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ABSTRACT – I will present Calabi-Yau manifolds emphasizing quartic and quintic 

variety considering Bogomolov-Gieseker Inequality with two specific types of Clifford 

inequality for associated fibers by Polarized K3 surfaces with the case considered upon 

threefolds. 

 Generalizations have been made to a different form of quintics with coordinates 

and associated mirrors for the hypersurface being concerned with taking multi-

homogeneous polynomials where necessary. 

 Minimal Calabi-Yau threefold considered for fiber varieties 𝐼0, 𝐼+, 𝐼𝐼0, 𝐼𝐼+, 𝐼𝐼𝐼, 0. 
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1. INTRODUCTION 

 

In the complex dimension one Calabi-Yau manifolds, there is the existence of 

elliptic curves for a single topological type but the hint of K3 surfaces can be 

dominant and found in the complex dimension two being a quartic hypersurface in ℙ3. These structures having the maximal Picard number for the existence of those 

K3 surfaces where the transcendental lattice holds for the degree 2 computations 

can be made through Hasse-Weil Zeta functions provided the K3 is singular. For a 

Galois representation of weight 3 for the 2D – There exists a weight 4 modular 

form in the L-series for all rigid CY threefold in the middle cohomology. This 

indeed suffices for 3D rigid CY manifolds. For the middle cohomology, there exists 

an L-series of weight 𝒢6  in the case of a 5D CY manifold. Any 𝑛 -dimensional 

provided that 𝑛 is of much higher variety there is,  

[1] A Kummer construction for an elliptic cone 𝑒0 for automorphisms. 

[2] This 𝑒0 relates to group ^ in quotient form  𝐸 × …… × 𝐸 / ℤ3
𝑛  𝑜𝑟 ℤ4

𝑛 . 

 

Originating from the Calabi conjecture a compact K𝑎 hler manifold for  𝑆, 𝑔, 𝜔  
where there lies a unique metric 𝑔𝑐  with K𝑎 hler form 𝜔  one can find the Ricci 𝑅 = 𝑅𝑖𝑐 𝜔   ∃ 𝜔 ≡  𝜔   for the first vanishing Chern class 𝑐1  of 𝑆^  with the 𝑅 ∈ Ω1,1 𝑆  for the 𝑐1  taking  𝑐1 𝑇𝑆 ∈ 𝐻1,1 𝑆  representing the canonical line 

bundle ΛT𝑆⋆n ≅ 𝜍𝑆  giving a CY n-fold with a holomorphic n-form and a covariantly 

constant spinor over 𝑆 [1-3]
. The Hodge diamond of a simply connected and  

compact CY is shown as
[12,43]

, 
 

1

0 0 𝑏0 1

0 0 𝑏1 01,1 𝑏2 1,1

1 2,1 2,1 1 ⟶ 𝑏3 2 + 22,11,1 𝑏4 1,1

0 0 𝑏5 0

0 𝑏6 1

0

1

 

 

Where the compact and connected form of CY can be represented easily by 𝑏0 = 1 

which assets clearly that the top of the Hodge diamond is 0,0 = 1, so as the same 

for the bottom with 1,0  and 0,1  is 0 . Therefore from this diamond one can 

deduce two non-trivial relations of manifold 𝑆 in general terms, 

[1] 1,1 represents the K𝑎 hler parameters. 

[2] 2,1 represents the complex structure parameters 

 

The Euler characteristic of CY threefold, the quintic stated as 𝒳𝐸 = −200 which 

can be explicitly defined by the Hodge numbers 1,1 , 2,1  through the relation 1,1 − 2,1 = −100 which gives the value of 𝒳𝐸  for 21,1 and 22,1 as seen in the 

diamond giving 𝒳𝐸 = 2 1,1 − 2,1 = −200 . Furthermore the K 𝑎 hler  𝐾, 𝑔, 𝜔  
where there is the vanishing Ricci 𝑅 𝑔, 𝜔  is the compact K𝑎 hler or Calabi-Yau  𝑆, 𝑔, 𝜔  but the K𝑎 hler has a global holonomy for the nowhere vanishing n-form 

suffice 𝑆𝑈 𝑛  for Ω n,0  where in 𝑛 = 3 one gets the spinor Θ defined via Ω 3,0  for 

the manifold ℳ in K𝑎 hler 𝐾ℳ gives two relations for 𝑛 and 𝑛 = 3
[43]

, 
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ℳ ≡    
  cotangent bundle  sheaf  in n − fold,  𝑇ℳ∨𝑛

Ω 3,0  and Ω𝑝𝑞𝑟  for spinor Θ with γ − matrics ,  1

3!
Ω𝑝𝑞𝑟 𝑑𝑧𝑝 ∧ 𝑑𝑧𝑞 ∧ 𝑑𝑧𝑟Θ—𝑇  γ[𝑝γ𝑞γ𝑟] Θ—𝑇    

 

Thus establishing a relation for manifold category with associated holonomy, 

 𝐻𝑜𝑙𝑜𝑛𝑜𝑚𝑦 𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝐾𝑎 𝑙𝑒𝑟 𝑈 𝑑/2 𝐶𝑎𝑙𝑎𝑏𝑖 − 𝑌𝑎𝑢 𝑆𝑈 𝑑/2  

 
 

 

2. CONSTRUCTIONS 

 

There exists a one-to-one diffeomorphism on the K3 surfaces. For the vacuum 

solutions of the Einstein equation there exists a Ricci flat metric over 𝑆 for the 

case being 𝑅 = 0  where for the compact K 𝑎 hler cases there exists a SU( 𝑛 ) 

holonomy for the CY(𝑛)-fold. For the complete intersection cases in Calabi-Yau 

manifolds (CICY) in the case of a CY 3-fold for the CY being the K𝑎 hler manifold 

for  𝑆, 𝑔, 𝜔  when one recognizes a projective variety 𝑆𝑋  for manifold being 

considered as 𝑋 - There exist 4 important conditions
[1-8]

, 

[1] For the multi-homogeneous polynomial 𝑘, the complete intersection holds 

for, 𝑘 =  𝑛𝑖 − 3

𝑚
𝑖=1

 

 

[2] For the multi-degree 𝑞𝑗𝑖  for 𝑖 = 1 and 𝑗 = 1, …… , 𝑚 the generalization of 

adjunction holds, 𝑛𝑗 +1 =  𝑞𝑗𝑖  ∀𝑗 = 1, … … , 𝑚𝑘
𝑖=1

 

 

[3] The associated Euler charectaristics being 𝒳 =  −200,0  with Hodge pairs  1,1, 2,1 . 
 

