98

selection of proxy sites and calibration windows and they conclude that annual prod-99

ucts may exhibit increased sensitivity to non-stationary teleconnections, which may100

partly explain the differences between the reconstructions. Additionally, each index101

has been reconstructed using a different proxy network with a different geographic102

extent. A14 targets the Drake Passage sector, using a mix of terrestrial proxy types103

from southern South America as well as Antarctic ice cores. In comparison, V12104

targets the Pacific sector, using a network of tree-ring chronologies from South105

America and New Zealand. D18 uses the most spatially extensive network, includ-106

ing tree-ring records [40], Antarctic ice cores, PAGES2k South American proxies107

[49], and coral records from the tropical Pacific [50]. Furthermore, A14 utilizes a108

temperature-sensitive proxy network, while V12 and D18 leverage both temperature109

and hydroclimate-sensitive proxies. Given the variability of the SAM’s teleconnec-110

tions on regional scales [13, 44], and the climate sensitivities of different proxy111

types [48], these variations in proxy-network design may further help explain recon-112

struction differences. It is often difficult to assess the influence and contribution of113

individual proxy records in multiproxy reconstructions, so the cause of any recon-114

structed index’s behavior are often unclear. This is particularly relevant in the period115

prior to 1400 CE, when the sparsity of proxy networks leaves the reconstructions vul-116

nerable to the dominant influence of just a few records. Ultimately, as a consequence117
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of these uncertainties and the differences in existing reconstructions, the evolution of118

the SAM over the Common Era and its response to external forcing remains poorly119

constrained [43, 51].120

To address these uncertainties, here we reconstruct the austral summer (DJF)121

SAM index over the Common Era at annual resolution using offline paleoclimate122

data assimilation (DA). DA is a recently developed reconstruction technique that inte-123

grates climate proxy records with the dynamical behavior captured by climate models124

[52, 53]. In brief, DA uses forward or proxy-system models [54, 55] to translate cli-125

mate model states into the same dimensions or ‘space’ as a collection of climate126

proxy records. This allows direct comparison of the model output with the proxy127

records. The climate model states are then updated to more closely match the proxy128

records, and a model-derived estimate of climate system covariance is used to prop-129

agate the update to reconstruction targets, such as the SAM. DA has recently been130

used to reconstruct surface air temperature anomalies [56–59], geopotential height131

fields [57], the response to volcanic eruptions [60, 61], sea ice extent [62], sea surface132

temperatures [63], and hydroclimate variables [64]. In this study, we assimilate the133

PAGES2k temperature-sensitive proxy network [49], the South American Drought134

Atlas [SADA; 65], and the Australia-New Zealand Drought Atlas [ANZDA; 66]135

(Figure 1) using a suite of last millennium general-circulation climate models (see136

Methods and Supplemental Table 1) to reconstruct the austral summer SAM index137

over the last 2,000 years. Here, we follow Gong et al. [2] and define the SAM index138

using the difference of zonal-mean pressure anomalies (see Methods, Equation 1).139

In the context of SAM reconstructions, DA offers several additional advantages140

relative to traditional methods. Firstly, our method does not calibrate proxy records141

against an instrumental SAM index directly; instead, we calibrate proxy forward142

models using local climate variables, like temperature and precipitation, near the143

proxy sites. Consequently, our calibration does not assume stationary SAM telecon-144

nections and only requires the stability of proxy relationships to their local climate.145

Additionally, we estimate covariance between proxies and the SAM using thousands146

of years of climate model output. As a result of this, our proxy-SAM relationships are147

not sensitive to potentially anomalous decadal- or centennial-scale variations in the148

SAM’s behavior. Furthermore, DA is amenable to the use of a range of proxy types as149

well as gridded climate records with spatial autocorrelation, and we leverage this to150

incorporate the two existing tree-ring based drought atlases into our reconstruction.151

Previous work indicates that SAM reconstructions using hydroclimate-sensitive sites152

are more skillful than those using strictly temperature-sensitive proxy networks [47].153

Each drought atlas provides extensive coverage for at least the last five centuries and154

each incorporates over 150 tree-ring records. They therefore represent a significant155

source of hydroclimate information available for our reconstruction.156

Finally, our DA method allows us to incorporate an optimal sensor analysis [67]157

as part of the final reconstruction. Traditionally, optimal sensor analyses have been158

used to identify ideal regions for future proxy development [67–70]; however, they159

can also be applied within a DA framework to quantitatively assess the power of160

different proxy sites as the overall network evolves through time. We use this to161

identify the proxy sites that are most likely to drive the reconstruction in each time162
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step, which helps characterize the reconstruction’s overall behavior. This information163

is particularly useful in the early part of this Common Era reconstruction, when the164

sparse network size can give high weights to a limited number of records.165

Results166

We assess the skill of our SAM reconstruction relative to the Marshall [4] and Fogt167

indices [71, 72], two commonly used instrumental SAM indices (see Methods for168

further details). Before comparing time series, we first normalize the Fogt index and169

our reconstruction to the Marshall index, such that the mean and variance of the170

detrended normalized time series match those of the detrended Marshall index over171

the period 1958-2000 CE. This places all series in the same unit space while preserv-172

ing differences in the instrumental trend. Examining skill values (Table 1; Figure 2,173

upper panel), we find that the reconstruction’s correlation with the Marshall index174

