1 Crabé, R., Aimond, F., Gosset, P., Scamps, F. & Raoul, C. How Degeneration of Cells Surrounding Motoneurons Contributes to Amyotrophic Lateral Sclerosis. Cells 9, doi:10.3390/cells9122550 (2020).
2 Van Harten, A. C. M., Phatnani, H. & Przedborski, S. Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis. Trends Neurosci 44, 658-668, doi:10.1016/j.tins.2021.04.008 (2021).
3 Vahsen, B. F. et al. Non-neuronal cells in amyotrophic lateral sclerosis — from pathogenesis to biomarkers. Nature Reviews Neurology 17, 333-348, doi:10.1038/s41582-021-00487-8 (2021).
4 Loeffler, J. P., Picchiarelli, G., Dupuis, L. & Gonzalez De Aguilar, J. L. The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis. Brain Pathol 26, 227-236, doi:10.1111/bpa.12350 (2016).
5 Fischer, L. R. et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185, 232-240, doi:10.1016/j.expneurol.2003.10.004 (2004).
6 Chiò, A. et al. Prognostic factors in ALS: A critical review. Amyotroph Lateral Scler 10, 310-323, doi:10.3109/17482960802566824 (2009).
7 Gregory, J. M., Fagegaltier, D., Phatnani, H. & Harms, M. B. Genetics of Amyotrophic Lateral Sclerosis. Current Genetic Medicine Reports 8, 121-131, doi:10.1007/s40142-020-00194-8 (2020).
8 Mejzini, R. et al. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Frontiers in Neuroscience 13, doi:10.3389/fnins.2019.01310 (2019).
9 Brown, R. H. & Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N Engl J Med 377, 162-172, doi:10.1056/NEJMra1603471 (2017).
10 Miller, T. M. et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12, 435-442, doi:10.1016/s1474-4422(13)70061-9 (2013).
11 Mazzini, L. et al. Results from Phase I Clinical Trial with Intraspinal Injection of Neural Stem Cells in Amyotrophic Lateral Sclerosis: A Long-Term Outcome. Stem Cells Transl Med 8, 887-897, doi:10.1002/sctm.18-0154 (2019).
12 Cudkowicz, M. E. et al. A randomized placebo-controlled phase 3 study of mesenchymal stem cells induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis. Muscle Nerve 65, 291-302, doi:10.1002/mus.27472 (2022).
13 Goutman, S. A., Savelieff, M. G., Sakowski, S. A. & Feldman, E. L. Stem cell treatments for amyotrophic lateral sclerosis: a critical overview of early phase trials. Expert Opin Investig Drugs 28, 525-543, doi:10.1080/13543784.2019.1627324 (2019).
14 Bryson, J. B. et al. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice. Science 344, 94-97, doi:10.1126/science.1248523 (2014).
15 Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100, 13940-13945, doi:10.1073/pnas.1936192100 (2003).
16 Bryson, J. B., Machado, C. B., Lieberam, I. & Greensmith, L. Restoring motor function using optogenetics and neural engraftment. Curr Opin Biotechnol 40, 75-81, doi:10.1016/j.copbio.2016.02.016 (2016).
17 Llewellyn, M. E., Thompson, K. R., Deisseroth, K. & Delp, S. L. Orderly recruitment of motor units under optical control in vivo. Nat Med 16, 1161-1165, doi:10.1038/nm.2228 (2010).
18 McDermott, C. J. et al. DiPALS: Diaphragm Pacing in patients with Amyotrophic Lateral Sclerosis - a randomised controlled trial. Health Technol Assess 20, 1-186, doi:10.3310/hta20450 (2016).
19 Gonzalez-Bermejo, J. et al. Early diaphragm pacing in patients with amyotrophic lateral sclerosis (RespiStimALS): a randomised controlled triple-blind trial. Lancet Neurol 15, 1217-1227, doi:10.1016/s1474-4422(16)30233-2 (2016).
20 Guimarães-Costa, R. et al. Implanted Phrenic Stimulation Impairs Local Diaphragm Myofibre Reinnervation in Amyotrophic Lateral Sclerosis. Am J Respir Crit Care Med 200, 1183-1187, doi:10.1164/rccm.201903-0653LE (2019).
21 Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385-397, doi:10.1016/s0092-8674(02)00835-8 (2002).