[4] There exists an elliptic fibration for concerned morphism on the CY 

threefold where for the base 𝑏 the fibration is defined over, 𝜋: 𝑆 ⟶ 𝑏 
 

With 𝑆 being the CY threefold where the fibers can be distinguished over ℙ2 through a smooth cubic equation, 

 𝑦0
3 − 𝑦1

3 =  𝑦0 − 𝑦1  𝑦0
2 + 𝑦0𝑦1 + 𝑦1

2  ∃ 1: −1: 0 ∈ ℙ2 
 

         ∀𝑡𝑒 𝑏𝑖 − 𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑑𝑒𝑔 1,3  𝑤𝑒𝑟𝑒 𝑡𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑆 ⊂ ℙ2 × ℙ2 
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3. POLARIZED K3 SURFACE 
 

Going back to the fibrations of the smooth curve 𝑏  and smooth projective 

therefore 𝑆 − 𝜋: 𝑆 ⟶ 𝑏, there exists a N𝑒 ron-Severi group 𝑁𝑆 𝜍ℱ  for the fiber of 

the manifold 𝑆  having point ℱ ∈ 𝑏  where there is a choice of 𝑀2  over 𝑀1  being 

taken here as explained
[9,11,13]

, 

[1] K3 surface having 𝑀1 −  polarized family there is a need to control the 

monodromy around the single fibers of 𝑆  for an extreme need of 

homological invariant. 

[2] In the 𝑀2 − polarized family the functional invariants worked due to the 

back of automorphisms thus, 

 𝑀1; 𝐻⨁𝐸8⨁𝐸8⨁ −2  
 

Is replaced by, 

 𝑀2 ≅ 𝑁𝑆 𝜍ℱ ≔ 𝐻⨁𝐸8⨁𝐸8⨁𝐸8⨁ −4  
 

Thus, the K3 surface with a quasi-projective base 𝑏𝑄  denoted by the L-lattice in 

the smooth projective variety
[9,14]

, 

 𝜋𝑏𝑄: 𝑆𝑏𝑄 ⟶ 𝑏𝑄 ∀𝐿 − 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝑓𝑎𝑚𝑖𝑙𝑦 

 

Here, for the primitive sub-lattice of ℓ𝑝  on general point 𝑝  of NS  𝜍𝑝  being 

isomorphic of the L-lattice there exists the K3 fiber
[10-14]

, 

 ℓ𝑝 ⊆ 𝐻2 𝜍𝑝, ℤ  
 

Therefore, taking the K𝑎 hler metric 𝑔𝑐  there is a generalized invariant map of 

Manifold ℳ for every point 𝑝 ∈ 𝑏𝑄 the associated map is, 

 𝜋ℓ: 𝑏𝑄 ⟶ ℳ𝑀2
 ∀𝑀2  − 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝐾3 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

 

for Hodge h2,1 in CY threefolds of toric varieties 
 

This suffices an interesting point for Quartic K3 surfaces in 𝑀2 – polarized family 

where for the associated compact K 𝑎 hler there is still not any complete 

intersection for all the toric varieties. Further generalizations can be made by 

taking the same generalized invariant map 𝜋ℓ for manifold ℳ where ℓ can have a 

degree, 

 𝑑𝑒𝑔 ℓ = 𝑖 + 𝑗 ≡ 𝑛 ∃𝑖, 𝑗 ∈  1,2,3,4  
 

For this 𝑑𝑒𝑔 ℓ  there exists unitarity in the Hodge 2,1 for its association with  𝑆ℓ  
where 𝑆 is threefold for ℓ appearing in the generalized invariant map 𝜋ℓ where 3 

relations can be found, 

 𝜋ℓ: ℙ1 ⟶ 𝜋𝑀2
≃  2,1 𝑆ℓ = 𝑘 = 𝑟 = 12,1 𝑆ℓ = 𝑘 = 1 = 20 +  2𝑦2 + 1 + 𝑐1 + 𝑐2 =  0 ∃𝑡𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑟𝑎𝑚𝑖𝑓𝑖𝑒𝑑 𝑓𝑖𝑒𝑙𝑑 𝛾 ∈  0, 256−1, ∞   
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4. INEQUALITY AND POLYNOMIALS WITH STABILITY 

 

The stability condition on the CY threefold can be presented by Bogomolov-

Gieseker inequality of Type 𝐵2,4 and 𝐵2,2,4 where the former describes the stability 

of the concerned objects. This when suffice to the Quadrics of ℙ5 of order 3 along 

with a Clifford inequality of Type 𝐶2,2,2,4 then a Quartic intersection can be found 

while for the Clifford inequality 𝐶2,2,5 one can get a quintic variety
[15,16]

. 

 

For the Quintic threefold the Clifford inequality of 𝐶2,2,5  also proceed towards a 

stronger Bogomolov-Gieseker inequality for a Quintic threefold ℙ4. Taking a sheaf 𝑆^  on a smooth quintic threefold  𝑆^, 𝐻  for a related torsion 𝜌 over a 𝜌 − free 

slope 𝛼𝐻 making 𝑆^ semistable there is a stronger bond on the second Chern class 𝑐2 provided there lies the inequality of the 𝜌 − free for the same sheaf of threefold  𝑆^, 𝐻  such that
[15,16]

, 

 

𝐻 ch2 𝜌 ≤
    
   − 1

2
 𝐻2 ch1 𝜌  ∃  𝐻2 ch1 𝜌 𝐻3 rk 𝜌  ∈  0,

1

4
 

1

2
 𝐻2 ch1 𝜌  − 5

4
𝑟𝑘 𝐸 ∃  𝐻2 ch1 𝜌 𝐻3 rk 𝜌  ∈  1

4
,
3

4
 

3

2
 𝐻2 ch1 𝜌  − 5𝑟𝑘 𝐸 ∃  𝐻2 ch1 𝜌 𝐻3 rk 𝜌  ∈  3

4
, 1 −𝐻2 ch1 𝜌 

  
 