(1958-2000 CE) is r = 0.72(p ≪ 0.001), which is comparable to that reported175

for A14 (r = 0.75, p ≪ 0.001)). With respect to the 20th century Fogt index,176

our reconstruction correlates at r = 0.65, p ≪ 0.001), somewhat higher than A14177

(r = 0.51, p ≪ 0.001)). Our RMSE values with the Marshall index (1.45) are sim-178

ilar to, albeit slightly higher than, those reported by D18 (1.32). We emphasize that179

our reconstruction is not calibrated directly to the SAM index, so the agreement with180

the Marshall and Fogt indices is not built-in to our reconstruction method and thus181

represents a more independent skill metric.182

We next characterize the reconstruction’s behavior over the last two millennia183

(Figure 2, center). The reconstruction exhibits minimal evidence for trends over most184

of the first millennium of the Common Era, although the third and seventh centuries185

are both marked by increased multidecadal variability as the SAM alternates between186

negative and positive phases. A more strongly negative anomaly in the early 1000s187

is followed by a notable 100-year positive trend that concludes with the most posi-188

tive anomalies outside of the instrumental era. The SAM persists in a positive state189

until the late 1400s, when it abruptly decreases to strongly negative values. After this190

event, the index returns to near-zero mean anomalies. It has a peak in the mid-1700s191

and begins exhibiting a positive trend in the early 1800s. This trend intensifies in the192

later half of the 20th century, and the reconstruction ends with the most positive SAM193

anomalies observed during the Common Era.194

Reconstruction uncertainty ranges from ±4.5 anomaly units in the early recon-195

struction to less than 2.3 after 1500 CE (Figure 2b). We note that, because we use196

a stationary prior, the reconstruction years are treated as fully independent of one197

another. While this is common in many reconstruction techniques, it does not repre-198

sent the reality of the SAM, which exhibits persistence on interannual time scales due199

to potential connections with the stratosphere [73, 74], tropical variability [75, 76],200

and external forcing [35, 77]. One consequence of this is that the uncertainty esti-201

mates shown here likely overestimate the true reconstruction uncertainty. Overall,202

uncertainty decreases as the reconstruction approaches the present day, a result of the203

increasing size of the proxy network (Figure 2, bottom panel).204
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We use our optimal sensor framework to identify which proxies are most respon-205

sible for reducing reconstruction uncertainty over time (Figure 3). A proxy’s ability206

to reduce uncertainty corresponds to its influence on the reconstruction, so this analy-207

sis also allows us to identify which proxies most strongly influence the reconstruction208

at a given point in time. The first 900 years of the reconstruction are most strongly209

affected by the Mt. Read (Tasmania) tree-ring record with additional support from210

the Plateau Remote, WDC06A, and WDC05A ice cores. At 900 CE, the Oroko211

(New Zealand) tree ring chronology joins the network and supplants Mt. Read as212

the most influential record. Two large decreases in reconstruction uncertainty occur213

in 1400 and 1500 CE, which correspond to the addition of the SADA and ANZDA,214

respectively.215

Examining the reconstruction’s response to external forcing, we find no coher-216

ence with the solar forcing series and no significant common response to major217

volcanic eruptions (Figure 4). By contrast, the reconstruction exhibits significant pos-218

itive trends in the latter half of the twentieth century. However, these modern trends219

are only significant on time-scales greater than approximately 40 years; trends over220

shorter time scales fall within the reconstructed range of trends from natural vari-221

ability. Here, we define natural variability using the distribution of trends in periods222

of the pre-industrial reconstruction. Examining the Marshall Index, we similarly find223

that trends shorter than about 35 years are within the reconstructed range of natu-224

ral variability, but that trends longer than about 35 years fall outside this range. The225

Marshall Index exhibits its most positive, significant trends for intervals centered226

on the early 1980s. Although this period is near the end of our reconstruction and227

less well resolved than preceding decades, we note that the reconstruction similarly228

exhibits strongly-positive, significant trends centered on the early 1980s. Here we229

have quantified natural variability using the distribution of reconstructed trends over230

the period 1500-1900 CE, the years including both drought atlases. If we instead use231

the period of the full reconstruction (1-1900 CE), the tests become more stringent.232

Significant trend in the reconstruction is limited to the last 55-80 year interval, and233

Marshall Index trends are only significant when containing the interval 1964-2000234

CE. We also experiment with using the early portion of the reconstruction (1-899 CE)235

to quantify natural variability and find these results are similar to those using the full236

reconstruction period (Supplemental Figure 1).237

Discussion238

Our reconstruction suggests that the SAM is dominated by internal variability at239

least throughout the pre-industrial Common Era. This finding is in agreement with240

