[1] Pradel M, Aissani L, Villot J, Baudez JC, Laforest V (2016) From waste to added value product: towards a paradigm shift in life cycle assessment applied to wastewater sludge – a review. J. Clean. Prod. 131: 60–75. doi:10.1016/j.jclepro.2016.05.076 75.
[2] Zhou C, Ge S, Yu H, Zhang T, Cheng H, Sun Q, Xiao R (2018) Environmental risk assessment of pyrometallurgical residues derived from electroplating and pickling sludges. J. Clean. Prod. 177: 699–707. https://doi.org/10.1016/j.jclepro.2017.12.285
[3] Islam S, Ahmed K, Raknuzzaman M, Habibullah-Al- Mamun, Kamrul M (2015) Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Islam Ecol. Indicators, 48: 282-291. https://doi.org/10.1016/j.ecolind.2014.08.016
[4] Cegłowskia M, Gierczyka B, Frankowskia M, Popendab L (2018) A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. React. Funct. Polym. 131: 64–74. https://doi.org/10.1016/j.reactfunctpolym.2018.07.006
[5] Jaishankar M, Tseten T, Anbalagan N (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7(2): 60–72. doi: 10.2478/intox-2014-0009
[6] Ayangbenro AS, Babalola OO (2017) A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health. 14(1): 94. https://doi.org/10.3390/ijerph14010094
[7] Chételat J, Ackerman JT, Eagles-Smith CA, Hebert CE (2019) Methylmercury exposure in wildlife: a review of the ecological and physiological processes affecting contaminant concentrations and their interpretation, Sci. Total Environ. 711: 135117. https://doi.org/10.1016/j.scitotenv.2019.135117
[8] Aaseth J, Wallace DR, Vejrup K, Alexander J (2020) Methylmercury and Developmental Neurotoxicity: A Global Concern. Current Opinion in Toxicology. 19: 80-87. https://doi.org/10.1016/j.cotox.2020.01.005
[9] Engwa AG, Ferdinand PU, Nwalo FN, Unachukwu NM. (2019) Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In: Poisoning in the Modern World - New Tricks for an Old Dog. https://doi.org/10.5772/intechopen.82511
[10] Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM (2015) Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 16(12): 29592-29630. doi: 10.3390/ijms161226183
[11] Islam A, Ahmad H, Zaidi N, Kumar S (2016) A graphene oxide decorated with triethylene-tetramine-modified magnetite for separation of chromium species prior to their sequential speciation and determination via FAAS. Microchim. Acta, 183:289 – 296. https://doi.org/10.1007/s00604-015-1641-2
[12] Ipeaiyeda AR, Ayoade AR (2017) Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline. Appl. Water Sci. 7: 4449–4459. https://doi.org/10.1007/s13201-017-0590-9
[13] Martinis EM, Olsina RA, Altamirano JC, Wuilloud RG (2008) Sensitive determination of cadmium in water samples by room temperature ionic liquid based preconcentration and electrothermal atomic absorption spectrometry, Anal. Chim. Acta. 628: 41–48. https://doi.org/10.1016/j.aca.2008.09.001
[14] Wu P, Gao Y, Cheng G, Yang W, Lv Y, Hou X (2008) Selective determination of trace amounts of silver in complicated matrices by displacement-cloud point extraction coupled with thermospray flame furnace atomic absorption spectrometry, J. Anal. At. Spectrom. 23: 752–757. https://doi.org/10.1039/B719579F
[15] Khulbe KC, Matsuura T (2018) Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. 8: 19. https://doi.org/10.1007/s13201-018-0661-6
[16] Vardhan KH, Kumar PS, Panda RC (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq, 290: 111197. https://doi.org/10.1016/j.molliq.2019.111197
[17] Renu, Agarwal M, Singh K (2017) Heavy metal removal from wastewater using various adsorbents: a review. J. Water Reuse and Desalination, 07(4): 387-419. https://doi.org/10.2166/wrd.2016.104
[18] Diagboya PNE, Dikio ED (2018) Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment, Micropor. Mesopor. Mater, 266: 252-267, https://doi.org/10.1016/j.micromeso.2018.03.008.
[19]. Da'na E (2017) Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous and Mesoporous Materials, 247: 145-157. https://doi.org/10.1016/j.micromeso.2017.03.050.
[20]. Lim J, Goh SS, Liow SS, Xue K, Loh XJ (2019) Molecular Gel Sorbent Materials for Environmental Remediation and Wastewater Treatment. J. Mater. Chem. A. 7: 18759-18791. https://doi.org/10.1039/C9TA05782J.
