1. Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 2021, 71(1). https://doi:10.3322/caac.21654.
2. Desantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA:A Cancer Journal for Clinicians, 2019, 69:438-451. https://doi:10.3322/caac.21583.
3. Sarveazad A, Babahajian A, Shamseddin J, et al. 5-Year Survival Ratesand Prognostic Factorsin Patients with Synchronusand Metachronus Breast Cancer from 2010 to 2015. Asian PacJ Cancer Prev, 2018, 19:3489-3493. https://doi:10.31557/APJCP.2018.19.12.3489.
4. Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clinical Cancer Research, 2004, 10(16): 5367-5374. https://doi:10.1158/1078-0432.CCR-04-0220.
5. Jia H, Truica CI, Wang B, et al. Immunotherapy for Triple-Negative Breast Cancer: Existing Challenges and Exciting Prospects. Drug Resistance Updates, 2017:S1368764617300316. https://doi:10.1016/j.drup.2017.07.002.
6. Byrne A, Savas P Sant S, et al. Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nature Reviews Clinical Oncology. https://doi:10.1038/s41571-020-0333-y.
7. Akagi J, Baba H. Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis. Oncol Rep, 2019,41(1): 301-311. https://doi:10.3892/or.2018.6841.
8. Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nat Rev Clin Oncol, 2017, 14(3):155-167. https://doi:10.1038/nrclinonc.2016.144.
9. Slattery K, Woods E, Zaiatz-Bittencourt V, et al. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. Journal for ImmunoTherapy of Cancer, 2021, 9(2):e002044. https://doi:10.1136/jitc-2020-002044.
10. Lu D, Zhou X, Yao L, et al. Clinical Implications of the Interleukin 27 Serum Level in Breast Cancer Journal of Investigative Medicine the Official Publication of the American Federation for Clinical Research, 2014, 62(3):627-31. https://doi:10.231/JIM.0000000000000046.
11. Hiroki, Yoshida, Christopher, et al. The Immunobiology of Interleukin-27. Annual Review of Immunology, 2015. https://doi:10.1146/annurev-immunol-032414-112134.
12. Marina F, Grazia C, Silvano F. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators of Inflammation, 2017, 2017:1-14. https://doi:10.1155/2017/3958069.
13. Aldridge DL , Phan AT, Malefyt R , et al. Limited Impact of the Inhibitory Receptor TIGIT on NK and T Cell Responses during Toxoplasma gondii Infection. ImmunoHorizons, 2021, 5(6):384-394. https://doi:10.4049/immunohorizons.2100007.
14. Lakhani SR. WHO classification of tumours of the breast [M]. Lyon:IARC Press, 2012. https://SBN:9789283224334.
15. Plichta JK, Campbell BM, Mittendorf EA, et al. Anatomy and breast cancer staging:is it still relevant?. Surg Oncol Clin N Am, 2018, 27(1):51-67. https://doi:10.1016/j.soc.2017.07.010.
16. Pps A, Phsr B, Psa C, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial - ScienceDir, 2020, 21: 44-59. https://doi:10.1016/S1470-2045(19)30689-8.
17. Barzaman K, Moradi-Kalbolandi S, Hosseinzadeh A, et al. Breast cancer immunotherapy: Current and novel approaches. International Immunopharmacology, 2021, 98(12):107886. https://doi:10.1016/j.intimp.2021.107886.
18. Gaynor N, Crown J, Collins D M. Immune checkpoint inhibitors: Key trials and an emerging role in breast cancer. Seminars in Cancer Biology, 2020. https://doi:10.1016/j.semcancer.2020.06.016.
19. Franzoi M, Romano E, Piccart M. Immunotherapy for early breast cancer: too soon, too superficial, or just right?. Annals of oncology: official journal of the European Society for Medical Oncology, 2021, 32(3):323-336. https://doi:10.1016/j.annonc.2020.11.022.
20. Miaomiao M, Zegao Z, Nurbek P, et al. Analysis of clinical characteristics of NK cells and related cytokines in triple negative breast cancer and non-triple negative breast cancer. Cancer Research and Clinic, 2021, 33(3):173-178. https://doi:10.3760/cma.j.cn115355-20201118-00647.
21. Huppert LA, Mariotti V, Chien AJ, et al. Emerging immunotherapeutic strategies for the treatment of breast cancer. Breast Cancer Res Treat, 2022, 191: 243-255. https://doi:10.1007/s10549-021-06406-1.
22. Matsumoto H, Thike AA, Li H, et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat, 2016, 156: 237-47. https://doi:10.1007/s10549-016-3743-x.
23. Wang WH, Xu HY, Zhao ZM, et al. Dynamic and significant changes of T-cell subgroups in breast cancer patients during surgery and chemotherapy. Int Immunopharmacol, 2018, 65: 279-283. https://doi:10.1016/j.intimp.2018.09.039.
24. Hammerl D, Massink M, Smid M , et al. Clonality, Antigen Recognition, and Suppression of CD8 + T Cells Differentially Affect Prognosis of Breast Cancer Subtypes. Clinical cancer research: an official journal of the American Association for Cancer Research, 26(2):505-517. https://doi:10.1158/1078-0432.CCR-19-0285.
25. Winer EP, Lipatov O, Im SA, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. The Lancet Oncology, 2021, 22(4). https://doi:10.1016/S1470-2045(20)30754-3.
26. Tian W, Wang L, Yuan L, et al. A prognostic risk model for patients with triple negative breast cancer based on stromal natural killer cells, tumor‐associated macrophages and growth‐arrest specific protein 6. Cancer Science, 2016, 107(7):882-889. https://doi:10.1111/cas.12964.
27. Rezaeifard S, Talei A, Shariat M, et al. Tumor infiltrating NK cell (TINK) subsets and functional molecules in patients with breast cancer. Molecular Immunology, 2021, 136(2):161-167. https://doi:10.1016/j.molimm.2021.03.003.
28. Moazeni-Roodi A, Hashemi M, Ghavami S. Association between IL-27 Gene Polymorphisms and Cancer Susceptibility in Asian Population: A Meta-Analysis. Asian Pacific journal of cancer prevention: APJCP, 2020, 21(9):2507-2515. https://doi:10.31557/APJCP.2020.21.9.2507.
29. Lu D, Zhou X, Yao L, et al. Clinical Implications of the Interleukin 27 Serum Level in Breast Cancer. Journal of Investigative Medicine the Official Publication of the American Federation for Clinical Research, 2014, 62(3):627-31. https://doi:10.231/JIM.0000000000000046.