D18, who likewise found minimal influence of solar and volcanic forcing on their241

reconstruction. Volcanic signals have likewise been a challenge to detect in South-242

ern Hemisphere temperature reconstructions [78]. Some studies have proposed that243

that an observed relationship between SAM and ENSO [41, 76, 79–81] could pro-244

vide a pathway for solar forcing [82] to influence the SAM [43, 83]; however, our245

results do not support this mechanism during the the Common Era. In a set of model246

simulations, Wright et al. [83] found that increasing the amplitude of the prescribed247
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solar variability lead to a significant relationship between solar forcing and the simu-248

lated SAM. These authors suggest that using high amplitude solar forcing could help249

reconcile SAM reconstructions with climate simulations; however, the lack of solar250

signals in our reconstruction differs notably from their findings and instead further251

supports the realism of low-amplitude solar forcing scenarios [84–86].252

By contrast with solar and volcanic forcings, our analysis indicates that the most253

recent multi-decadal trend is outside the range of natural variability and reflects the254

SAM’s response to anthropogenic forcing. We emphasize that this modern trend is255

only significant for intervals longer than about 40 years when assessed against the256

1500-1900 CE period, or intervals of about 55 years when considering the full Com-257

mon Era. Shorter trend periods remain within the range of natural variability, even258

for the most recent intervals. The significance of the modern positive trend there-259

fore reflects its anomalous persistence, rather than the amplitude of its decadal-scale260

variation alone. The significance of these longer trends emphasizes the importance261

of the paleoclimate record, particularly given the uncertainties in instrumental SAM262

records prior to the late twentieth century [39, 87]. We also note that the modern263

positive trend is only outside of the range of natural variability for trends spanning264

the years from about 1940-2000 CE. Trends are generally not significant during the265

early 1900s, and are even negative for the 50 year period centered on the 1930s.266

These results help establish the onset of the modern positive trend at around 1940267

CE. This timing coincides with increasing emissions of ozone-depleting substances268

and greenhouse gasses, and is consistent with literature attributing the modern trend269

to stratospheric ozone depletion and rising levels of atmospheric CO2 [31–35].270

We next compare our reconstruction with the V12, A14, and D18 products271

(Figure 5). We normalize the mean and variance of each index over the period 1400-272

1850 CE to allow comparison of the series in the same unit space. We select the year273

1400 CE because it is the first year with values for all four reconstructions and we end274

the normalization in 1850 CE to limit the sensitivity of our comparison to differing275

representations of the post-industrial trend. All four indices agree on the existence276

of a strong positive trend during the late twentieth century; however, all show lim-277

ited coherence with one another prior to about 1850 CE, as noted in previous studies278

[42, 43]. The limited agreement of these reconstructions reduces confidence in the279

significance of modern trends [51], and the causes of these discrepancies include280

differing seasonal expressions, different proxy networks, and the relative weights of281

proxies within those networks. Additionally, V12, A14, and D18 all rely on calibra-282

tion with the instrumental SAM index, which can cause uncertainty when there is283

non-stationarity in the teleconnection of local climate with the SAM. Ultimately, our284

reconstruction does not solve the problem of differing reconstructions and similarly285

shows limited agreement with all of V12, A14, and D18. However, our assimilation286

does not rely on calibration with the SAM index, and offers a potential improvement287

by reducing uncertainty from non-stationary teleconnections.288

An additional advantage of our reconstruction is the transparency provided by the289

optimal sensor’s assessment of the relative weights and influence of proxy records290

in our network. In general, we find that our reconstruction is most strongly influ-291

enced by the two drought atlases, followed by the Mt. Read (Tasmania), Oroko (New292
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Zealand), and Pink Pine (New Zealand) tree ring chronologies, and also the Plateau293

Remote, Siple Station, WDC06A, and WDC06B ice cores. We note here that a minor294

change in reconstruction uncertainty does not imply that a proxy has a weak effect295

on the reconstruction, because highly influential proxies from the same location may296

present redundant climate signals. For example, the Pink Pine chronology is the third297

most potentially influential PAGES2k record (Figure 3, lower right), but has a rela-298

tively small effect on reconstruction uncertainty when added to the network in 1457299

CE (Figure 3, center). This is because much of the Pink Pine climate signal is already300

represented by the nearby Oroko site. However, such redundant sites are valuable301

because they make the reconstruction less sensitive to non-climatic noise from a sin-302

gle highly-influential proxy record. In the case of Pink Pine and Oroko, spreading the303

southern New Zealand climate signal over two influential records allows either site304

to partially correct for non-climatic noise in the other. A proxy’s potential influence305

reflects both its covariance with the SAM and the ability of our proxy estimates to306

accurately estimate the record. Ultimately, assuming our estimates of climate covari-307

ance are accurate, the influential sites are those most likely to contribute skill to the308

reconstruction.309

Overall, we find that tree-ring chronologies from Tasmania and New Zealand,310

the West Antarctic ice cores, and the drought atlas locations in Tasmania, southern311

New Zealand, the eastern edge of Australia, and southeast South America all have312

the greatest potential for reconstructing SAM (Figure 3, upper panels). This suggests313

that additional proxy development in these regions, or extensions of shorter existing314

records such as the Oroko and Pink Pine tree-ring chronologies or the Siple Station315

ice core, would be valuable for improving the skill of future SAM reconstructions.316