22 Gold, B. G., Katoh, K. & Storm-Dickerson, T. The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J Neurosci 15, 7509-7516, doi:10.1523/jneurosci.15-11-07509.1995 (1995).
23 Aydin, M. A., Urbanchek, M. G. & Kuzon, W. M. Improved early muscle recovery using FK506 in a rat nerve-repair model. J Reconstr Microsurg 20, 183-192, doi:10.1055/s-2004-820776 (2004).
24 Hayworth, C. R. & Gonzalez-Lima, F. Pre-symptomatic detection of chronic motor deficits and genotype prediction in congenic B6.SOD1(G93A) ALS mouse model. Neuroscience 164, 975-985, doi:10.1016/j.neuroscience.2009.08.031 (2009).
25 Arnold, R. et al. Association between calcineurin inhibitor treatment and peripheral nerve dysfunction in renal transplant recipients. Am J Transplant 13, 2426-2432, doi:10.1111/ajt.12324 (2013).
26 Hong, F. et al. Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity. Faseb j 16, 1633-1635, doi:10.1096/fj.02-0060fje (2002).
27 Breil, M. & Chariot, P. Muscle disorders associated with cyclosporine treatment. Muscle Nerve 22, 1631-1636, doi:10.1002/(sici)1097-4598(199912)22:12<1631::aid-mus3>3.0.co;2-v (1999).
28 Miyahara, Y. et al. Anti-TCRβ mAb induces long-term allograft survival by reducing antigen-reactive T cells and sparing regulatory T cells. Am J Transplant 12, 1409-1418, doi:10.1111/j.1600-6143.2012.04006.x (2012).
29 Magown, P., Brownstone, R. M. & Rafuse, V. F. Tumor prevention facilitates delayed transplant of stem cell-derived motoneurons. Ann Clin Transl Neurol 3, 637-649, doi:10.1002/acn3.327 (2016).
30 Peljto, M., Dasen, J. S., Mazzoni, E. O., Jessell, T. M. & Wichterle, H. Functional diversity of ESC-derived motor neuron subtypes revealed through intraspinal transplantation. Cell Stem Cell 7, 355-366, doi:10.1016/j.stem.2010.07.013 (2010).
31 Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 12, 969-974, doi:10.1038/nmeth.3536 (2015).
32 Scaricamazza, S., Salvatori, I., Ferri, A. & Valle, C. Skeletal Muscle in ALS: An Unappreciated Therapeutic Opportunity? Cells 10, doi:10.3390/cells10030525 (2021).
33 Mora, M. Fibrous-adipose replacement in skeletal muscle biopsy. Eur Heart J 10 Suppl D, 103-104, doi:10.1093/eurheartj/10.suppl_d.103 (1989).
34 Page, E., Kwun, J., Oh, B. & Knechtle, S. Lymphodepletional strategies in transplantation. Cold Spring Harb Perspect Med 3, doi:10.1101/cshperspect.a015511 (2013).
35 Fournier, C. N. et al. An open label study of a novel immunosuppression intervention for the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 19, 242-249, doi:10.1080/21678421.2017.1421666 (2018).
36 Turner, M. et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13, 382-384, doi:10.1016/j.stem.2013.08.003 (2013).
37 Maimon, B. E. et al. Optogenetic Peripheral Nerve Immunogenicity. Sci Rep 8, 14076, doi:10.1038/s41598-018-32075-0 (2018).
38 Hausmann, J. et al. Functional electrical stimulation through direct 4-channel nerve stimulation to improve gait in multiple sclerosis: a feasibility study. J Neuroeng Rehabil 12, 100, doi:10.1186/s12984-015-0096-3 (2015).
39 Memberg, W. D. et al. Implanted neuroprosthesis for restoring arm and hand function in people with high level tetraplegia. Arch Phys Med Rehabil 95, 1201-1211.e1201, doi:10.1016/j.apmr.2014.01.028 (2014).
40 Maimon, B. E. et al. Transdermal optogenetic peripheral nerve stimulation. J Neural Eng 14, 034002, doi:10.1088/1741-2552/aa5e20 (2017).
41 Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8, 1263-1268, doi:10.1038/nn1525 (2005).
42 Murakami, Y. et al. Prevention of anti-T-cell receptor alpha beta monoclonal antibody-induced side-effects by treatment with cyclosporin A without interference of monoclonal antibody-induced immunosuppression in mice. Immunology 86, 238-243 (1995).
43 Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7, 27-41, doi:10.1109/83.650848 (1998).