Chimeric antigen receptor (CAR) T cells are a novel cellular therapy wherein autologous T cells are harvested from a patient and genetically modified to express chimeric antigen receptors. These receptors are composed of an extracellular scFv designed to bind to a target with high specificity, and an intracellular portion consisting of a costimulatory structure and the T Cell Receptor (TCR) zeta chain which activates T cells [1, 2]. The purpose of these modifications is to generate a T-cell that will, with high specificity, activate and expand in vivo when exposed to a target molecule. A common application of CAR T cells is in treating B cell malignancies which overexpress extracellular markers [1–6]. T cells genetically engineered to express TCRs specific for cancer antigens are also being used for cancer immunotherapy. T cells engineered to express TCRs directed to the cancer/testis antigen NY-ESO-1 TCRs are being used to treat melanoma and synovial cell sarcoma [7]. Recently, TCR engineered T cells directed to Human Papilloma Virus (HPV) 16 E6 oncoprotein have been used treat HPV-associated epithelial cancers [8].
The transgenes coding for CAR and TCR are most often introduced using replication incompetent retroviral or lentiviral vectors, a process which integrates transgenes into the T-cell genome and carries a degree of risk. The number of copies of transgenes that have integrated into the cells’ genome has been associated with the clinical potency of these genetically engineered T cells. It is desirable to attain a high enough average copy number in a given cell population for a product to be effective. However, greater transgene copy numbers are also associated with a higher risk of genotoxicity with higher probability of transgene integration near oncogenes. Subsequently, safety testing of genetically engineered T cell products is paramount with particular attention paid to keeping transgene copy numbers within a safe but effective range.
Droplet digital PCR (ddPCR) has emerged as a recent technology which allows for more precise quantification and analysis of DNA and RNA as compared to older PCR techniques such as real-time PCR[9]. Applications of ddPCR include assessment of gene copy number variation, vector titer and rare event detection [10–12]. It has been used to measure the number of copies of retroviral vectors integrated into induced pluripotent stem (iPS) cells [13] and CD34 + hematopoietic stem cells [14]. It has also been used to assess the number of integrated copies of lentiviral [15] and adenoviral vectors [12].
The primary innovations in ddPCR are the partitioning of samples into thousands of nano-liter sized droplets and the binary evaluation of fluorescence in each of these droplets. Two fluorescent molecules are used in an assay: a reference probe, which binds to a reporter gene present in all cells being assayed, and a vector probe, which binds to the sequence of the vector being evaluated for copy number. Each of the droplets generated in ddPCR serves as an individual chamber for product amplification and they are analyzed individually after the reaction as either positive or negative for the presence of the two fluorescent targeting molecules. The ratio of droplets positive for both the reference and vector probe versus droplets positive for the reference probe is representative of the amount of vector copies present in the overall population. The assumption of the Poisson distribution then allows for calculation of the average number of copies of the vector present in the cell population. Notably this removes the need to generate a standard curve as fluorescence is measured in a binary rather than relative fashion which lends to the precision of ddPCR. Comparisons of the precision in absolute quantitation using ddPCR versus real-time PCR have shown ddPCR to be significantly more precise, with up to a seven fold reduction in variation of measurements [16].
ddPCR also holds value in its ability to accurately detect copy numbers with a wide dynamic range. For example, determining the presence and copy number of oncogenes in a cancer sample can help with diagnosis and treatment. Linear regression analysis was performed on data sets generated by fluorescence in situ hybridization (FISH) and ddPCR for the MET gene copy number in cancer samples with high correlation found between the data produced by the two techniques [17]. Another analysis compared ddPCR with qPCR and Southern blot techniques for the determination of copy number of transgenes in sugar cane with the conclusion that ddPCR had superior accuracy [18]. ddPCR was also used in analyzing transgene copy number in induced pluripotent stem cells for applications in gene therapy and it was found to be superior to qPCR [13]. Having demonstrated both accuracy and precision when validated against other methods of determining copy number, ddPCR has clear potential in diagnostics and genetic engineering.
To that end, we validated ddPCR as a means of screening genetically engineered CAR and TCR T cell products for transgene copy number. Aspects of the ddPCR validation included assessing its accuracy across different copy number levels, along with its precision across time points, across technicians, and across labs. Additionally, preliminary experiments were performed using ddPCR to explore the impact of different manufacturing parameters on resulting transgene copy number. These results demonstrated the potential application of ddPCR for the measurement of vector copy number in cellular therapies.