However, we caution that location alone is not sufficient for proxy utility and that317

future proxy development must demonstrate a robust sensitivity to local climate that318

connects them to the SAM. We also note that, in our optimal sensor framework, a319

proxy’s potential influence is a function of (1) the accuracy of our forward (proxy320

system) models, and (2) the covariance of the resulting proxy estimates with the SAM321

in the climate models. As a result, our analysis may currently undervalue proxies322

from regions with limited climate model agreement, and future improvements in both323

climate and proxy system models may allow paleoclimate data from other regions to324

contribute to skillful reconstructions of the SAM.325

Conclusions326

Our study provides the first reconstruction of the Southern Annular Mode at annual327

resolution over the entire Common Era. We use a data assimilation method that does328

not calibrate the proxies directly against the instrumental SAM index, so the recon-329

struction is not sensitive to observed SAM non-stationarity in the modern era. Our330

reconstruction leverages both the SADA and ANZDA in addition to the PAGES2k331

proxy network and represents a significant increase in paleoclimate information avail-332

able to reconstruct the SAM. Optimal sensor analysis indicates that the first 1400333

years of the reconstruction are strongly influenced by the Oroko and Mt. Read tree-334

ring chronologies, with additional support from the Plateau Remote, WDC06A, and335
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WDC05A ice cores. As the SADA and ANZDA are added to the proxy network336

(1400 CE and 1500 CE, respectively), the drought atlases become strong drivers of337

the reconstruction’s behavior.338

Our reconstruction provides a foundation with which to assess the drivers of339

the SAM’s behavior over the Common Era; such assessments are critical given the340

SAM’s importance to societies and effects on climate variability throughout the341

Southern Hemisphere. Although our index and existing SAM reconstructions show342

limited agreement with one another, all products exhibit the most strongly positive343

and persistent SAM trend during the last several decades. We find that the modern344

positive trend in the SAM is outside the range of natural variability over the previ-345

ous millennium, further confirming a response to anthropogenic forcing. Prior to the346

most recent decades, we find no relationship between SAM variability and external347

climate forcing, suggesting that its behavior is dominated by internal variability over348

the pre-industrial Common Era.349
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Methods and Materials350

Southern Annular Mode Index351

In this study, we use the Gong et al. [2] definition of the SAM index:352

SAM = P ∗

40°S − P ∗

65°S (1)

where P ∗

X
indicates the normalized zonal-mean sea level pressure (SLP) at a par-353

ticular latitude. The latitudes 40°S and 65°S were selected as the zonal-means with354

the most strongly anti-correlated SLP anomalies across the mid- and high-latitude355

Southern Hemisphere. We use this definition, as opposed to an index derived from356

a principal component analysis because the latitudes of the most strongly anti-357

correlated SLP anomalies are robust across the climate models considered in our358

assimilation (Supplemental Tables 1, 2). We target the austral summer (DJF; Decem-359

ber - February) SAM because this corresponds to the seasonality of the climate360

response of the majority of our proxy network. D18 also suggests that summer SAM361

reconstructions are more robust to proxy network design than annual reconstructions,362

which further supports this choice. When calculating the SAM index, we normalize363

seasonal mean values, rather than individual months. Austral summers span months364

from two calendar years, and this can introduce date ambiguities for annual records,365

particularly tree-ring chronologies. Throughout this paper, we use the convention366

that the year of an austral summer value matches the calendar year of the associated367

January.368

Data Products369

Reanalysis and Instrumental Indices370

We use monthly precipitation and air-temperature fields from the Twentieth Century371

Reanalysis V3 [20CR; 88, 89] to calibrate our DA method. The 20CR is based on372

an 80-member ensemble Kalman Filter, and extends from 1850 CE to present at 2373

degree resolution. Because of its role in our assimilation method, this effectively374

sets an upper bound on the resolution of any gridded spatial product used in this375

reconstruction. We also use the austral summer Marshall Index[4] and Fogt Index376

[71, 72] to assess the skill of our reconstruction in the modern era. The Marshall Index377

estimates the Gong et al. [2] definition of the SAM (Equation 1), and is based on378

data from 12 weather stations (6 near 40°S, and 6 near 65°S). Because it uses station379

data, the Marshall index is not subject to the spurious trends observed in high-latitude380

Southern Hemisphere reanalysis pressure fields [4]. The Fogt index is constructed381

using a principal component regression of station pressure data and calibrated to the382

Marshall index. These indices are commonly used as a comparison point for SAM383

reconstructions[40–42],384

Climate Proxies385

In this reconstruction, we assimilate the PAGES2k temperature-sensitive proxy net-386

work [49], the South American Drought Atlas (SADA) [65], and the Australia-New387
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Zealand Drought Atlas (ANZDA) [66]. We limit all three datasets to those sites or388

locations south of 25°S. Pseudo-proxy tests of other latitude bounds suggests that389

reconstruction skill is minimally affected by the use of more northward proxy sites390

and agreement with the instrumental record exhibits a slight maximum for a bound at391

25°S (Supplemental Figure 2). Overall, this domain maximizes the number of SAM-392

sensitive proxy sites in our network, while minimizing the effects of distal proxies393

that primarily reflect other climate signals.394

From the PAGES2k dataset, we include all sites from the PAGES2k global395

temperature reconstruction that have annual or sub-annual temporal resolution. To396

maintain a common timescale, we bin all sub-annual sites to annual resolution. Our397