[21]. Huang W, Zhang Y, Li D (2017) Adsorptive removal of phosphate from water using mesoporous materials: A review, Journal of Environmental Management,Volume 193: 470-482. https://doi.org/10.1016/j.jenvman.2017.02.030
[22]. Miller PJ, Shantz DF (2020) Amine-Functionalized Ordered Mesoporous Silicas as Model Materials for Liquid Phase Acid Capture. AIChE Journal. https://doi.org/10.1002/aic.16918
[23]. Wamba AGN, Kofa GP, Koungou SN, Thue PS, Lima EC, Reis GS, Kayem JG (2018) Grafting of Amine functional group on silicate based material as adsorbent for water purification: A short review, J. Environ. Chem. Eng. 6: 3192-3203. https://doi.org/10.1016/j.jece.2018.04.062
[24]. Hao Sh, Verlotta A, Aprea P, Pepe F, Caputo D, Zhu W. (2016) Optimal synthesis of amino-functionalized mesoporous silicas for the adsorption of heavy metal ions. Microporous and Mesoporous Materials, 236: 250-259. https://doi.org/10.1016/j.micromeso.2016.09.008
[25] Wei J, Chen S, Li Y, He Z, Geng L, Liao L (2020) Aqueous Cu(II) ion adsorption by amino-functionalized mesoporous silica KIT-6. RSC Adv., 10, 20504-20514. https://doi.org/10.1039/D0RA03051A.
[26] Saad R, Hamoudi S, Belkacemi K. (2008) Adsorption of phosphate and nitrate anions on ammonium-functionnalized mesoporous silicas. J Porous Mater. 15: 315–323. https://doi.org/10.1007/s10934-006-9095-x
[27]. Gupta R, Gupta SK, Pathak DD (2019) Selective adsorption of toxic heavy metal ions using guanine-functionalized mesoporous silica [SBA-16-g] from aqueous solution. Microporous and Mesoporous Materials, 288: 109577. https://doi.org/10.1016/j.micromeso.2019.109577.
[28] Shahbazi A, Younesi H, Badiei A (2011) Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chem. Eng. J. (Lausanne) 168: 505–518. https://doi.org/10.1016/j.cej.2010.11.053
[29] Kołodyńska D (2013) Application of a new generation of complexing agents in removal of heavy metal ions from different wastes. Environ. Sci. Pollut. Res. 20: 5939–5949. https://doi.org/10.1007/s11356-013-1576-2
[30] Huang J, Ye M, Qu YQ, Chu LF, Chen R, He QZ, Xu DF (2012) Pb(II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15, J. Colloid Interface Sci. 385 137–146. https://doi.org/10.1016/j.jcis.2012.06.054
[31]. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc, 7863: 6024–6036. https://doi.org/10.1021/ja974025i.
[32] Brunauer JS, Emmet PH, Teller E (1938) Adsorption of Gases in Multimolecular Layers, J. Amer. Chem. Soc. 60: 309–319. https://doi.org/10.1021/ja01269a023
[33] Barrett EP, Joyner LG, Halenda PP (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc, 73, 373–380. https://doi.org/10.1021/ja01145a126
[34] Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) In The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, London.
[35] Han L, Ruan J, Li Y, Terasaki O, Che Sh (2007) Synthesis and Characterization of the Amphoteric Amino Acid Bifunctional Mesoporous Silica. Chem. Mater, 19 (11): 2860-2867. https://doi.org/10.1021/cm0705845
[36] Zaitsev VN, Kobylinskaya NG (2005) Properties of silicas chemically modified by monodentate amines studied by conductometry. Russ. Chem. Bull, 54: 1842–1846. https://doi.org/10.1007/s11172-006-0046-0
[37] Zhao D, Jing S, Xu J, Yang H, Zheng W, Song T, Zhang P (2013) Recycle adsorption of Cu2+ on amine-functionalized mesoporous silica monolithic. Chem. Res. Chin. Univ. 29: 793–797. https://doi.org/10.1007/s40242-013-2442-y
[38]. Lever ABP (1974) Charge transfer spectra of transition metal complexes, J. Chem. Educ. 5: 612–616, https://doi.org/10.1021/ed051p612.
[39] Smith RM, Martell AE (1987) Critical stability constants, enthalpies and entropies for the formation of metal complexes of aminopolycarboxylic acids and carboxylic acids. Sci. Total. Envir, 64(1-2): 125–147. https://doi.org/10.1016/0048-9697(87)90127-6.
[40] Faghihian H, Naghavi M (2014) Synthesis of amine-functionalized MCM-41 and MCM-48 for removal of heavy metal ions from aqueous solutions. Sep. Sci. Technol. 49: 214–220.
[41] Pearson RG (1963) Hard and Soft Acids and Bases J. Am. Chem. Soc. 85: 3533-3539. https://doi.org/10.1021/ja00905a001
[42] Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40(9): 1361–1403. https://doi.org/10.1021/ja02242a004
[43] Freundlich HMF (1906) Uber die adsorption in lasungen. Z. Phys. Chem. 57: 385–490. https://doi.org/10.1515/zpch-1907-5723
[44] Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem. Rev, 60: 235-266. https://doi.org/10.1021/cr60204a006.