 

Where  𝐻2  ch 1 𝜌 𝐻3  rk 𝜌  ∈  3

4
, 1 − 𝐻2 ch1 𝜌  represents the strong bound. For the Clifford 

curve 𝐶2,2,5 of rank 𝑟 and slope 𝛼𝐻 of curve 𝐶 there are complete intersections for 

both [Quadratic and Quintic] hypersurface in ℙ4 where the bounds are expressed by 

slope 𝛼𝐻  takes the inequality quotient of 
0 𝜌 𝑟 ≤ 𝛼𝐻−2 + 1  where for the slope 𝛼𝐻 ∈  5,10  and 𝛼𝐻 ∈  2,5)  there exists a net bound for the relation

[16]
, 

 

 

   
   
  
   
   
 40

41
+

𝛼
41

, ∃𝛼 ∈  0,2 
                  𝑚𝑎𝑥  24

55
+

4

125
𝛼,

241

248
+

33

1240
𝛼 , ∃𝛼 ∈  2 ,  5

2
 

             𝑚𝑎𝑥  12

13
+

3

65
𝛼,

193

204
+

7

170
𝛼 , ∃𝛼 ∈  5

2
,
10

3
 

           𝑚𝑎𝑥  4

5
+

2

25
𝛼,

193

204
+

7

170
𝛼 , ∃𝛼 ∈  10 ,  5 ∀𝛼 ∈  0 ,  10 ∪  30,40 𝑚𝑎𝑥  1

5
𝛼,

55

62
+

9

124
𝛼 , ∃𝛼 ∈  5,10 

2

5
𝛼 − 4, ∃𝛼 ∈  30,37 

11

15
𝛼 − 49

3
, ∃𝛼 ∈  37,40 

  

 

 

 

Satisfying the Bridgeland Stability Conditions on Bogomolov-Gieseker inequality 

Type 𝐵2,4  in CICY for 𝜌×  such that 𝑐0 𝜌 ≠ 0  for 𝐻 = 𝑁𝐵2,4 1  there is an 𝛼𝐻0  

semistable slope for the Clifford variety being considered 𝐶2,2,2,4 for the Bogomolov 

inequality considered here for sheaf 𝜌× (ignoring the notational ambiguity) proof 
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can be found in 𝐵2,4 ⊂ ℙ5  representing complete intersections through [Quadratic 

and Quartic] over CY threefolds
[20-22]

. 

 

If any smooth projective threefold 𝑆^ over ℂ be defined on the ample 𝒜 taking the 

base 𝑏 with 𝜔 from the compact K𝑎 hler manifold  𝑆, 𝑔, 𝜔 then for the bounded 

structure there exists 𝐻2 𝑆^, ℂ  for every 𝒜𝑏 ,𝜔 ⊂ 𝐶𝑜 𝑆  where for the Picard 

norm one might able to find 𝐻  through a generator 𝜇𝑆 𝐻  for the dimensions 𝑑𝑖𝑚 𝐻 ≥ 7

6
 𝐻3 − 3  making equality with 𝐸 = 𝜇𝑆 𝐻 [17-19]

. 

 

The smooth quintic threefold 𝑆 ⊂ ℙ4 can be taken through the first Chern class 𝑐1 

over the dimensions 𝑐1 𝐸 =  𝐻  where there are polynomials 𝑐0 𝐸 . 𝑐1 𝐸 , 𝑐2 𝐸  bounds the 𝑐3 𝐸  for the sheaf rank 𝑟𝑆 ≡ 𝐸 ≥ 2 . The 

bounding over 𝑐3 𝐸  for 𝐸 ∈ 𝑐𝑜 𝑆  makes the torsion  𝜌 − free slope over the 

extension of
[18,21]

, 

 𝒪 ⟶ 𝐸 × 𝑇1 𝐸, 𝜇𝑆 ∨⨂ℂ 𝜇𝑆 ⟶ 𝐸′ − 𝐸 ⟶ 𝒪 
 

For a stable slope taking  𝑆, 𝐸 ⊂ ℙ4. 

 

Considering the fact of the Kodaira vanishing 𝑖>0 𝜇𝑆 𝐻  = 0  the existence of 

Riemann-Roch can be obtained for the bound Chern character 𝑐3 𝐸  for 𝑑𝑖𝑚 𝐻  
one gets

[17-22]
, 

   −1 𝑖𝑖 𝐸 = 𝑐3 𝐸 + 𝑑𝑖𝑚 𝐻 − 1

6𝑖≥0

 𝐻3+1  
 

Giving the Bogomolev-Gieseker inequality through an equivalence for 𝑐𝑖 𝐸  for 𝑖 = 0,1,2 suffice, 

 𝑒𝑥𝑡1 𝜌×, 𝜇𝑆 ≤ 𝐻3

2𝑐2 𝐸 𝐻 − 𝑐0 𝜌× ≡  𝑒𝑥𝑡1 𝜌×, 𝜇𝑆 + 𝐻22 𝑐0 𝜌×  𝑐2 𝐸  𝐻≥ 0 
 

Where for even 𝑑𝑖𝑚 𝐻  suffice the old relation once more in CICY, 

 𝐵2,4 ⊂ ℙ5 ∀ 2

3
 𝐻3 − 3  

 

Therefore, one gets a detailed relation for the Chern character 𝑐𝑖 for 𝑖 = 0,1,2 the 𝜇𝐵2,4
 to suffice for all 𝐻𝐽  for 𝐽 = 2

[23,24
], 

 

𝑐2 𝜌× 𝐻2 𝑐0 𝜌× ≤
    
  
    
 𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌× − 𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌×                        ∃ 𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌× ∈  0,

4

3
−  13

3
 

5

8
 𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌×  2 − 1

8
                                ∃ 𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌× ∈  4

3
−  13

3
,
1

2
 

5

8
 𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌×  2 − 1

4

𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌×          ∃ 𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌× ∈  1

2
,
 13

3
− 1

3
 

 𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌×  2 − 1

2
                                   ∃ 𝐻 𝑐1 𝜌× 𝐻2 𝑐0 𝜌× ∈   13

3
− 1

3
, 1 
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For the condition 𝜌× −𝑛𝐻 ∀𝑛 ∈ ℤ iff  
𝐻 𝑐1 𝜌× −𝑛𝐻  𝐻2  𝑟𝑘 𝜌× −𝑛𝐻   ∈  0 ,  1 . Hence the Bill-

Noether semistable relation for 𝑐 𝐵2,4  the equality will hold for  𝐻2  𝑐1 𝜌× 𝐻3  𝑟𝑘   𝜌×  =

 taking the value 0,
1

5
,

1

2
,

4

5
,

1

4
,

10

11
, 1 where for the interval of 

𝐻2  𝑐1 𝜌× 𝐻3  𝑟𝑘   𝜌× ∈  −1,1  there 

is
[23,24]

, 

 

 

𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌× ≤
   
   
  
   
  − 1

2
 𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×  𝑤𝑒𝑟𝑒  𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×  ∈  0,

1

5
 

             
7

16
 𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×  − 3

16
𝑤𝑒𝑟𝑒  𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×  ∈  1

5
,
1

2
 

          
9

16
 𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×  − 1

4
 𝑤𝑒𝑟𝑒  𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×  ∈  1

2
,
4

5
 

             
51

54
 𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×  − 8

11
𝑤𝑒𝑟𝑒  𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×    ∈  4

5
,
10

11
 

             
21

11
 𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×  − 31

32
𝑤𝑒𝑟𝑒  𝐻 𝑐2 𝜌× 𝐻3 𝑟𝑘  𝜌×    ∈  10

11
, 1 

  

 

 

Other varieties of CICY threefolds for ℙ𝑁 when 𝑁 is large the Bogomolov-Gieseker 

inequality Type can be altered for the value of 𝐻 𝑐1𝑟𝑘  over Clifford curve 𝐶2,2,5 being 

replaced by  2𝐻𝑌  ∃𝑌 ∈  2𝐻  for a smooth variety to generalize CY threefolds. 

 

 

 
5. COORDINATES WITH GENERALIZATIONS AND MIRROR 

 

If we consider the Ricci flat metric that is already employed on the CY manifold 

where for sheaves 𝑆 with the metric class  𝑆, 𝑔, 𝜔  when we take the 𝑛-fold say 𝑆𝑛  

for the ample 𝒜 being considered here before with the form 𝒜𝑏 ,𝜔  there is a line 

bundle ℒ for the 𝑚𝑡  power being the holomorphic line bundle as ℒ𝑚  which with 

the 𝑛-fold considered here 𝑆𝑛  makes the K𝑎 hler potential 𝐾 for 𝑝 − parameters to 

make the Ricci flat metric where the relation takes as
[25-27]

, 

 𝐾𝑚 ,𝑝 =
1𝑚𝜋 𝐼𝑛  𝜖 𝑖  𝑚 𝑖  𝑗 𝜖𝑗   

 

Where 𝜖𝑗 ∈  𝑆, ℒ𝑚  where for 𝑝 ⟶ ∞ the vanishing Ricci ot the Ricci flat would be 

prominent as the limit of 𝑝 tends to infinity. 

 

For this same 𝑛-fold there is the same degree 5 quintic hypersurface of projective 

variety ℙ4 where for the polydiscs 𝑑𝑖 the ambient homogeneous coordinates of the 𝑛-fold ℙ𝑛+1  for the vanishing locus ℓ0  with the polynomial 𝑘 , the ℓ𝑘0  one gets a 𝑛 + 2  degree form of the 𝑆𝑛  represented through a bilinear relation taking the 

polydiscs 𝑑𝑖  being amalgamated with the 𝑆𝑛  for the same ambient coordinates of  ℙ4 being taken here as ℙ𝑛+1 in 𝑆𝑛  suffice
[26,28]

, 
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   𝑆𝑗𝑛𝑁
𝑖=0

  𝑛 + 2 ≡   𝑑𝑖𝑁
𝑖=0

= ℙ𝑛+1  
 

For the local coordinates of 𝑑𝑖  represented through an equivalence for the 

previously considered ambient homogeneous coordinates ℙ𝑛+1, 

  𝒦𝑖 , 𝑖 = 0, …… , 𝑛 + 1 
 

With the relation of equivalence, 

 𝑑𝑖 =   𝑧0: …… : 𝑧𝑖−1: 𝑧𝑖+1: …… : 𝑧𝑁 | 𝑧𝑖 ≤ 1 ≃ 𝑑𝑛+1 
 

For the suitable coordinates of Calabi-Yau on 𝑆𝑗𝑛  for any value of 𝑛  (being 

generalized for this purpose) with the polynomial 𝑘 , for 𝑚 = 0, …… ,0 + 1 in the 

relation 𝑧𝑚 =
𝒦𝑚𝒦𝑖  expressed through

[28,29]
, 

 𝒦 𝑧0 , …… , 𝑧𝑖−1, 𝑧𝑖+1, …… , 𝑧𝑁 = 0 
 

For the ℂℙ𝑛+1  there is a hypersurface of the smooth toric varieties 𝑆 which can 

only be recognized as a CY for 𝑑 = 𝑛 + 2  where the ambient homogeneous 

coordinates ℙ𝑛+1 there exists a relation
[30]

, 

 𝒪ℙ𝑛+1 − 𝑛 + 2  |𝑆 ≅ ΩS
n  ⨂ 𝒪ℙ𝑛+1 −𝑑 |S  ⟹  ΩS

n ≅ 𝒪 
 

Such that considering ℂℙ𝑛+1 for rank 𝑟 < 𝑛 = 3, there is 𝐻𝑟 𝑆 ~ 𝐻𝑟 ℂℙ4  for the 

quintic ℙ4  as the non-trivial CY threefold where for 1,0 = 0 and 2,0 = 0 for the 

argument 1,1 = 1  a conclusion can be taken for the Euler charecteristics 𝒳 

through the relation
[33,35]

, 

 