PAGES2k network therefore consists of 40 proxy records: 12 tree-ring chronologies,398

3 lake sediment cores, 5 corals, 19 ice-cores, and 1 borehole-derived temperature399

reconstruction (Supplemental Table 3). The tree-ring records are from Tasmania,400

New Zealand, and the central Andes. The longest two chronologies are from Mt.401

Read, Tasmania and Oroko, New Zealand, which begin in 494 BCE and 900 CE,402

respectively; the remaining tree chronologies mostly begin between 1450 CE and403

1550 CE. The three lake sediment proxies are derived from the central and south-404

ern Andes. The longest record (Laguna Chepical) spans the complete Common Era,405

while Lagunas Escondida and Aculeo begin in 400 CE and 816 CE, respectively. The406

five coral records are from the Houtman Abrolhos Islands off the west coast of Aus-407

tralia and begin between 1795 CE and 1900 CE. The Antarctica ice core records have408

varying temporal coverage. Four sites cover the full Common Era (Plateau Remote,409

WDC06A, James Ross Island, WAIS-Divide), six more extend at least one millen-410

nium, and the remaining nine begin between 1140 CE and 1703 CE. The borehole411

reconstruction is from WAIS-Divide and begins in 8 CE. For the 40 proxy set, full412

coverage extends from 1903 CE to 1983 CE with 20 sites remaining by 2000 CE.413

The SADA and ANZDA are gridded tree-ring reconstructions of the self-414

calibrated Palmer Drought Severity Index (PDSI) during austral summer at annual415

resolution [65, 66]. The SADA is derived from 286 temperature and precipitation-416

sensitive tree-ring chronologies and begins in 1400 CE. The atlas covers all of South417

America south of 12.25°S at 0.5°resolution. Similarly, ANZDA is derived from 176418

tree-ring chronologies, as well as one coral record, and begins in 1500 CE. The419

ANZDA covers Australia east of 136.25°E, and New Zealand, also at 0.5°resolution.420

The SAM is strongly associated with droughts and pluvials in the domains of both421

atlases [65], supporting their inclusion in our network. Both atlases have significantly422

higher spatial resolution than the reanalysis data and climate model output used for423

our reconstruction method. To permit calculations that require the same spatial res-424

olution, we bin both atlases to the lowest resolution spatial grid relevant to a given425

experiment. For the main reconstruction, after applying latitude screening, our SADA426

and ANZDA networks consist of 104 and 71 binned records, each on a 2° x 2.5°grid.427

It is worth noting that several of the PAGES2k tree ring records used in our recon-428

struction were also used to construct the drought atlases, and these repeat records429

might initially appear to duplicate information in the reconstruction. However, our430

Kalman filter method explicitly accounts for covariance between proxy records, and431
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down-weights proxies with repeated information accordingly. Additional details for432

this process can be found in the following section.433

Reconstruction Method434

Kalman Filter435

Our reconstruction uses an ensemble Kalman Filter approach [EnKF; 90], which

follows the update equation:

Xa = Xp −K(Y − Ŷ) (2)

in each reconstructed time step. Here, the Xp and Xa matrices are the initial (prior)436

and updated (analysis) ensembles of climate model states. Each row holds a tar-437

get climate variable, and each column a different selection of climate model output438

(ensemble member). Y is a matrix of proxy values for the time step; the columns of439

Y are constant, and each row holds the value from a particular proxy record repeated440

once for each ensemble member. Ŷ holds the model estimates of the proxy val-441

ues; each row has the estimates for a particular proxy site, and each column has the442

estimates from a particular ensemble member. K is the Kalman gain:443

K = cov(Xp, Ŷ)[cov(Ŷ) +R]−1 (3)

where R is the matrix of proxy error-covariances. As previously mentioned, the444

Kalman filter accounts for duplication of information across repeated proxy records.445

This occurs via the cov(Ŷ) term in Equation 3, which reduces proxy weights in446

the Kalman gain as a function of shared proxy covariance. Note that any shared447

covariance derived from proxies’ relationships with the SAM is balanced by the448

cov(Xp, Ŷ) term in Equation 3. We use a square-root variant of EnKF [91, 92]. This449

modifies equations 2 and 3 to update the ensemble mean and deviations separately,450

and precludes the need for perturbed observations [93]. The Kalman filter can be451

expressed as a recursive Bayesian filter [94, 95], so we will often refer to Xp and Xa452

as the prior and posterior in this paper.453

Prior454

We construct the prior using output from climate models with paleoclimate simula-455

tions of the last millennium (Supplemental Table 1). We use a multi-model ensemble456

(MME), which has been found to reduce error relative to single model assimilations457

