In this contribution, we investigated the possibility of teleporting classical/quantum masked information, which may coded either in a single qubit or qutrit. For this purpose, different systems are used as quantum channels; two-qubit, three-qubit, two qutrit systems, and different protocols are applied. All the teleported masked information are retrieved as masked states at the receiver station. The number of operations that may be performed by the receiver are limited. It is shown that, one can teleport masked classical information with maximum fidelity, while for quantum information the maximization depends on the weight parameter of the tele-ported state. Teleporting the total masked state is better than teleporting its marginals, where the fidelity of total masked state is maximum. However, the fidelity of teleporting masking quantum information via three qubit systems may be maximized by controlling the weight of the initial masked state and the polarization of the mediator. In some cases, the receiver need to diagonalize the final teleported state to maximize its fidelity, and consequently reduces the required local operations.