1 + 1 − deg 𝐻3 𝑆 + 1 + 1 = 𝒳 ∃𝒳 = −200 
 

For the quintic threefolds of CY variety having sheave 𝑆  in ℙ4  for the generic 

variety 𝜃 the mirror can be constructed via singular 𝑆𝜃/𝐺 for the relation
[31-33]

, 

 𝑆𝜃 ≡  𝑦0, …… , 𝑦4 ∈  ℙ4 𝐺𝜃𝑖𝑛𝑣 = 𝑦0
5+……. + 𝑦4

5 − 5 𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4 = 0 𝐺 ≡  𝑚0 ……𝑚4 ∈   ℤ/5ℤ 5  𝑚𝑗 = 0 /   ℤ/5ℤ 5 =   𝑚, 𝑚, 𝑚, 𝑚, 𝑚   
 

 

Thus for 𝑆𝜃/𝐺 where 𝐺 ≅  ℤ/5ℤ 3 there are 10 − 𝑐𝑢𝑟𝑣𝑒𝑠 meeting at point 𝑝 , 
 𝑝 1,2,3  𝑐𝑢𝑟𝑣𝑒  1,2 ∃𝑐𝑢𝑟𝑣𝑒  1,2 = 𝑐𝑢𝑟𝑣𝑒  1,2 / ℤ/5ℤ 3 ≅ ℙ1𝑐𝑢𝑟𝑣𝑒  2,3𝑐𝑢𝑟𝑣𝑒  3,1

  
 

Thus for the 𝑐𝑢𝑟𝑣𝑒1,2  the canonical bundle 𝜂 takes the complete construction of 𝜂𝑆𝜃∨ = 𝜋⋆𝜂𝑆∨/𝐺  for the smooth 𝑆𝜃∨  taking 𝑐𝑢𝑟𝑣𝑒1,2  over 
1𝜋   𝑐𝑢𝑟𝑣𝑒1,2  being the 

result of an outside isomorphism satisfying the map
[32,35]

, 

 Ψ ∶ 𝑆𝜃∨ 𝜋  𝑆𝜃/𝐺 
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Making a complete construction of a Calabi-Yau threefold through 𝑆𝜃∨. 
 

As mentioned earlier about the quintic ℙ4 with the group 𝐺 (not to be confused 

with the group notation ^ at the very beginning of the paper; this has been taken 

for generalization and to remove confusion while considering the mirror and 

Schoen’s quintic of standard family of curves) where the coordinate action for 𝑆∧ ℂℙ4  with .∧  as the 5𝑡  root of unity the action 𝐺 ≃  ℤ/5ℤ 3  gives the 𝑧𝑒𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 for𝑆∧   through the transformation in 𝜉5 for the same 5𝑡  root with 

the quotient 𝑆∧ /𝐺 over
[33,35]

, 

  𝑦0: 𝑦1 ∙ 𝜉5
𝜓1 : 𝑦2 ∙ 𝜉5

𝜓2 : 𝑦3 ∙ 𝜉5

𝜓3 : 𝑦4 ∙ 𝜉5
𝜓4    

 

For 𝜓1 + 𝜓2 + 𝜓3 + 𝜓4 ≡ 0  𝑚𝑜𝑑 5  the Euler characteristic of 𝑆  being a small 

resolution of 𝑆 gives −200 + 2 ∙ 125 for 125 𝑛𝑜𝑑𝑒𝑠 of 𝑆∧  having the corresponding 

points in the quadratic for the 𝑚𝑜𝑑 5   in 𝑝 ≡ 4  there is 𝐼𝑝 𝑆   denoting the 

modularity principle with the relation, 

 

𝐼𝑝 𝑆             𝑝3 + 25,                 𝑝2 + 100𝑝 + 1 − #𝑆𝑝 ,  𝑝 ≡ 1       𝑚𝑜𝑑 5𝑝3, 𝑝2 + 1 − #𝑆𝑝 ,  𝑝 ≡ 4       𝑚𝑜𝑑 5𝑝3,          𝑝2 + 2𝑝 + 1 − #𝑆𝑝 ,  𝑝 ≡ 2,3    𝑚𝑜𝑑 5

  
 

For further generalizations to the quintic ℙ5 over the relation 𝑆𝑛 ⊂ ℙ5 for 𝑛 (being 

generalized in any number being concerned with the association of projective 

variety) with the 𝑧𝑒𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 taken before (again giving for clarity and relational 

significance)
[32-35]

, 

  𝑦0: 𝑦1 ∙ 𝜉5
𝜓1 : 𝑦2 ∙ 𝜉5

𝜓2 : 𝑦3 ∙ 𝜉5

𝜓3 : 𝑦4 ∙ 𝜉5
𝜓4   ⟻  𝑦𝑖  for 𝑖 = 0: 1: 2: 3: 4: 5 

 

One gets the Barth-Nieto Quintic, 

   𝑦𝑖5

𝑖=0

=  1𝑦𝑖 = 0

5

𝑖=0

 ⊂ ℙ5  for Barth − Nieto Quintic suffice ℳ1,0 

 

 

 

 
      6.    NON-RIGID CALABI YAU THREEFOLD AND 𝑀∆ POLARIZED K3 FIBRES 

 

Considering a generalized functional invariant map here taken as 𝑓  and a quasi-

projective curve ℚ concerning the CY manifold 𝑆 if one takes a moduli parameter 

for the sheave 𝑀  then through a fiber 𝐹 with the relation to point 𝑝 there can be 

an implicit parameter 𝑀 𝑝𝐹  where for the polarized K3 fiber 𝑀∆ ∃ ∆≥ 2 the quasi – 

projective curve  ℚ Neron-Sevari group for the isomorphism of the fiber 𝐹ℚ to 𝑀∆ in 

the map[38-40], 

 𝑓 ∶  𝑆ℚ ⟶ 𝑀 𝑀∆     ⟹   generalized functional invariant map for CY S 

 𝐿ℚ ∶ 𝑆ℚ ⟶ 𝑀 𝑀∆    ⟹   𝑀∆ − Polarized family of K3 for afiine 𝐿  with CY threefold 𝑆 
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For the projective ℙ1  with ≥ 2 when the 𝑀∆ − 𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝐾3 is considered for the 

inclusion set of ∆ =   2, 3, 4, 5, 6, 7, 8, 9, 10, 11  the generalized invariant map  𝑓 taking 

the form 𝑓 ∶  ℙ1 ⟶ 𝑀 𝑀∆ gives two orbifolds for the parameters 𝛽 for a ramification 

profile of 𝑓  takes the for the cusp 𝛽 = 𝑐  and two orbifolds satisfying the 

ramification through the projection of the  rank 𝑟  (as previously concerned 

throughout the paper) one gets a summation for the ramification index 𝑅  with 

point 𝑝 over 𝑅𝑝  ∃𝑝 ∈ ℙ1 suffice
[38-40]