[59, 96]. Our MME consists of CCSM4, CESM-LME, MPI, and MRI, which rep-458

resent the set of last millennium simulations with spatial resolutions greater than or459

at the resolution of the 20CR reanalysis. As such, this selection does not require460

us to bin the drought atlases to lower resolutions than 20CR, which allows us to461

extract maximum information from SADA and ANZDA. We also tested a larger462

MME consisting of 10 models with last millennium simulations regardless of res-463

olution. Our tests show that the high-resolution MME maximizes reconstruction464

skill (Supplemental Figure 3). For CCSM4, MPI, and MRI, we use output from the465
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PMIP3 last1000 (850-1850 CE) and historical (1851-2005 CE) experiments, specif-466

ically ensemble member r1i1p1. For CESM-LME, we use output from full-forcing467

run 2 (850-2005 CE). While the PAGES2k proxy network does include stable oxygen468

isotope proxies, there are too few high-resolution last millennium isotope-enabled469

paleoclimate model simulations available to construct a multi-model prior[96].470

We use an offline, stationary prior for our assimilation. Offline approaches471

[97, 98] differ from classical Kalman Filters in that updates are not used to inform472

model simulation. Instead, offline methods use pre-existing model output to build473

the prior in each time step. The offline approach has been shown to compare favor-474

ably with classical (online) methods in paleoclimate contexts but at a fraction of the475

computational cost [99, 100]. The stationary prior indicates that we use the same476

ensemble as the prior for each reconstructed time step. This is common in paleocli-477

mate DA applications [52, 57, 101] and is justified by the limited forecast skill of478

climate models beyond the annual reconstruction time scale [102]. However, station-479

ary priors have been observed to artificially reduce the variability of reconstructions480

as proxy networks become more sparse [59]. Consequently, our use of stationary pri-481

ors necessitates a correction for the reconstruction’s variability, which is detailed in482

the methods below.483

To build each prior, we first calculate the DJF SAM time-series for each model,484

normalizing zonal SLP means to the pre-industrial period (850-1849 CE). We then485

concatenate the SAM index time-series from each model in every year of model486

output. The final prior has a total of 4624 ensemble members from 4 high-resolution487

models.488

Proxy Forward Models and Error Covariances489

The proxy modeling process begins by designing a forward model for each assim-490

ilated proxy record. For the PAGES2k records, we follow previous studies [53, 59]491

and use simple univariate linear models:492

Ŷ = aT+ b (4)

where Ŷ is a vector of proxy estimates, and T is a vector of seasonal temperature493

means. Here, the seasonal means used for each site is taken from the seasonal sensi-494

tivity reported in the PAGES2k metadata [49]. We determine the coefficients a and495

b by calibrating each proxy PAGES2k record to the corresponding climate data from496

20CR. For each proxy site, we first determine the seasonal sensitivity and then lin-497

early regress the proxy record against the seasonal-mean temperature vector from the498

closest 20CR grid point in all overlapping years from 1950 - 2000 CE. The regres-499

sion slope and intercept are then used as coefficients a and b. For the drought atlases,500

we estimate proxies by calculating PDSI [103] using the Thornthwaite estimation501

of potential evapotranspiration [104]. This uses monthly mean temperature and pre-502

cipitation from a drought atlas grid cell to compute monthly PDSI values for each503

year. We then use the austral summer means of these monthly values as the proxy504

estimates. Effectively:505

Y = mean[ PDSIThornthwaite(T,P) ]DJF (5)
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where T and P are monthly temperature and precipitation, and Y is the drought atlas506

estimate. We estimate proxy values for the model priors by applying Equations 4507

and 5 to climate model output and matching each year’s estimates to the associated508

ensemble member in the prior.509

Although the PDSI calculation in Equation 5 uses the Thornthwaite approxi-510

mation, both drought atlases target an observational dataset based on the Penman-511

Monteith method [65, 66, 105]. However, both the Thornthwaite and Penman-512

Monteith equations have been shown to perform similarly when applied to pre-513

industrial simulations, and this agreement occurs because the simplifying assump-514

tions of the Thornthwaite method remain valid over the relatively confined range of515

last millennium temperatures [106]. For the purposes of this study, the Thornthwaite516

method provides two further advantages: First, the Thornthwaite equation is more517

computationally tractable, which allows us to apply it to the large spatial regions518

and the multiple millennium-length climate model simulations used for priors in our519

assimilation method. Second, because the Thornthwaite calculation requires fewer520

climate model data fields to estimate the PDSI [104, 105], opportunities for climate521

model biases to degrade the reconstruction are reduced.522

We next estimate the proxy error covariances. These error covariances describe523

the uncertainty in the comparison of observed records to the proxy estimates524

(Y −Ye). In a classical Kalman Filter, the estimates (Ŷ) are known perfectly and525

this uncertainty is derived from the observations (Y), so R is often referred to as526

observation uncertainty. In paleoclimate contexts, this situation is inverted: proxy527

measurements are typically precise and uncertainty derives from the simplifications528

and parameterizations inherent in the estimation equations. Hence, we quantify R by529

running Equations 4 and 5 on the 20CR dataset (from 1950-2000 CE) and compar-530

ing the estimated proxy values to the real records. The differences between the two531

sets of values are used to estimate the errors inherent in using simple models and rel-532

atively coarse climate data to estimate the temporal behavior of the proxy records.533

Most EnKF paleoclimate efforts assume that proxy errors are independent, such that534

R is a diagonal matrix [52, 53, 57, 64]. This is justified for datasets like PAGES2k,535

for which proxy uncertainties are dominated by local biological, physical, and mech-536

anistic effects [48]. However, the drought atlas grid points are strongly spatially537

correlated, so this assumption is not appropriate in this study. Instead, we calculate538

independent error-variances for the proxies in the PAGES2k network, and full error-539

covariances for both SADA and ANZDA. Hence, R is block-diagonal, rather than540

strictly diagonal. We estimate uncertainty in the final reconstruction from the spread541

of the assimilation posterior.542

Variance Correction543

The use of stationary priors creates artifacts in the variability of raw reconstruc-544

tion. As the proxy network becomes sparse, less information is incorporated in the545

Kalman Filter, and the updated state is less able to move off the prior mean. This546

causes reconstruction variability to increase with the size of the proxy network and547

independently of the climatological record. We apply a variance adjustment scheme548
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to correct for this effect. Variance adjustments are common in paleoclimate recon-549

structions [107–110] and are inherent to simpler methods like Composite Plus Scale550

[111].551

Here, we use a series of frozen-network assimilations to adjust temporal variance.552

There are five sites in our proxy network with observations in every year of the recon-553

struction. We first assimilate this five-site network over the full interval 1-2000 CE to554

derive a baseline time-series that is not affected by changes to the proxy network. We555

next determine each unique set of proxy sites used to update one or more time steps556

in the reconstruction. We then assimilate each set of proxies over the time steps for557

which all of the proxies have recorded values, and determine the ratio of this assim-558

ilation’s standard deviation to that of the baseline time series over all overlapping559

years:560

P (set) = σset/σBaseline (6)

We then calculate a scaling factor for each time step using the normalized ratio for561

the associated proxy set:562

w(t) = P (set(t))/max(P ) (7)

A comparison of the raw and variance-adjusted reconstructions is provided in563

Supplemental Figure 4.564

Optimal Sensor Analysis565

We follow a previously established framework for optimal sensor analyses [67]. In566

brief, the method quantifies the ability of proxy sites to reduce the variance of a metric567

in a posterior ensemble. Here, we use the SAM as our metric, so the optimal sensor568

analysis here assesses the ability of sites to reduce uncertainty in the index across the569

reconstruction posterior. We first compute the total reduction in SAM posterior vari-570

ance using the complete set of proxies with observations in each time step. We also571

quantify each site’s ability to reduce reconstruction uncertainty when no other sites572

are in the proxy network. We refer to this quantity as ‘potential percent constrained573

variance’.574

External Forcing Analyses575

We begin our external forcing analysis by investigating the SAM’s response to natural576

climate forcings. We first use a wavelet coherence analysis to examine the rela-577

tionship between our SAM reconstruction and a time series of reconstructed solar578

forcing [110, 112]. We next use a superposed epoch analysis [113] to determine the579

reconstruction’s composite mean response to major volcanic eruptions. We used the580

eVolv2k V3 volcanic forcing dataset [114, 115] to select events with a total forcing581

magnitude greater than or equal to that of Krakatoa. This yielded 28 eruption years:582

87, 169, 266, 433, 536, 540, 574, 626, 682, 817, 939, 1108, 1171, 1182, 1230, 1257,583

1276, 1286, 1345, 1458, 1600, 1640, 1695, 1783, 1809, 1815, 1831, and 1883. For the584

SEA, we normalized each event to the mean of the preceding 5 years and examined585

the composite mean response over the 10 years following volcanic events. We tested586
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the significance of the observed response by bootstrapping 5,000 SEA time series via587

random draws of 28 event years from the remaining years in the reconstruction.588

We next consider the SAM’s response to anthropogenic forcings using both our589

reconstruction and the Marshall index. Before quantifying trends, we first normal-590

ize our reconstruction to the Marshall index, such that the mean and variance of the591

detrended normalized reconstruction matches those of the detrended Marshall index592

over the years of common overlap (1958-2000 CE). This places the series in the593

same unit space while preserving differences in the instrumental trend. We then cal-594

culate moving trends for the reconstruction over the years 1900-2000 CE using trend595

window lengths from 31 to 101 years. Similarly, we calculate moving trends for the596

Marshall Index over the years 1958-2020 CE using trend window lengths from 31 to597

63 years. We then use the reconstruction to assess the significance of these trends. For598

each trend window length, we calculate the distribution of trends with the given win-599

dow length from the reconstruction over the years 1500-1900 CE, and we define this600

distribution as the natural variability for that trend length. We then use the 90% con-601

fidence intervals of each distribution to determine a significance threshold for trends602

of the associated length. We also repeat this process using trend distributions from603

the intervals 1-1900 CE and 1-899 CE to examine the sensitivity of this analysis to604

different portions of the reconstruction.605

Caveats and Limitations606

Our DA method does not require a calibration with the instrumental SAM, which lim-607

its sensitivity to non-stationarity in the SAM during the instrumental era. However,608

the trade-off is the influence of proxy forward model and climate model biases on the609

reconstruction. In the case of proxy models, any biases typically reduce the weight610

of the proxy in the assimilation, thereby limiting its effect on the reconstruction. We611

note that improving the accuracy or sophistication of the proxy forward models could612

increase the influence of many records; for example, transitioning the statistical for-613