, 

 

1 − 𝑜𝑟𝑏𝑖𝑓𝑜𝑙𝑑 ⟶ ∆= 𝛼
2 − 𝑜𝑟𝑏𝑖𝑓𝑜𝑙𝑑 ⟶ ∆= ∆1 … …∆𝑗      ⟹ 𝑟 ≔   𝑅𝑝 − 1 𝑝∈ℙ1

 for  ∆∈  𝛼, 𝑐, ∆1 ……∆𝑗  𝑓 𝑝 ∉ ∆   
 

There can be evidence of 𝑆∆,𝑓  being smooth with a canonical sheaf when the 

recently resolved case is satisfied for the smooth curves resulting in the fibration 

for the singularities ℴ in 𝑆∆,𝑓 for, 

[1] 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡 𝑢𝑛𝑟𝑎𝑚𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 − ∆∈  2, 3, 4, 5, 6, 8, 9, 10  
[2] 𝑃𝑟𝑒𝑖𝑚𝑎𝑔𝑒 𝑓𝑜𝑟 𝑡𝑒 𝑐𝑜𝑛𝑐𝑒𝑟𝑛𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑡𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑆∆,𝑓 −

   
   
  
   
  

 

∆ ℴ ,   ℴ 
2 6 × ℴ 3

3 3 × ℴ 1,   6 × ℴ 2

4 12 × ℴ 1

5 3 × ℴ 1,   3 × ℴ 4

6 3 × ℴ 1,   2 × ℴ 2, 2 × ℴ 3 

7 1 × ℴ 1,   3 × ℴ 2, 1 × ℴ 3, 1 × ℴ 4 

8 6 × ℴ 1,   3 × ℴ 2

9 3 × ℴ 1,   3 × ℴ 2,   1 × ℴ 
11 2 × ℴ 1,   1 × ℴ 2,   2 × ℴ 3

  

 

The CY manifold having the Hodge numbers 1,1  and 2,1  we will denote a 

correction coefficient ∇  where for the 𝑆∆,𝑓   𝑤𝑖𝑡 ∆= 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝛻 =𝑛  for the case being concerned here (again ignoring the notiational ambiguity 

where ∆ appears before in this section with 𝑀∆ being the degree of the polarized 

fiber family of K3) a table can be constructed for 2,1 𝑆𝑛 |∇ with the associated 

Fricke involution
[38,39,41,42]

, 
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  ∆= 2 ∆= 3 ∆= 5 ∀𝒬 − 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑣𝑒𝑟  𝑞1,…….,𝑞𝑙  1,3 ,  2,3 ,  3,4 ,  5 ,  6 ,  8  5  3  𝑜𝑟  4  𝑞1,…….,𝑞𝑙 ∈  5,6,7,8  𝑞1,…….,𝑞𝑙 ∈  5  𝑞1,…….,𝑞𝑙 ∈  3,4 𝑠𝑚𝑜𝑜𝑡𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑞1,…….,𝑞𝑙 =  4, 1 − 4  𝑞1,…….,𝑞𝑙 =  2,3  𝑞1,…….,𝑞𝑙 =  2, 1 − 2  ∆= 2 ∆= 3 ∆= 4 ∆ ≠ 4 ∆ > 3 ∀𝐹𝑟𝑖𝑐𝑘𝑒 𝑖𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∪𝐼  for 𝐼 ∈ 2,3,4∪2⟹ 𝑜𝑟𝑑𝑒𝑟 2 − 𝑜𝑟𝑏𝑖𝑓𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡 ∪3⟹ 𝑜𝑟𝑑𝑒𝑟 3 − 𝑜𝑟𝑏𝑖𝑓𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡 ∪4⟹ 𝑜𝑟𝑑𝑒𝑟 4 − 𝑜𝑟𝑏𝑖𝑓𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡 𝑐𝑢𝑠𝑝 𝑎𝑏𝑠𝑒𝑛𝑡 𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝑜𝑟𝑏𝑖𝑓𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡 𝑎𝑏𝑠𝑒𝑛𝑡
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For the CY manifolds 𝑆𝑛  𝑜𝑟 𝑆[36-39] 
which in this section is considered as 𝑆∆,𝑓  over 

the choice of parameters of 𝑛  and ∆ being trivial here the correction takes the 

measuring function for the moduli of 𝑆𝑛  where there can be the existence of a 

smooth FANO variety over the ramification index of 𝑅1  and 𝑅2  over Tyurin 

degeneration that gives the Quasi-FANO which smooths to a mirror of the CY 

manifold 𝑆𝑛  in the hypersurface of 𝑑𝑒𝑔𝑟𝑒𝑒 ≥ 2 . For the CY threefold a simply 

connected structure (being almost trivial as regards to the K3 fiber) where for 𝑆𝑛 ~ 

the ~ denoting the simply connected structure for the elliptic curve 𝑒0  with the 

canonical form 𝑆  for the compact K𝑎 hler 𝐾 in CY threefold admits a 𝐼𝐼ℯ for 𝑒 = 0 

with other varieties
[41-43]

, 

 

𝐾𝑆 
    
   𝐼𝐼ℯ for 𝑒 = 0, + 𝑐2𝐼+  𝐾3 ℙ1𝐼0  Abelian

  
 

 

Considering the case of a minimal Calabi-Yau threefold as 𝑆𝑚  then the ℚ − 

factorial projective complex satisfying the second Chern class 𝑐1  in the following 

way 𝑐1 𝑆𝑚 ≠ 0 there is the presense of terminal singularities for the K𝑎 hler 𝐾 with 

the minimal CY variety 𝐾𝑆𝑚 ≃ ℴ𝑆𝑚  the presence of algebraic fibers for 𝑑𝑒𝑔𝐷 can be 

found in the hyperplane ℋ  where ℋ+ ∋ ℋ  and there exists a pull back of fibers 

from ℋ− from ℋ+ where for every rational curve 𝑞 there exis the presence of an 

elliptic fibration of algebraic category 𝜋1
alg .