ward models used here for the PAGES2k sites to more mechanistically accurate proxy614

system models [54] could potentially improve the reconstruction [101]. However,615

efforts to develop more complex proxy system models must also exercise caution, as616

excessive complexity and poorly constrained parameters may lead to overfitting and617

artificially high skill in the instrumental era at the expense of accuracy during the618

earlier reconstruction. In this study, we retain the simpler statistical forward models619

because (1) the PAGES2k proxies are reported to be temperature sensitive [49], (2)620

statistical proxy models remain the most common and tractable approach for pale-621

oclimate data assimilation to date [53, 57, 59], and (3) the simple statistical model622

eliminates errors caused by the interaction of climate model biases with forward623

models that rely on absolute units.624

With respect to climate models, biases in the mean state can affect proxy esti-625

mates that include parametrizations or thresholds based on absolute units. However,626

covariance biases are a greater concern, as they introduce errors in the propagation of627

information from the proxy records to the reconstruction target. For example, some628

of the climate models considered in this study simulate a SAM pattern that is too629

zonally symmetric and that overestimates the SAM’s influence on overall Southern630



Springer Nature 2021 LATEX template

Trends and variability in the Southern Annular Mode over the Common Era 17

Hemisphere circulation [116]. Such teleconnection biases can cause the assimila-631

tion to overestimate the covariance between various proxies and the SAM, thereby632

increasing reconstruction error. In this study, we use a multi-model ensemble (MME)633

to reduce the effects of covariance bias from any one model [59, 96]. We note that634

we weight each model equally, which effectively treats each model as independent.635

In reality, many models share common features or code, so this equal weighting636

may bias an ensemble towards the most similar models [117, 118]. For example, the637

CCSM4 and CESM-LME output used in our MME are both from models developed638

by the US National Center for Atmospheric Research (NCAR) and may more closely639

resemble one another than the MPI or MRI models. Future efforts may wish to test640

different model composition and weights when constructing a MME prior.641

Finally, our use of a stationary offline prior implies a stationary estimate of642

climate system covariance when considered over the full reconstruction period.643

Although we use a long-term estimate of the SAM’s climate covariance, the true644

covariance may vary on multi-decadal scales [13, 44], and these variations will not be645

captured in our approach. While the assumption of a reasonably stationary covariance646

is implicitly common to most spatial reconstruction methods [119, 120], the applica-647

tion of transient offline priors [102, 121, 122] or online assimilation techniques [123]648

may enhance future data assimilation reconstruction, although these approaches must649

balance the utility of evolving covariance estimates with reduced ensemble sizes.650
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Metric Marshall Index Fogt Index Fogt Index

(1958-2000) (1958-2000) (1866-2000)

Correlation (p ≪ 0.001) 0.72 0.67 0.56

RMSE 1.45 1.56 1.80

σ Ratio 0.97 1.03 1.15

Mean Bias -0.26 0.45 -0.29

Table 1: Reconstruction Skill metrics for the Southern Annular Mode calculated

against instrumental indices over the given time periods
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Fig. 1: Map of the proxy network. Black Xs indicate the centroid of binned drought

atlas sites. Grey markers indicate PAGES2k sites. The size of the PAGES2k markers

correspond to the length of each record. Filled color contours show the field correla-

tion between the SAM index and DJF sea level pressure from 20CR [88, 89] over the

period 1958-2000 CE.
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Fig. 2: Evolution of the reconstruction over time. Top: Comparison of the annual

reconstruction (blue) with the Marshall index (red) over the instrumental era. Shad-

ing indicates the 5-95 percentiles of the reconstruction. Middle: Evolution of the

annual reconstruction (blue) and 31-year lowpass filtered (black) over the Common

Era. Shading indicates the 5-95 percentiles of the lowpass filtered series. Bottom:

Composition of the proxy network over time. Colors for proxy types are as follows:

Dark blue (coral), pink (ANZDA), grey (SADA), dark red (trees), light blue (glacier
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Fig. 3: Optimal Sensor Analysis. Top: Maps of the potential ability for drought atlas

(left) and PAGES2k (right) sites to constrain reconstruction posterior variance. Mid-

dle: Evolution of reconstruction posterior variance over time. Yellow bars indicate

the addition of the indicated proxy to the network. Bottom: Ranked histograms of the

seven sites with greatest potential influence in the early reconstruction (left), immedi-
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Potential influence is determined as the uncertainty constrained by a single-proxy
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Fig. 4: SAM climate responses. Top left: Wavelet coherence of the reconstructed

SAM index with the solar forcing reconstruction [112]. Bottom left: Composite mean

response to major volcanic eruptions. Shading indicates 5-95 percentiles. Blue line

is the ensemble mean. Right: Instrumental SAM trends for the Marshall Index (top

right) and reconstruction (bottom right). Colored points indicate trends calculated

from a sliding window centered on the given year. Solid (dotted) contours surround

statistically significant trends at the 90% confidence interval relative to the recon-

struction over the period 1500-1900 CE (1-1900 CE).
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Fig. 5: Comparison of SAM reconstructions over the last millennium. All recon-

structions are smoothed via a 30-year Gaussian filter and normalized to the period

1400-1850 CE.
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