=  1 ≡ 1  ℴ𝐾𝑆𝑚  = 0 with one singular 

fiber for non-Gorenstein 𝐺𝑝 ∈ ℋ+ one can find a morphism 𝜗 through a projection 

satisfying 1 − non − trivial attachments
[39,41-43]

, 

 

 Let 𝑄 be a nef effective divisor of semi-ample 𝑆𝑚  for  𝑃+𝑄  with 

the morphism 𝜗 establishing a relation with the non-Gorenstein 𝐺𝑝  

with minimal CY threefold  𝑆𝑚  for the positive 𝑃+ in  𝑃+𝑄  over 𝜗 ≠ equi − dimensional  relating 𝑑𝑖𝑚1𝜗  𝐺𝑝 = 2  with 𝜗  being 

surjective throughout; the connectivity of general fiber of 𝜗  is 

represented in semi-ample 𝑆𝑚  for the projective hypersurface ℙ𝑑𝑖𝑚  𝑃+𝑄  under the conditions 𝜗⋆ℴ𝑆𝑚 = ℴ𝐺𝑝  for a normal 𝑆𝑚  and ℋ+, 

 

 
 

7. DISCUSSIONS 

 

 

 

 

 

 

 

 

 

𝜗: = 𝜗 𝑃+𝑄 : 𝑆𝑚 ⟶ ℋ+𝑖𝑛𝑣⟶𝑟𝑒𝑠  𝜏∶𝑆𝑚′ ⟶𝑆𝑚  of  𝑆𝑚  𝑆𝑚 ,𝐺𝑝   𝑎𝑛𝑑  𝐺𝑝 ∙𝑐2 𝑆𝑚  ⊂ ℙ𝑑𝑖𝑚  𝑃+𝑄  Type II0 ⟶   𝑑𝑖𝑚1𝜗  𝐺𝑝 ∈ ℋ+ = 2

Type II+ ⟶    𝜗 𝑆𝑚 : 𝑆𝑚 ⟶ ℋ     
 



13 

 

Thus fiber types being properly classified as
[12,19,42,43]

, 

 𝐼0 ⟹ 𝜗 ∶ 𝑆𝑚  ℙ1 ∀fib 𝜗 ≃ Abelian ∃𝑟𝑒𝑠 𝜏 ∶ 𝑆𝑚′ ⟶𝑆𝑚  of 𝑆𝑚 𝑆𝑚 , 𝐺𝑝  𝑎𝑛𝑑 𝐺𝑝 ∙ 𝑐2 𝑆𝑚 ≅ 1 and 0 resp. 

 𝐼+ ⟹ 𝜗 ∶ 𝑆𝑚  ℙ1 ∀fib 𝜗 ≃ K3 ∃𝑟𝑒𝑠 𝜏 ∶ 𝑆𝑚′ ⟶ 𝑆𝑚  of 𝑆𝑚 𝑆𝑚 , 𝐺𝑝  𝑎𝑛𝑑 𝐺𝑝 ∙𝑐2 𝑆𝑚 ≅ 1 and + resp. 
 𝐼𝐼0 ⟹ fib 𝜗 ≃ e0or elliptic where ℋ+ =

rational 𝐺𝑝∀ 1 𝑄𝑢𝑜 ℴ  𝑓𝑜𝑟 positive 𝜀 in 𝐾𝑆𝑚ℋ+~ 0 ∃𝑟𝑒𝑠 𝜏 ∶ 𝑆𝑚′ ⟶𝑆𝑚  of 𝑆𝑚 𝑆𝑚 , 𝐺𝑝  𝑎𝑛𝑑 𝐺𝑝 ∙ 𝑐2 𝑆𝑚 ≅ 2 and 0 resp. 

 𝐼𝐼+ ⟹ fib 𝜗 ≃ e0or elliptic ∃𝜀𝐾𝑆𝑚ℋ+~𝑑𝑐𝑟 >

0 where 𝑐𝑟 is the Cartier divisor ∀ 1 𝑄𝑢𝑜 ℴ  in rational ℋ+ for positive 𝜀 in 𝐾𝑆𝑚ℋ+  ∃𝑟𝑒𝑠 𝜏 ∶𝑆𝑚′ ⟶ 𝑆𝑚  of 𝑆𝑚 𝑆𝑚 , 𝐺𝑝  𝑎𝑛𝑑 𝐺𝑝 ∙ 𝑐2 𝑆𝑚 ≅ 2 and +  resp. 

 𝐼𝐼𝐼 ⟹ 𝜗 ≃ 𝑏𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ∀𝑡𝑟𝑒𝑒𝑓𝑜𝑙𝑑 ℋ+ 𝑖𝑛 𝐶𝑎𝑛𝐼=1𝐾𝑆𝑚ℋ+~ 0
 ∃𝑟𝑒𝑠 𝜏 ∶ 𝑆𝑚′ ⟶𝑆𝑚  of 𝑆𝑚 𝑆𝑚 , 𝐺𝑝  𝑎𝑛𝑑 𝐺𝑝 ∙ 𝑐2 𝑆𝑚 ≅ 3 and ≥ 0 resp. 

 0 ⟹ 𝐺𝑃 ≃ ℴ𝐾𝑆𝑚 : 𝑆𝑚   1  ∃𝑟𝑒𝑠 𝜏 ∶ 𝑆𝑚′ ⟶ 𝑆𝑚  of 𝑆𝑚 𝑆𝑚 , 𝐺𝑝  𝑎𝑛𝑑 𝐺𝑝 ∙𝑐2 𝑆𝑚 ≅ 0 
 

 

 

7. DISCUSSIONS 

 

For the CY manifolds emphasizing threefolds when the existence of quartic 

hypersurface is found in complex dimension 2 under projective ℙ3  there can be 

found the existence of Hasee-Weil zeta function priming the category of singular 

K3. That CY when goes through the vacuum solutions of Einstein equations with a 

Ricci flat metric or vanishing Ricci additionally being compact then the 

transformation occurs from that K𝑎 hler to CY manifold. That K𝑎 hler for the 

specified metric class can be extended to CY(𝑛)-folds through the existence of 

SU(𝑛) holonomy. CY being the CI through the multi-homogeneous polynomial is 

essential for a further moderate approach to prove the results of being quadratic 

and quartic also quadratic and quintic being the sole purpose of this paper over a 

bi-homogeneous degree (1,3) when the concern sheaf  𝑆 of the structure metric-

class  𝑆, 𝑔, 𝜔   is existent through 𝑆 ⊂ ℙ2 × ℙ2. This being computed there opens 

up a proper channel through the N𝑒 ron-Severi group where the 𝑀2 − polarized 

domain is much more convenient and mathematically non-trivial for the 

computation of K3 fibers for the same sheaf 𝑆 through a quasi-projective base in 

an L-polarized family for the equivalence of that 𝑀2 with the N𝑒 ron-Severi group. 

 

Summing over to the Bogomolov-Gieseker inequality of Type 𝐵2,4  and 𝐵2,2,4  one 

can get a quartic intersection for the Clifford inequality of Type 𝐶2,2,2,4 while the 

quintic variety for Type 𝐶2,2,5  (other inequality Types are not considered in this 

paper as the relationship can be easily chalked out over these two inequalities of 

Clifford Types). In the CICY for a  𝜌 −  Torsion free a strong bound can be 

observed in the relation  𝐻2  ch 1 𝜌 𝐻3  rk  𝜌  ∈  3

4
, 1 − 𝐻2 ch1 𝜌  in projective hypersurface ℙ4  sufficing the quadratic and quintic CICY for the Clifford curve 𝐶  over the 

second Chern class 𝑐2 making a stronger bound. Then moving on to the projective 

hypersurface ℙ5  in the Bogomolov-Gieseker inequality 𝐵2,4  an existence of 

threefolds can be found with the Clifford Type 𝐶2,2,2,4  suffice a nice relation 𝐵2,4 ⊂ ℙ5.  
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For the first Chern class 𝑐1 with the bounded Polynomial 𝑐3 𝐸  a stable slope can 

be taken in sheaf 𝑆 for the quintic variety ℙ4  giving the threefold by considering 

the Kodaira vanishing through the existence of Riemann-Roch for the bounded 

Chern character 𝑐3 𝐸  such that in the even dimensions of  𝐻  one can get the 

same complete intersection Calabi-Yau (CICY) sufficing the old relation computed 

at the very beginning of the paper. Further extension of the semi-stable relation of 

Bill-Noether is shown with the Chen 𝑐  taking over the Bogomolov-Gieseker 

inequality Type 𝐵2,4 for the slope 𝜇𝐵2,4
. Having the scope of extendable to higher 

varieties of CICY threefolds in ℙ𝑁  the necessary alterations that are required for 

the same Clifford curve 𝐶 computed for the quintic variety through the inequality 

Type 𝐶2,2,5 . However, the extension onto the ℙ𝑁  with detailed calculations is 

omitted for not being the scope and purpose of this paper. 

 

For the degree 5 hypersurface of projective variety ℙ4  there exists a bilinear 

relation with the polydics 𝑑 where the hypersurface 𝑆 can be represented through 

the ambient homogeneous coordinates ℙ𝑛+1  for the projective ℙ4  where the 

suitable coordinates of the CY have been mentioned via the form 𝑧𝑚 = 𝒦𝑚 /𝒦𝑖 
with the polynomial 𝑘 for the concerned threefolds in arguments 1,1 = 1 showing 

the Euler characteristics −200. The group 𝐺 being taken here suffice the structure 

through the zeta function for 𝜓1 + 𝜓2 + 𝜓3 + 𝜓4 ≡ 0  𝑚𝑜𝑑 5 where one gets the 

necessary curves in repeated permutations through points 𝑝 1,2,3 giving the Barth-

Nieto Quintic along with the complete construction of the Calabi-Yau manifold 

emphasizing on threefold via the canonical line bundle 𝜂 through the form 𝑆𝜃∨ for 

the 5𝑡  roots of the sheave 𝑆 as .∧  in the quotient 𝑆∧ /𝐺  suffice the mirrors and 

modularity of the CY relations. 

 

Two types of orbifold proved to be non-trivial in respect of the non-rigid CY 

threefolds when taken over 𝑀∆ − 𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝐾3 fibers where again the Neron-Sevari 

groups give two sets of mapping parameters which distinguished through several 

segregations of the sheaf property through ramifications of two kinds, the 

singularities with the concerned set being taken. The Hodge number 2,1  proves 

essential for the correction coefficient for the moduli space measuring with a further 

extension to smooth degeneration, partition cover, and Fricke involution. Other than 

that Tyurin degeneration is considered for invoking two beautiful properties as the 

Quasi-FANO for smoothly connected hypersurface and the mirror. Then the canonical 

norm implies the fibers through 4 kinds being distinct for K3, Abelian, and the elliptic 

curve concerned for projective ℙ1 and second Chern class 𝑐2.  

 

And at the end for the morphism map due to singularities in K𝑎 hler 𝐾 for minimal 

CY giving 𝐾𝑆𝑚 ≃ ℴ𝑆𝑚  the presence of algebraic fibers with 𝑑𝑒𝑔𝐷  via projection map 𝜗: = 𝜗 𝑃+𝑄 : 𝑆𝑚 ⟶ ℋ+𝑖𝑛𝑣⟶𝑟𝑒𝑠  𝜏∶𝑆𝑚′ ⟶𝑆𝑚  
⊂  ℙ𝑑𝑖𝑚  𝑃+𝑄 having 

fiber variety 𝐼0, 𝐼+, 𝐼𝐼0, 𝐼𝐼+, 𝐼𝐼𝐼, 0. 
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